JPH01265881A - Biocatalyst membrane with hydrophobic porous layer - Google Patents

Biocatalyst membrane with hydrophobic porous layer

Info

Publication number
JPH01265881A
JPH01265881A JP63022402A JP2240288A JPH01265881A JP H01265881 A JPH01265881 A JP H01265881A JP 63022402 A JP63022402 A JP 63022402A JP 2240288 A JP2240288 A JP 2240288A JP H01265881 A JPH01265881 A JP H01265881A
Authority
JP
Japan
Prior art keywords
membrane
biocatalyst
hydrophobic
layer
hydrophilic porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63022402A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63022402A priority Critical patent/JPH01265881A/en
Publication of JPH01265881A publication Critical patent/JPH01265881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To provide the title membrane easy to discharge or feed in case the products and reactants are gases, thus enabling highly efficient bioreactors to be constituted, comprising a layer having only hydrophobic pores of specified size or smaller and an enzyme and/or microorganism-immobilized hydrophilic porous layer. CONSTITUTION:Firstly, a hydrophobic membrane 1 having only hydrophobic pores <=0.2mu is size is prepared by e.g., mixing acetylene black with particulate water-repellent resin such as PTFE followed by mutual firm bonding with e.g. a hot press into a film. The objective biocatalyst membrane is comprised of said hydrophobic membrane 1 and a hydrophilic porous layer 2 for immobilizing biocatalyst. Said hydrophilic porous membrane can be prepared by e.g., binding, with a polymer, hydrophilic fine granules such as of silica or alumina or hydrophilic porous polymer membrane. The microorganisms as said biocatalyst is e.g., an enzyme such as uricase or urease, yeast, various kinds of productive bacteria.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はバイオリアクター、バイオセンサー、人工腎臓
、等の生体関連物質を反応させる装置に使用する酵素お
よび/または微生物を固定化した生体触媒膜に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a biocatalyst membrane on which enzymes and/or microorganisms are immobilized, which is used in devices for reacting biological substances such as bioreactors, biosensors, and artificial kidneys. Regarding.

[従来の技術] 従来のバイオリアクターに使用される酵素、微生物の固
定はアルギン酸すトリウム水溶液に酵素、微生物を混入
し塩化カルシウム水?ij液でゲル化を行い粒状にし・
た生体触媒をバイオリアクター内に充填し使用している
。例えは酵母を包括固定した2〜5mm径の粒を反応器
に充填し連続的にエタノールを生産している。
[Conventional technology] Enzymes and microorganisms used in conventional bioreactors are immobilized by mixing enzymes and microorganisms in an aqueous solution of sodium alginate and then using calcium chloride water. Gel it with ij liquid and make it into granules.
A biocatalyst is used by filling it in a bioreactor. For example, ethanol is continuously produced by filling a reactor with grains with a diameter of 2 to 5 mm in which yeast is immobilized.

さらに高分子膜等のOH基に表面処理をしアミン基を付
け、このアミノ基を利用して酵素、微生物を共有結合で
固定する。固定法としてはグルタルアルデヒド等を用い
た架橋法、水溶性カルボジイミド等を用いた縮合法、ジ
アゾカップリング法等である。この固定化膜を反応器内
に朝み込み使用している。この例としてはコラーゲン膜
にウレアーゼを固定し尿素なNHaとCO2に分解する
方法が挙げられる。
Furthermore, the OH groups of the polymer membrane, etc. are surface-treated to add amine groups, and enzymes and microorganisms are immobilized by covalent bonds using these amino groups. Examples of the fixing method include a crosslinking method using glutaraldehyde etc., a condensation method using water-soluble carbodiimide etc., and a diazo coupling method. This immobilized membrane is used by pouring it into the reactor. An example of this is a method in which urease is immobilized on a collagen membrane and decomposed into urea NHa and CO2.

これらの生体触媒は粒、平面、中空糸状で使用される。These biocatalysts are used in the form of particles, flat surfaces, and hollow fibers.

反応器の形式は充填層型、平行流型、流動懸濁型かある
The types of reactors are packed bed type, parallel flow type, and fluidized suspension type.

