JPH01265196A - Fuel assembly for fast breeder - Google Patents

Fuel assembly for fast breeder

Info

Publication number
JPH01265196A
JPH01265196A JP63094891A JP9489188A JPH01265196A JP H01265196 A JPH01265196 A JP H01265196A JP 63094891 A JP63094891 A JP 63094891A JP 9489188 A JP9489188 A JP 9489188A JP H01265196 A JPH01265196 A JP H01265196A
Authority
JP
Japan
Prior art keywords
pressure
coolant
pressure plenum
inflow hole
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63094891A
Other languages
Japanese (ja)
Inventor
Fumio Kasahara
笠原 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63094891A priority Critical patent/JPH01265196A/en
Publication of JPH01265196A publication Critical patent/JPH01265196A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To extremely decrease the propagation of a complete inlet closure accident even in the event of the outbreak of such accident by providing a mechanism to form a coolant flow passage at the time of the large-scale clogging of the coolant inflow port to the low-pressure plenum side of an entrance nozzle part. CONSTITUTION:The coolant inflow hole 10 opening to the low-pressure plenum 9 is formed to the bottom end part of the entrance nozzle part 5 and a spherical movable plug 11 is disposed in this hole 10. A movable plug stop 12 is disposed to the upper part of the movable plug 11. The movable plug 11 normally closes the inflow hole 10 by the coolant pressure from the high-pressure plenum side 8 flowing in from the coolant inflow hole 4. The pressure in the assembly drops below the pressure of the low-pressure plenum 9 and, therefore, the movable plug 11 is lifted when the coolant inflow hole 4 of the high-pressure plenum side 8 is completely closed by a certain cause. An a result, the inflow hole 10 is opened and since the coolant flow in from the low-pressure plenum 9, the propagation of the accident is prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、液体金属冷却型高速増殖炉で用いる高速増殖
炉用燃料集合体に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a fast breeder reactor fuel assembly used in a liquid metal cooled fast breeder reactor.

(従来の技術) 一般に従来の高速増殖炉用燃料集合体は、第7図に示す
ように構成されている。すなわち、燃料ピン1は、六方
格子状に規則正しく配列されており、水平断面六角形状
のラッパ管2内に収容されている。また、その上端には
、ハンドリングヘッド3が配置されており、下端には、
冷却材流入孔4が穿設されたエントランスノズル部5が
配置されている。
(Prior Art) Generally, a conventional fuel assembly for a fast breeder reactor is constructed as shown in FIG. That is, the fuel pins 1 are regularly arranged in a hexagonal lattice shape and housed in a trumpet tube 2 having a hexagonal horizontal cross section. Further, a handling head 3 is arranged at the upper end, and a handling head 3 is arranged at the lower end.
An entrance nozzle part 5 in which a coolant inflow hole 4 is formed is arranged.

エントランスノズル部5は、第8図に示すように、炉心
下部に配置された支持板6.7の開口部分に挿入される
。そして、冷却材流入孔4には、高圧プレナム8から冷
却材が流入し、う・ソック管2内の燃料ピン1を冷却す
るよう構成されている。
As shown in FIG. 8, the entrance nozzle portion 5 is inserted into an opening in a support plate 6.7 located at the bottom of the reactor core. Coolant flows into the coolant inflow hole 4 from the high-pressure plenum 8 to cool the fuel pin 1 in the sock pipe 2.

なお、支持板7の下部は、低圧プレナム9である。Note that the lower part of the support plate 7 is a low pressure plenum 9.

また、上記エントランスノズル部らの構造は、人口閉塞
の防止、流量調節、誤装荷の防止および集合体浮き上が
り防止等のために、それぞれ設計上の配慮がなされてい
る。
Further, the structure of the entrance nozzle section is designed with consideration given to prevention of artificial occlusion, flow rate adjustment, prevention of erroneous loading, prevention of floating of aggregates, and the like.

