JPH01265189A - Data processing method and device for probing underground specific resistance - Google Patents
Data processing method and device for probing underground specific resistanceInfo
- Publication number
- JPH01265189A JPH01265189A JP63094876A JP9487688A JPH01265189A JP H01265189 A JPH01265189 A JP H01265189A JP 63094876 A JP63094876 A JP 63094876A JP 9487688 A JP9487688 A JP 9487688A JP H01265189 A JPH01265189 A JP H01265189A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- commercial frequency
- circuit
- sampling
- data processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003672 processing method Methods 0.000 title claims description 6
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 32
- 230000005684 electric field Effects 0.000 claims abstract description 19
- 238000005070 sampling Methods 0.000 claims abstract description 19
- 230000005540 biological transmission Effects 0.000 claims abstract description 14
- 230000001360 synchronised effect Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 15
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 7
- 241000331231 Amorphocerini gen. n. 1 DAD-2008 Species 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 14
- 238000007792 addition Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 2
- 208000027503 bloody stool Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 208000035861 hematochezia Diseases 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は自然環境中の電磁場を測定することにより地下
比抵抗を探査する場合のデータ処理技術に係わり、特に
、信号源として送電線を流れる商用周波数信号を用い、
S/N比を向上させると共に、データ処理時間を大幅に
短縮することができる地下比抵抗探査におけるデータ処
理方法および装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to data processing technology for investigating underground resistivity by measuring electromagnetic fields in the natural environment, and in particular, relates to data processing technology for investigating underground resistivity by measuring electromagnetic fields in the natural environment, and in particular, Using a commercial frequency signal,
The present invention relates to a data processing method and apparatus for underground resistivity exploration that can improve the S/N ratio and significantly shorten data processing time.
一般に、地下構造の調査、ウラン鉱床の探査、ウラン鉱
床を取り巻く地質環境1査、石油鉱床や地熱地帯の探査
等に自然環境中の電磁場を測定する地下比抵抗探査技術
が用いられている。In general, underground resistivity exploration technology that measures electromagnetic fields in the natural environment is used for investigating underground structures, exploring uranium deposits, investigating the geological environment surrounding uranium deposits, exploring oil deposits and geothermal areas, and the like.
このような地下比抵抗探査技術として、例えば地磁気の
変動による誘導電磁場の比(電磁波動インピーダンス)
の測定によって地下の比抵抗を求める方法(MT法)が
ある。また、潜水艦のナビゲーション用に発射されてい
る数10KHzオーダーの電磁波を信号源とし、深度の
浅い所を対象としてMT法と同様の原理で探査を行うV
LF法、熱帯地方で頻発する雷により発生し、lHNを
通して伝播してくる数Hzオーダーの電磁波を信号源と
してMT法と同様の原理で探査を行うELFMT法等が
実用化されている。また、人工的に電磁場を発生させて
地下比抵抗を求めるC S AMT法も広く用いられて
いる。As such underground resistivity exploration technology, for example, the ratio of induced electromagnetic field (electromagnetic wave impedance) due to geomagnetic fluctuations
There is a method (MT method) of determining underground resistivity by measuring . In addition, the V method uses electromagnetic waves of several tens of kilohertz, which are emitted for navigation by submarines, as a signal source and conducts exploration at shallow depths using the same principle as the MT method.
The LF method and the ELFMT method, which performs exploration on the same principle as the MT method, using electromagnetic waves of the order of several Hz, which are generated by lightning that frequently occurs in tropical regions and propagated through IHN, as a signal source have been put into practical use. Furthermore, the C S AMT method, in which underground resistivity is determined by artificially generating an electromagnetic field, is also widely used.
この他、直流電流を強制的に地中に流して比抵抗を測定
する比抵抗法、人工的に地震波を発生させてその反射波
を検出する浅層反射法(M I N r−3O3IE法
)等も用いられている。Other methods include the resistivity method, which measures resistivity by forcing a direct current to flow underground, and the shallow reflection method (MINr-3O3IE method), which artificially generates seismic waves and detects the reflected waves. etc. are also used.