[発明が解決し・ようとする問題点コ 反応させる原料を水溶液とし固定化生体触媒が充填され
た反応器に送り込むと生成物が生じる。
[Problems to be Solved by the Invention] When raw materials to be reacted are made into an aqueous solution and fed into a reactor filled with an immobilized biocatalyst, a product is produced.

二のとき生成物とし・て発生カスを伴う場合には固定化
層の破壊、固定化物の浮上、原料の内部の酵素、微生物
への供給遮断、生成物の排出不良が引き起こされ、さら
に生体触媒にCO2等の気体を供給する場合も固定化生
体触媒内部まで思うように行き渡らない等の欠点が有っ
た。
If the product is accompanied by scum, the immobilization layer may be destroyed, the immobilized material may float, the supply of enzymes and microorganisms inside the raw material may be cut off, and the product may not be discharged properly. When supplying a gas such as CO2 to the biocatalyst, there were drawbacks such as the inability to reach the interior of the immobilized biocatalyst as desired.

[問題点を解決するための手段] 本発明は0. 2ミクロン以下の疎水性細孔を持つ層に
親水性多孔層を接合して膜とする。この膜の親水性多孔
層に酵素および/または微生物を固定する。
[Means for solving the problems] The present invention has 0. A hydrophilic porous layer is bonded to a layer having hydrophobic pores of 2 microns or less to form a membrane. Enzymes and/or microorganisms are immobilized on the hydrophilic porous layer of this membrane.

[作用コ 上記の様に膜を構成したので親水性多孔層に0H基が多
量に有り化学的に種々の方法により酵素および/または
微生物を固定したり、生体触媒を包括したゾルを染み込
ませて固定できる。0.2ミクロン以下の疎水性細孔を
持つ層で裏打ちされているので親水性多孔層側より加圧
しても固定された酵素、微生物は疎水性細孔から漏れで
ることはない。しかし・生成した気体は疎水性細孔を自
由に透過てきるので疎水層側に容易に排出できるし、供
給出来る。そのためアンモニア、エタノール、CO2等
が連続的に反応場から取り除かれるので生体触媒の近傍
の液性が変化しにくいので反応が能率よく進行すると共
に生体触媒が長寿命となる。
[Effects] Since the membrane is constructed as described above, the hydrophilic porous layer has a large amount of 0H groups, and enzymes and/or microorganisms can be immobilized using various chemical methods, or a sol containing a biocatalyst can be impregnated. Can be fixed. Since it is lined with a layer having hydrophobic pores of 0.2 microns or less, immobilized enzymes and microorganisms will not leak out from the hydrophobic pores even if pressure is applied from the hydrophilic porous layer side. However, since the generated gas freely passes through the hydrophobic pores, it can be easily discharged and supplied to the hydrophobic layer side. Therefore, since ammonia, ethanol, CO2, etc. are continuously removed from the reaction field, the liquid properties near the biocatalyst are difficult to change, so the reaction proceeds efficiently and the biocatalyst has a long life.

例えば生成エタノール等による菌の死滅を抑えることが
できる。当然、発生カスによる固定化物の破壊、浮上と
いう問題は起こらない。
For example, killing of bacteria due to generated ethanol etc. can be suppressed. Naturally, the problem of destruction and floating of the immobilized material due to generated debris does not occur.

固定化層の薄膜化は容易で反応物の供給と生成物の排出
は容易で反応が著しく効率的となった。
It was easy to make the immobilization layer thin, and it was easy to supply reactants and discharge products, making the reaction extremely efficient.

[実施例] 基本的な膜の構成を第1図に示した。疎水性膜1は0.
2ミクロン以下の細孔が多数あるほど良く、 ・疎水性
微粒子例えば、アセチレンブラック等とPTFE等の撥
水性樹脂の微粒子を混合した後ホットプレス等で結着し
膜状にしても良い。ざらにPTFE、ポリエチレン、ポ
リプロピレン等を延伸処理した撥水性多孔膜でも適宜使
用出来る。
[Example] The basic structure of the membrane is shown in FIG. The hydrophobic membrane 1 is 0.
The greater the number of pores of 2 microns or less, the better. - Hydrophobic fine particles, such as acetylene black, and fine particles of water-repellent resin such as PTFE may be mixed and then bonded by hot pressing or the like to form a film. A water-repellent porous membrane made of roughly stretched PTFE, polyethylene, polypropylene, etc. can also be used as appropriate.