(発明が解決しようとする課題) 上述のような閉塞事故の形態あるいは規模の同定は現状
では不確かな部分を有する。このため、現状では閉塞の
上限として、入口完全閉塞事故が設計基準を越える事故
、あるいは立地評価事故として想定されている。しかし
ながら上記説明の従来の高速増殖炉用燃料集合体では、
このような完全閉塞事故が生じた場合には、集合体内の
冷却材の流れがほぼ停止するため、燃料ピンの破損等が
生じる恐れがある。
(Problems to be Solved by the Invention) At present, there is some uncertainty in identifying the form or scale of the blockage accident as described above. For this reason, at present, the upper limit of blockage is assumed to be an accident where the entrance is completely blocked, which is an accident that exceeds the design standards, or an accident where the site is evaluated. However, in the conventional fast breeder reactor fuel assembly described above,
If such a complete blockage accident occurs, the flow of coolant within the assembly will almost stop, which may cause damage to the fuel pins.

本発明は、かかる従来の事情に対処してなされたもので
、万一人口完全閉塞事故が発生した場合でも、事故の波
及効果を大幅に緩和することができ、従来に較べて安全
性の向上を図ることのできる高速増殖炉用燃料集合体を
提供しようとするものである。
The present invention was made in response to such conventional circumstances, and even in the event that a complete population blockage accident occurs, the ripple effects of the accident can be significantly alleviated, and safety is improved compared to the past. The present invention aims to provide a fuel assembly for a fast breeder reactor that can achieve the following.

[発明の構成] (課題を解決するための手段) すなわち、本発明は、高圧プレナムに開口する冷却材流
入孔が穿設されたエントランスノズル部を備えた高速増
殖炉用燃料集合体において、前記エントランスノズル部
の低圧プレナム側に、通常時は閉とされ、前記冷却材流
入孔の大規模閉塞時には、低下した前記エントランスノ
ズル部内の圧力と前記低圧プレナムの圧力との差により
開となり、前記低圧プレナム側からの冷却材流路を形成
する機構を配置したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) That is, the present invention provides a fuel assembly for a fast breeder reactor equipped with an entrance nozzle portion having a coolant inflow hole opening into a high-pressure plenum. The low-pressure plenum side of the entrance nozzle section is normally closed, but when the coolant inflow hole is largely blocked, it opens due to the difference between the reduced pressure inside the entrance nozzle section and the pressure of the low-pressure plenum, and the low-pressure It is characterized by the arrangement of a mechanism that forms a coolant flow path from the plenum side.

(作 用) 上記構成の本発明の高速増殖炉用燃料集合体では、エン
トランスノズル部の低圧プレナム側に、通常時は閉とさ
れ、冷却材流入孔の大規模閉塞時には、低下したエント
ランスノズル部内の圧力と低圧プレナムの圧力との差に
より開となり、低圧プレナム側からの冷却材流路を形成
する機構が配置されている。
(Function) In the fuel assembly for a fast breeder reactor of the present invention having the above-mentioned configuration, the low-pressure plenum side of the entrance nozzle section is normally closed, but when the coolant inflow hole is large-scale blocked, the inside of the entrance nozzle section is lowered. A mechanism is arranged that opens due to the difference between the pressure of

したがって、万一人口完全閉塞事故が発生した場合でも
、事故の波及効果を大幅に緩和することができ、従来に
較べて安全性の向上を図ることができる。
Therefore, even if a total population blockage accident should occur, the ripple effects of the accident can be significantly reduced, and safety can be improved compared to the past.

(実施例) 以下、本発明の詳細を図面を参照して実施例について説
明する。
(Example) Hereinafter, details of the present invention will be described with reference to the drawings.

第1図および第2図は、本発明の一実施例の高速増殖炉
用燃料集合体の要部を示すもので、エントランスノズル
部5の下端部には、低圧プレナム9に開口する冷却材流
入孔10が形成されており、この冷却材流入孔10には
、球形の可動栓11が配置されている。また、可動栓1
1の上部には、可動栓止め12が配置されている。  
′上記構成のこの実施例の高速増殖炉用燃料集合体では
、通常運転時においては、冷却材流入孔4から流入する
高圧プレナム8からの冷却材による圧力のため、可動栓
11は冷却材流入孔10に押圧された状態となり、冷却
材流入孔10は閉塞されている。
1 and 2 show the main parts of a fuel assembly for a fast breeder reactor according to an embodiment of the present invention. At the lower end of the entrance nozzle part 5, a coolant inlet opens into a low pressure plenum 9. A hole 10 is formed, and a spherical movable stopper 11 is disposed in the coolant inflow hole 10. In addition, movable stopper 1
A movable stopper 12 is arranged on the upper part of the stopper 1 .
'In the fuel assembly for a fast breeder reactor of this embodiment having the above configuration, during normal operation, the movable plug 11 prevents the coolant from flowing in due to the pressure caused by the coolant from the high-pressure plenum 8 that flows in from the coolant inflow hole 4. The coolant inflow hole 10 is in a state of being pressed against the hole 10, and the coolant inflow hole 10 is closed.