【発明が解決すべきLl!fi)
しかしながら、MT法では低周波の電磁場を測定するた
めに測定時間が極めて長くなるという欠点がある。また
VLF法およびELMT法はいずれも簡便な探査法であ
るが、前者は使用する周波数が数10KHzと比較的高
く、探査できる深度が浅いという問題がある。また後者
は3〜60H2の周波数帯を使用し、信号強度が弱く不
安定であるため、大きなイングクションコイルやゲイン
が大きく安定度の良い増幅器が必要となり、装置が大が
かりになり、コストがかかるという問題がある。また人
工的に電磁場を作りだす方法では、測定点毎に装置を設
置して電磁場を発生させるため、広範囲に手早く探査す
ることができないという問題がある。しかも、これらの
従来の測定方法においては、検出した信号を高速フーリ
エ変換して、周波数領域へ変換し、これをスタックして
S/N比を向上させるようにしており、データ取得毎に
高速フーリエ変換を繰返し実施するために非常に演算時
間がかかり、スタック回数をそれほど多くとれないとい
う問題がある。[Ll that invention should solve! fi) However, the MT method has the disadvantage that the measurement time is extremely long because it measures a low-frequency electromagnetic field. Further, although both the VLF method and the ELMT method are simple exploration methods, the former has a problem in that the frequency used is relatively high, several tens of kilohertz, and the depth that can be explored is shallow. In addition, the latter uses a frequency band of 3 to 60H2, and the signal strength is weak and unstable, so a large induction coil and an amplifier with high gain and good stability are required, making the equipment large and costly. There's a problem. Furthermore, in the method of artificially creating an electromagnetic field, a device is installed at each measurement point to generate the electromagnetic field, so there is a problem that it is not possible to quickly survey a wide area. Moreover, in these conventional measurement methods, the detected signal is subjected to fast Fourier transform, converted to the frequency domain, and stacked to improve the S/N ratio. There is a problem in that it takes a very long calculation time to perform the conversion repeatedly, and the number of stacks cannot be increased very much.
また、比抵抗法は人手を要し、またMINI−3O5I
E法の場合は多くの人手と大掛かりな装置を必要とし
、コストがかかるという問題がある。In addition, the resistivity method requires manpower, and the MINI-3O5I
In the case of method E, there is a problem in that it requires a lot of manpower and large-scale equipment, and is expensive.
一方、地下構造の探査に対する需要は、土木、建設のた
めの地盤調査や地熱、石油、鉱床、地下水の探査などの
分野で高まっており、手軽に比抵抗の探査ができる装置
の開発が待たれていた。On the other hand, the demand for exploration of underground structures is increasing in fields such as civil engineering, ground investigation for construction, and exploration of geothermal, oil, ore deposits, and groundwater, and the development of equipment that can easily explore resistivity is awaited. was.
° 本発明は上記問題点を解決するためのもので、高
精度にかつ簡便に測定でき、しかもデータ処理時間を短
縮することができる地下比抵抗探査におけるデータ処理
方法および装置を提供することを目的とする。° The present invention is intended to solve the above-mentioned problems, and aims to provide a data processing method and device for underground resistivity exploration that can perform measurements with high accuracy and ease, and shorten data processing time. shall be.
そのために本発明の地下比抵抗探査におけるデータ処理
方法は、自然環境中の電磁場を測定し、両者の比から地
下比抵抗を求める地下比抵抗探査方法において、送電線
を流れる商用周波数信号を1信号源とし、検出した電場
、磁場信号を商用周波数信号に同期してサンプリングし
て時間領域で加算することを特徴とし、また地下比抵抗
探査におけるデータ処理装置は、自然環境中の電磁場を
測定し、地下比抵抗を探査する装置において、電磁場を
検出する検出手段、商用周波数信号に同期した信号を発
生する同期信号発生回路、検出信号を同期信号に応じて
サンプリングするサンプリング回路、サンプリングした
データを加算する加算回路、加算データを高速フーリエ
変換する高速フーリエ変換回路、フーリエ変換してデー
タから電場、磁場あるいは電場と磁場の比を出力する出
力回路とからなることを特徴とする。To this end, the data processing method for underground resistivity exploration of the present invention measures the electromagnetic field in the natural environment and calculates the underground resistivity from the ratio of the two. The data processing device for underground resistivity exploration measures the electromagnetic field in the natural environment, In a device for exploring underground resistivity, there is a detection means for detecting an electromagnetic field, a synchronization signal generation circuit for generating a signal synchronized with a commercial frequency signal, a sampling circuit for sampling the detection signal according to the synchronization signal, and a summation of the sampled data. It is characterized by comprising an addition circuit, a fast Fourier transform circuit that performs fast Fourier transform on added data, and an output circuit that performs Fourier transform and outputs an electric field, a magnetic field, or a ratio of electric field and magnetic field from the data.