能率よく生成気体を排出する為に大きな圧力で生体触媒
層側を疎水性細孔水性層側より加圧する二とが必要な場
合には疎水性層の細孔の口径を小さくすれば良い。例え
ば、0.05ミクロシ以下の細孔のみとすれば10 k
g/cn+2以上となる。このとき膜の保護のためにス
テンレスフィルター等の補強材を接合してもよい。
If it is necessary to pressurize the biocatalyst layer with a higher pressure than the hydrophobic pore aqueous layer side in order to efficiently discharge the generated gas, the diameter of the pores in the hydrophobic layer may be made smaller. For example, if there are only pores of 0.05 microns or less, 10 k
g/cn+2 or more. At this time, a reinforcing material such as a stainless steel filter may be attached to protect the membrane.

生体触媒を固定する為の親水性多孔層2は親水性の高分
子多孔膜、シリカ、アルミナ、アパタイト、ゼオライト
等の親水性微粒子を高分子で結着した膜でもよい。さら
に撥水性膜と液体膜の界面に凹凸を着けるために撥水性
膜に撥水部と親水部を混在させた膜を結着させることが
出来る。
The hydrophilic porous layer 2 for immobilizing the biocatalyst may be a hydrophilic porous polymer membrane, or a membrane in which hydrophilic fine particles such as silica, alumina, apatite, and zeolite are bound together with a polymer. Furthermore, in order to create irregularities at the interface between the water-repellent film and the liquid film, a film containing a mixture of water-repellent portions and hydrophilic portions can be bonded to the water-repellent film.

親水性カーボンブラック表面を改質してアミノ基を導入
、酵素をこのアミノ基を利用して酵素、微生物を共有結
合で固定する。固定法としてはグルタルアルデヒド等を
用いた架橋法、水溶性カルボジイミド等を用いた縮合法
、シアツカツブリング法等か利用できる。疎水性細孔層
の表面を電解酸化等で親水化したのちに同様に固定化し
てもよいものである。
The hydrophilic carbon black surface is modified to introduce amino groups, and enzymes and microorganisms are covalently immobilized using these amino groups. As a fixing method, a crosslinking method using glutaraldehyde or the like, a condensation method using water-soluble carbodiimide or the like, a shear coupling method, etc. can be used. The surface of the hydrophobic pore layer may be made hydrophilic by electrolytic oxidation or the like and then fixed in the same manner.

牛血清アルブミン溶液、アルギン酸ナトリウム水溶液に
酵素、微生物を混ぜ親水性多孔層に塗布後、それぞれグ
ルタルアルデヒド、塩化カルシウムで固定してもよい。
Enzymes and microorganisms may be mixed with bovine serum albumin solution and sodium alginate aqueous solution, applied to a hydrophilic porous layer, and then fixed with glutaraldehyde and calcium chloride, respectively.

生体触媒線としてはウリカーゼ、ウレアーゼ等の酵素、
酵母、各種生産菌、微小藻類等の微生物が使用できる。
Biocatalytic lines include enzymes such as uricase and urease,
Microorganisms such as yeast, various production bacteria, and microalgae can be used.

反応物は通常、水溶液として親水性多孔層側から供給す
る。藻類の場合には光線も同時に照射する。
The reactant is usually supplied as an aqueous solution from the hydrophilic porous layer side. In the case of algae, light is also irradiated at the same time.