一方、第3図に示すように、何らかの原因により高圧プ
レナム8側の冷却材流入孔4が完全閉塞した場合には、
集合体内の圧力は低圧プレナム9の圧力より低くなるた
め、その圧力差により、可動栓11が押し上げられ、冷
却材流入孔10が開となり、低圧プレナム9から冷却材
が流入する。
On the other hand, as shown in FIG. 3, if the coolant inflow hole 4 on the high pressure plenum 8 side is completely blocked for some reason,
Since the pressure inside the assembly is lower than the pressure in the low pressure plenum 9, the movable stopper 11 is pushed up due to the pressure difference, the coolant inflow hole 10 is opened, and the coolant flows in from the low pressure plenum 9.

なお、この時可動栓11は、可動栓止め12によって係
止される。
At this time, the movable stopper 11 is locked by the movable stopper 12.

上記高圧プレナム8の圧力をpH,低圧プレナム9の圧
力をPLとすると、エントランスノズル部5付近におい
ては、 P H謹ρgh+ΔPb+P。
If the pressure of the high-pressure plenum 8 is pH and the pressure of the low-pressure plenum 9 is PL, then in the vicinity of the entrance nozzle section 5, P H ρgh+ΔPb+P.

PL−pgh+ΔPb’+P。PL-pgh+ΔPb'+P.

ただし、 ρ:冷却材密度 g:重力加速度 h:入口から集合体出口部までの高さ ΔPb、ΔPb’:炉心燃料集合体およびブランケット
燃料集合体内部の圧損 Po:集合体出口部圧力 ′ となる。通常時は、 ΔPb  (=4.3kg/cj) >ΔP b’ (
= 0.5kg/cj )の程度であるが、高圧側で入
口完全閉塞が発生すると、Δpb−oとなるため、PH
<PLとなり、ΔPb°に相当する冷却材が低圧プレナ
ム9より流入する。冷却材流入量は内部オリフィスの数
や、ピンバンドル部のピッチ等により異なるが、表1に
示す集合体流量と、バンドル部圧損との関係より、近似
的に (W’ /W)QC(△P b’/△Pb)4ただし W、W’:集合体流量 Δpb、ΔPb’:バンドル部圧損 が成立する。
However, ρ: Coolant density g: Gravitational acceleration h: Height from the inlet to the outlet of the assembly ΔPb, ΔPb': Pressure loss inside the core fuel assembly and blanket fuel assembly Po: Pressure at the outlet of the assembly ′ . Normally, ΔPb (=4.3kg/cj) >ΔP b' (
= 0.5kg/cj), but if the inlet is completely blocked on the high pressure side, Δpb-o will result, so the PH
<PL, and the coolant corresponding to ΔPb° flows in from the low pressure plenum 9. Although the amount of coolant inflow varies depending on the number of internal orifices and the pitch of the pin bundle part, from the relationship between the aggregate flow rate and the bundle part pressure drop shown in Table 1, it can be approximated as (W' /W)QC(△ P b'/ΔPb) 4 However, W, W': aggregate flow rate Δpb, ΔPb': bundle portion pressure loss is established.

(以下余白) 表1から全圧損0.5kg/cjより、オリフィス部の
寄与を除くと、炉心領域の圧損、および流量低下率は、
第1領域で0.43kg/ cd、 0.34、第2領
域で0.395 kg/ cJ、0.34、第3領域で
0.30kg/ cd。
(Left below) From Table 1, from the total pressure drop of 0.5 kg/cj, if the contribution of the orifice is excluded, the pressure drop in the core region and the flow rate reduction rate are:
0.43 kg/cJ, 0.34 in the first region, 0.395 kg/cJ, 0.34 in the second region, 0.30 kg/cd in the third region.

0.34となり、定常時の35%株度の流量が確保され
る。
0.34, ensuring a flow rate of 35% of the steady state.

第4図のグラフに冷却材流量比に対する冷却材最高温度
の関係を示す。同図に示すように、流量比35%では冷
却材最高温度は沸騰限界に近くなるので、間欠的なドラ
イアウトは発生するが、安定沸騰除熱が可能な領域であ
る。一方、低圧プレナム9の圧力を約o、4kg/c−
高めれば、冷却材流量は、定常時流量の約48%が確保
される。この場合には冷却材最高温度は約800℃とな
り、充分沸騰域を下回る。
The graph in FIG. 4 shows the relationship between the coolant maximum temperature and the coolant flow rate ratio. As shown in the figure, at a flow rate ratio of 35%, the maximum coolant temperature is close to the boiling limit, so although intermittent dryout occurs, stable boiling heat removal is possible. On the other hand, the pressure of the low pressure plenum 9 is approximately o, 4 kg/c-
If the flow rate is increased, the coolant flow rate will be approximately 48% of the steady flow rate. In this case, the maximum temperature of the coolant is approximately 800° C., which is well below the boiling range.

すなわち、この実施例の高速増殖炉用燃料集合体では、
入口完全閉塞事故が発生した場合でも、安定沸騰除熱が
可能な定常時の35%程度の冷却材流量を確保すること
ができる。したがって、従来に較べて事故の波及効果を
大幅に緩和することができる。また低圧プレナム9の圧
力をやや高めることにより、充分な余裕を持って事故集
合体を安定に冷却することが可能となる。
That is, in the fast breeder reactor fuel assembly of this example,
Even if a complete inlet blockage accident occurs, a coolant flow rate of about 35% of the normal flow rate, which allows stable boiling heat removal, can be secured. Therefore, the ripple effects of an accident can be significantly reduced compared to the past. Furthermore, by slightly increasing the pressure in the low-pressure plenum 9, it becomes possible to stably cool the accident assembly with sufficient margin.

なお、上記実施例では、球形の可動栓11を用いた例に
ついて説明したが、本発明はかかる実施例に限定される
ものではなく、たとえば〈第5図および第6図に示すよ
うに、上下に2つの円錐を重ね合せた形状の可動栓11
aおよびこの可動栓11aの形状に合せた可動栓止め1
2a等、どのような形状のものを用いてもよいことはも
ちろんである。
In the above embodiment, an example using a spherical movable stopper 11 has been described, but the present invention is not limited to such an embodiment. For example, as shown in FIG. 5 and FIG. A movable stopper 11 in the shape of two cones superimposed on each other.
a and a movable stopper 1 that matches the shape of this movable stopper 11a.
Of course, any shape such as 2a may be used.

[発明の効果] 以上説明したように、本発明の高速増殖炉用燃料集合体
によれば、万一人口完全閉塞事故が発生した場合でも、
事故の波及効果を大幅に緩和することができ、従来に較
べて安全性の向上を図ることのできる。
[Effects of the Invention] As explained above, according to the fast breeder reactor fuel assembly of the present invention, even if a complete blockage accident occurs,
The ripple effects of accidents can be significantly reduced, and safety can be improved compared to conventional methods.