CO2)、NH3、エタノール、アセトン、ブタノール
等の生成物は疎水性細孔層裏面を減圧にしたり、NaO
H,V&酸水溶液等の反応性物質を存在させ除くことが
出来る。 藻類からH2)、CO2)、O2を採取する
場合は親水性多孔層側の溶液を疎水性細孔層側の気体圧
力より高くすることで容易に放出することができる。こ
れとは逆に生体触媒の維持に必要な気体又は反応気体を
疎水性細孔層側から供給する事ができる。 たとえはC
O2雰囲気で酵素、細菌を使って生体触媒反応を起こさ
せるとき等である。このとき疎水性細孔層の細孔径を小
さくすると供給カス中に細菌か居ても生体触媒層まで透
過できず生体触媒か汚染され無い。
Products such as CO2), NH3, ethanol, acetone, and butanol can be removed by reducing the pressure on the back side of the hydrophobic pore layer or by applying NaO
Reactive substances such as H, V & acid aqueous solutions can be present and removed. When collecting H2), CO2), and O2 from algae, they can be easily released by making the solution on the hydrophilic porous layer side higher than the gas pressure on the hydrophobic porous layer side. On the contrary, the gas or reaction gas necessary for maintaining the biocatalyst can be supplied from the hydrophobic pore layer side. The analogy is C
This is the case when a biocatalytic reaction is caused using enzymes and bacteria in an O2 atmosphere. At this time, if the pore diameter of the hydrophobic pore layer is made small, even if there are bacteria in the feed dregs, they will not be able to pass through to the biocatalyst layer and the biocatalyst will not be contaminated.

さらに第5図aに示すように膜を多層としてパーベーパ
レーションでアルコールを分離、濃縮して疎水性細孔層
側に取り出すことも可能となる。
Furthermore, as shown in FIG. 5a, it is also possible to use a multilayer membrane to separate and concentrate alcohol by pervaporation and take it out to the hydrophobic pore layer side.

膜の形態は平面状、パイプ、中空系等が用いられ充填率
から第2図の中空糸状か優れている。
The form of the membrane used is a flat form, a pipe, a hollow system, etc., and the hollow fiber form shown in Fig. 2 is superior in terms of filling rate.

ウレアーゼを固定したものは人工腎臓、酵母を固定した
ものはバイオリアクターに用いられる。
Those with immobilized urease are used in artificial kidneys, and those with immobilized yeast are used in bioreactors.

クルコースセンサ−セ等を固定すると酸素電極と組合せ
バイオセンサーを構成できる。
If a glucose sensor or the like is fixed, a biosensor can be constructed in combination with an oxygen electrode.

カーホンブラックを用いた膜では電極としても使用出来
るので生体触媒反応を電気化学的にコントロール出来る
Membranes using carphone black can also be used as electrodes, allowing biocatalytic reactions to be controlled electrochemically.

第5図すのように疎水性細孔層側に電気化学反応が出来
る反応層を接合し白金等を担持することで生体触媒層で
生成、又は消費された気体をざらζこ電気化学的に反応
させることが出来る。たとえは、グルコースオキシター
ゼを親水性多孔層に固定すると消費された02)lを反
応層の白金触媒で還元電流として測定できクルコースセ
ンサーとなる。必要ならば選択性透過膜を中間層とする
事もてきる。
As shown in Figure 5, by bonding a reaction layer capable of electrochemical reactions to the hydrophobic pore layer side and supporting platinum etc., the gas generated or consumed in the biocatalyst layer can be electrochemically removed. It can be reacted. For example, when glucose oxidase is immobilized on a hydrophilic porous layer, the consumed 02)l can be measured as a reduction current using a platinum catalyst in the reaction layer, resulting in a glucose sensor. If necessary, a selectively permeable membrane can be used as an intermediate layer.

第6図に示したように生体触媒として水素生産菌を親水
性多孔層に固定すると生成した水素が疎水性細孔層を拡
散して反応層で酸化され、酸素還元極としてカス拡散電
極を使用すると燃料電池が形成できる。
As shown in Figure 6, when hydrogen-producing bacteria are immobilized as a biocatalyst on a hydrophilic porous layer, the generated hydrogen diffuses through the hydrophobic pore layer and is oxidized in the reaction layer, and a scum diffusion electrode is used as an oxygen reduction electrode. A fuel cell can then be formed.

逆に電解を行い酸素等の電解生成物を生体触媒に供給す
る事もできる。
Conversely, it is also possible to perform electrolysis and supply electrolysis products such as oxygen to the biocatalyst.

夾駿聞↓ 0.2ミクロン以下の疎水性細孔のみを持つ層と親水性
多孔層を接合した膜は以下のように作成した。平均粒径
0.04ミクOシのアセチレンブラックと平均粒径0.
3ミクロンのポリテトラフロロエチレンを7:3と、液
相混合したのちろ過、乾燥後粉末にして金型に充填し・
、常温でプレスして成形した膜上にシリカとポリテトラ
フロロエチレンとの混合物をさらにのせ、プレス圧力1
00Kg/crrr2)、温度380°Cで3秒間ホッ
トプレスを行い急冷し・厚さ0 、 5111111、
平均口径0.04ミクロシの疎水性細孔を有する層に親
水性多孔層を有する膜1を得た。
A membrane in which a layer having only hydrophobic pores of 0.2 microns or less and a hydrophilic porous layer were bonded together was prepared as follows. Acetylene black with an average particle size of 0.04 mm and an average particle size of 0.04 mm.
After mixing 3 micron polytetrafluoroethylene in a liquid phase at a ratio of 7:3, it was filtered, dried, powdered, and filled into a mold.
, a mixture of silica and polytetrafluoroethylene was further placed on the film formed by pressing at room temperature, and a press pressure of 1 was applied.
00Kg/crrr2), hot press for 3 seconds at a temperature of 380°C and rapidly cool, thickness 0, 5111111,
A membrane 1 having a hydrophilic porous layer in a layer having hydrophobic pores with an average diameter of 0.04 microns was obtained.

2%のアルギン酸ナトリウム水溶液に酵素としてウレア
ーゼを混ぜ親水性多孔層に塗布後、0゜2M/lのCa
Cl2水溶液で処理し親水性多孔層にウレアーゼをアル
ギン酸カルシウムゲルで包括固定した。第3図に示す構
成図のように6πCm2の面積を持つ膜を使い尿素の分
解を行なった。
Mix urease as an enzyme with a 2% sodium alginate aqueous solution, apply it to the hydrophilic porous layer, and add 0.2 M/l of Ca.
After treatment with a Cl2 aqueous solution, urease was entrapping and immobilized on the hydrophilic porous layer with calcium alginate gel. Urea was decomposed using a membrane having an area of 6πCm2 as shown in the block diagram shown in FIG.

膜の疎水性層側を100mmHgで減圧にしたところ尿
素はウレアーゼで分解されてCO2とNH3になったが
水溶液側には発生せず疎水性細孔を通って裏側から排出
された。
When the hydrophobic layer side of the membrane was reduced in pressure to 100 mmHg, urea was decomposed by urease to become CO2 and NH3, but it was not generated on the aqueous solution side and was discharged from the back side through the hydrophobic pores.

液中にアンモニアが出てこないので血液の浄化等に使用
できる。第4図はシステム図である。
Since no ammonia is released into the liquid, it can be used for purposes such as blood purification. FIG. 4 is a system diagram.

0.4mm径の粒状のウレアーゼ固定化ゲルで尿素を分
解したところ液中にアンモニア放出され、液のpHがす
ぐに9以上となり、その結果、酵素反応が進みにくくな
った。長時間放置すると固定化物の破壊が起こった。
When urea was decomposed using a granular urease-immobilized gel with a diameter of 0.4 mm, ammonia was released into the solution, and the pH of the solution immediately rose to 9 or higher, making it difficult for the enzymatic reaction to proceed. When left for a long time, destruction of the immobilized material occurred.