【図面の簡単な説明】 第1図は本発明の一実施例の高速増殖炉用燃料集合体の
要部を示す縦断面図、第2図は第1図の上面図、第3図
は第1図に示す高速増殖炉用燃料集合体の完全閉塞事故
時の状態を示す縦断面図、第4図は冷却材流量比と冷却
材最高温度との関係を示すグラフ、第5図は第1図の高
速増殖炉用燃料集合体の変形例を示す縦断面図、第6図
は第5図の上面図、第7図は従来の高速増殖炉用燃料集
合体を示す側面図、第8図は第7図の要部を示す縦断面
図である。 4・・・・・・・・・・・・冷却材流入孔(高圧プレナ
ム側)5・・・・・・・・・・・・エントランスノズル
部8・・・・・・・・・・・・高圧プレナム9・・・・
・・・・・・・・低圧プレナム10・・・・・・・・・
冷却材流入孔(低圧プレナム側)11・・・・・・・・
・可動栓 12・・・・・・・・・可動栓止め 出願人      日本原子力事業株式会社出願人  
    株式会社 東芝 代理人 弁理士  須 山 佐 − 閉基割合(σ) 第4図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a longitudinal sectional view showing the main parts of a fuel assembly for a fast breeder reactor according to an embodiment of the present invention, FIG. 2 is a top view of FIG. 1, and FIG. 3 is a top view of FIG. Figure 1 is a vertical cross-sectional view showing the state of the fast breeder reactor fuel assembly at the time of a complete blockage accident, Figure 4 is a graph showing the relationship between the coolant flow rate ratio and the maximum coolant temperature, and Figure 5 is the graph showing the relationship between the coolant flow rate ratio and the maximum coolant temperature. FIG. 6 is a top view of FIG. 5, FIG. 7 is a side view of a conventional fast breeder reactor fuel assembly, and FIG. 7 is a vertical sectional view showing the main part of FIG. 7. FIG. 4...... Coolant inflow hole (high pressure plenum side) 5... Entrance nozzle section 8...・High pressure plenum 9...
・・・・・・・・・Low pressure plenum 10・・・・・・・・・
Coolant inflow hole (low pressure plenum side) 11...
・Movable stopper 12・・・・・・・・・Movable stopper applicant Applicant of Japan Atomic Energy Corporation
Toshiba Corporation Representative Patent Attorney Sasa Suyama - Closed group ratio (σ) Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)高圧プレナムに開口する冷却材流入孔が穿設され
たエントランスノズル部を備えた高速増殖炉用燃料集合
体において、 前記エントランスノズル部の低圧プレナム側に、通常時
は閉とされ、前記冷却材流入孔の大規模閉塞時には、低
下した前記エントランスノズル部内の圧力と前記低圧プ
レナムの圧力との差により開となり、前記低圧プレナム
側からの冷却材流路を形成する機構を配置したことを特
徴とする高速増殖炉用燃料集合体。
(1) In a fast breeder reactor fuel assembly equipped with an entrance nozzle section in which a coolant inflow hole opening into a high-pressure plenum is drilled, the entrance nozzle section is provided on the low-pressure plenum side with a In the case of a large-scale blockage of the coolant inflow hole, a mechanism is provided that opens due to the difference between the reduced pressure in the entrance nozzle part and the pressure in the low pressure plenum, and forms a coolant flow path from the low pressure plenum side. Features of fuel assembly for fast breeder reactor.
JP63094891A 1988-04-18 1988-04-18 Fuel assembly for fast breeder Pending JPH01265196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094891A JPH01265196A (en) 1988-04-18 1988-04-18 Fuel assembly for fast breeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094891A JPH01265196A (en) 1988-04-18 1988-04-18 Fuel assembly for fast breeder

Publications (1)

Publication Number Publication Date
JPH01265196A true JPH01265196A (en) 1989-10-23

Family

ID=14122665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094891A Pending JPH01265196A (en) 1988-04-18 1988-04-18 Fuel assembly for fast breeder

Country Status (1)

Country Link
JP (1) JPH01265196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507631A (en) * 2009-10-16 2013-03-04 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Nuclear fuel assemblies and nuclear reactors comprising such assemblies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507631A (en) * 2009-10-16 2013-03-04 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Nuclear fuel assemblies and nuclear reactors comprising such assemblies

Similar Documents

Publication Publication Date Title
JP2909247B2 (en) Accumulator
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
JPH01265196A (en) Fuel assembly for fast breeder
CN207489486U (en) Core component sodium flow system
JP4533957B2 (en) Accumulated water injection tank and flow damper manufacturing method
JPH085772A (en) Reactor containment
JP5443199B2 (en) Fast breeder reactor core structure
US6337892B1 (en) Boiling water reactor core, boiling water reactor, and method of operating boiling water reactor
JPS6250691A (en) Core structure of nuclear reactor
CN108962407A (en) A kind of advanced Core makeup tank structure
JPH04177199A (en) Reactor structure for fast breeder reactor
Fisher et al. Performance and safety studies for Multi-Application, Small, Light Water Reactor (MASLWR)
JP3098888B2 (en) Reactor core substructure, control rod guide mechanism, and boiling water reactor
JPH0443994A (en) Lower tie plate for fuel assembly for bwr
JPS5850497A (en) Fast breeder
JPS6151594A (en) Loop type fast breeder reactor
JPS6256480B2 (en)
JPS6465490A (en) Fuel assembly
JPH0192691A (en) Emergency core cooler for nuclear reactor
Park et al. Estimation of Direct Containment Heating Loads in KNGR Using CONTAIN Code
JPS6212893A (en) Controller for nuclear reactor
JPH04318493A (en) Fuel assembly
JPS6224190A (en) Nuclear reactor
JP2001133577A (en) Reactor
JPS63315981A (en) Fuel assembly