爽験叢λ 平均粒径0.04ミクロンのアセチレンブラックと平均
粒径0.3ミクロンのポリテトラフロロエチレンを7二
3と、液相混合したのちろ過、乾燥後粉末にして金型に
充填し、常温でプレスして成形した膜の上部に親水性多
孔層と成るシリカとポリテトラフロロエチレンとの混合
物を、下部に反応層と成るように親水性カーホンブラッ
クと疎水性カーホンブラックとポリテトラフロロエチレ
ンの混合物をそれぞれシート状に積層して、プレス圧力
100Kg/cm2)、温度380℃で3秒間ホットプ
レスを行い急冷し厚さ0.7mm、膜を得た。
Acetylene black with an average particle size of 0.04 microns and polytetrafluoroethylene with an average particle size of 0.3 microns are mixed in liquid phase with 723, filtered, dried, powdered, and filled into a mold. A mixture of silica and polytetrafluoroethylene to form a hydrophilic porous layer is placed on the top of the membrane pressed and formed at room temperature, and a mixture of hydrophilic carbon black, hydrophobic carbon black, and polyethylene is placed in the bottom to form a reaction layer. The mixtures of tetrafluoroethylene were laminated into sheets and hot-pressed at a pressure of 100 kg/cm 2 for 3 seconds at a temperature of 380° C. and rapidly cooled to obtain a film having a thickness of 0.7 mm.

この膜の反応層に白金を塗布法で0.56mg/0m2
担持した。 クルコースセンサ−セを親水性多孔層に固
定し、第6図の構成図のようにグルコースセンサーを造
った。グルコース濃度によって電流値が増減しクルコー
スセンサーとして機能することが確認された。
0.56mg/0m2 of platinum was applied to the reaction layer of this membrane by coating method.
carried it. The glucose sensor was fixed to a hydrophilic porous layer, and a glucose sensor was constructed as shown in the schematic diagram of FIG. It was confirmed that the current value increases and decreases depending on the glucose concentration and functions as a glucose sensor.

(発明の効果) 本発明は、の構成を、生体触媒を固定化した層の片面に
疎水性細孔を持つ層を接合したので生成物、反応物が気
体である場合に排出、供給が容易に出来、そのため高能
率のバイオリアクターが構成できる。さらに導電性の膜
とする事で生体触媒反応と電極反応を同一の膜で行なわ
すことが出来、生体触媒を用いた新しい型のセンサー、
燃料電池等が構成できる。
(Effects of the Invention) The present invention has a structure in which a layer having hydrophobic pores is bonded to one side of a layer on which a biocatalyst is immobilized, making it easy to discharge and supply gaseous products and reactants. Therefore, a highly efficient bioreactor can be constructed. Furthermore, by making the membrane conductive, biocatalytic reactions and electrode reactions can be performed in the same membrane, creating a new type of sensor using biocatalysts.
A fuel cell etc. can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的な構成を示す図。第2図は第1
図の膜をバイブ状にして使用する図。第3図は反応器の
構成図。第4図はシステムの概略図。第5図aは選択性
透過膜を接合し3層としたことを示す図。第5図すは疎
水性細孔層にさらに=11− 電極反応ができる反応層をもうけたことを示す図。 第6図は電極反応を行なわせるときの構成図。
FIG. 1 is a diagram showing the basic configuration of the present invention. Figure 2 is the first
The membrane shown in the figure is used as a vibrator. Figure 3 is a block diagram of the reactor. Figure 4 is a schematic diagram of the system. FIG. 5a is a diagram showing three layers of selectively permeable membranes bonded together. Figure 5 is a diagram showing that a reaction layer capable of =11- electrode reaction is further provided in the hydrophobic pore layer. FIG. 6 is a configuration diagram when performing an electrode reaction.

Claims (4)

【特許請求の範囲】[Claims] (1)、0.2ミクロン以下の疎水性細孔のみを有する
層と酵素および/または微生物を固定した親水性多孔層
とを有することを特徴とする生体触媒膜。
(1) A biocatalyst membrane comprising a layer having only hydrophobic pores of 0.2 microns or less and a hydrophilic porous layer on which enzymes and/or microorganisms are immobilized.
(2)、特許請求の範囲1の疎水性細孔層がアセチレン
ブラックとポリテトラフロロエチレンの混合物から成る
ことを特徴とする特許請求の範囲1に示した生体触媒膜
(2) The biocatalyst membrane as claimed in claim 1, wherein the hydrophobic pore layer is made of a mixture of acetylene black and polytetrafluoroethylene.
(3)、特許請求の範囲1の親水性多孔層に微細な疎水
部を設けたことを特徴とする特許請求の範囲1に示した
生体触媒膜。
(3) The biocatalyst membrane as set forth in claim 1, characterized in that the hydrophilic porous layer is provided with fine hydrophobic portions.
(4)、特許請求の範囲1の生体触媒膜に電極触媒層を
付加し、電極作用を持たせたことを特徴とする生体触媒
膜。
(4) A biocatalyst membrane characterized in that an electrode catalyst layer is added to the biocatalyst membrane according to claim 1 to provide an electrode function.
JP63022402A 1988-02-02 1988-02-02 Biocatalyst membrane with hydrophobic porous layer Pending JPH01265881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63022402A JPH01265881A (en) 1988-02-02 1988-02-02 Biocatalyst membrane with hydrophobic porous layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022402A JPH01265881A (en) 1988-02-02 1988-02-02 Biocatalyst membrane with hydrophobic porous layer

Publications (1)

Publication Number Publication Date
JPH01265881A true JPH01265881A (en) 1989-10-23

Family

ID=12081668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022402A Pending JPH01265881A (en) 1988-02-02 1988-02-02 Biocatalyst membrane with hydrophobic porous layer

Country Status (1)

Country Link
JP (1) JPH01265881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281204A (en) * 2000-03-28 2001-10-10 Dkk Corp Diaphragm-type sensor
US7105337B2 (en) 2001-01-26 2006-09-12 Hitachi Plant Engineering & Construction Co., Ltd. Method of removing exogenous endocrine-disrupting chemical in water
JP2011512795A (en) * 2008-02-22 2011-04-28 コスカタ、インク. Syngas conversion system using an asymmetric membrane and anaerobic microorganisms

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281204A (en) * 2000-03-28 2001-10-10 Dkk Corp Diaphragm-type sensor
US7105337B2 (en) 2001-01-26 2006-09-12 Hitachi Plant Engineering & Construction Co., Ltd. Method of removing exogenous endocrine-disrupting chemical in water
EP1227065B1 (en) * 2001-01-26 2010-11-03 Hitachi Plant Technologies, Ltd. Method of removing exogenous endocrine-disrupting chemical (environmental hormonal substances) in water
EP2236464A3 (en) * 2001-01-26 2010-11-17 Hitachi Plant Technologies, Ltd. Method of producing a microorganism-immobilized carrier
JP2011512795A (en) * 2008-02-22 2011-04-28 コスカタ、インク. Syngas conversion system using an asymmetric membrane and anaerobic microorganisms

Similar Documents

Publication Publication Date Title
Bilal et al. Multifunctional metal–organic frameworks-based biocatalytic platforms: recent developments and future prospects
Magner Immobilisation of enzymes on mesoporous silicate materials
AU777290B2 (en) Culture chamber
Chang et al. Membrane bioreactors: present and prospects
Ulbricht et al. Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding
JPS62171686A (en) Production of biological group composite
Wang et al. Detoxification of organophosphate nerve agents by immobilized dual functional biocatalysts in a cellulose hollow fiber bioreactor
Yuan et al. Potential application of the immobilization of carbonic anhydrase based on metal organic framework supports
JPS61179354A (en) Fluid pervious fibrous matrix and its production
JPH01265881A (en) Biocatalyst membrane with hydrophobic porous layer
JPH0640815B2 (en) Bioreactor
JPS6027379A (en) Biochemical reactor
Trusek-Holownia et al. Peptides removing in enzymatic membrane bioreactor
Godjevargova et al. Influence of matrix on external mass transfer resistance in immobilized urease membranes
Giorno Membrane bioreactors
JPH09155388A (en) Denitrification device using biological catalyst
JPS61181388A (en) Biological method and matrix used therein
CA1210719A (en) Method of immobilizing enzymes
Bernath et al. Collagen as a carrier for enzymes: materials science and process engineering aspects of enzyme engineering
Bryers et al. [65] Application of immobilized captured microorganisms in water purification: An overview
JPS61249598A (en) Two-phase type anaerobic treatment device
Dizge et al. Developments and Applications in Enzyme Activated Membrane Reactors
JPH0520160Y2 (en)
JPS6320319Y2 (en)
JPH0530487B2 (en)