本発明は信号源として送電線を流れる商用周波数信号を
用い、ここから発射される商用周波数信号により誘起さ
れる自然環境中における電場、磁場を検出し、検出した
値を商用周波数信号に同期した信号でサンプリングして
時間領域で加算し、加算結果を高速フーリエ変換して電
場、磁場あるいは電場と磁場の比を出力するものであり
、検出データを商用周波数信号に同期した信、号でサン
プリングして時間領域で加算することにより、信号強度
は加算回数に比例して増大するのに対し、ノイズ成分は
周期性がないので加算により増大せず、その結果S/N
比を向上させることが可能となる。The present invention uses a commercial frequency signal flowing through a power transmission line as a signal source, detects electric fields and magnetic fields in the natural environment induced by the commercial frequency signal emitted from the transmission line, and generates a signal that synchronizes the detected values with the commercial frequency signal. It samples the data and adds it in the time domain, then fast Fourier transforms the addition result to output the electric field, magnetic field, or the ratio of the electric field and magnetic field.The detected data is sampled with a signal synchronized with the commercial frequency signal. By adding in the time domain, the signal strength increases in proportion to the number of additions, whereas the noise component does not increase due to addition because it has no periodicity, resulting in S/N
It becomes possible to improve the ratio.
また1度の高速フーリエ変換で済まずことができるので
データ処理時間を大幅に短縮することが可能となり、装
置も大掛かりとならず前便かつ精度よく地下比抵抗を求
めることができる。In addition, since only one fast Fourier transform is required, data processing time can be significantly shortened, and underground resistivity can be determined quickly and accurately without requiring large-scale equipment.
以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.
第1図〜第4図は本発明を説明するための図で、第1図
は本発明の構成を示す図、第2図は処理フローを示す図
、第3図、第4図は本発明のデータ取1′1F方法を説
明するための図である。FIGS. 1 to 4 are diagrams for explaining the present invention. FIG. 1 is a diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the processing flow, and FIGS. 3 and 4 are diagrams showing the present invention. FIG. 1 is a diagram for explaining a data acquisition method 1'1F.
図中、lは同期信号発生回路、2は測定器、3はサンプ
リング回路、4は加算回路、5はFF7回路、6は出力
回路、10は送電線、11は電磁波エネルギー、12は
導体、13は電磁波エネルギー、14は地表面、20は
測定器、21は電場センサ、22は磁場センサである。In the figure, l is a synchronization signal generation circuit, 2 is a measuring device, 3 is a sampling circuit, 4 is an addition circuit, 5 is an FF7 circuit, 6 is an output circuit, 10 is a power transmission line, 11 is electromagnetic wave energy, 12 is a conductor, 13 is electromagnetic wave energy, 14 is the ground surface, 20 is a measuring device, 21 is an electric field sensor, and 22 is a magnetic field sensor.
本発明は第3図に示すように送電線10から放射される
電磁波エネルギー11を信号源として用いている。TL
E31波エネルギー11が地下に伝播し、例えば地下に
導体12が存在する場合には、導体12には電磁波エネ
ルギー11により誘導電流が流れ、或いは導電性層があ
る場合にはそこに渦電流が流れる。その結果、破線で示
す電磁波エネルギー13が放射される。そこで、地上に
おいて、例えば第4図に示すような電場センサ21、磁
場センサ22を用い、送電線から放射される1次電磁場
、地中を流れる電流により放射される2次電磁場の和の
電場成分、磁場成分をそれぞれ検出する。電場センサ2
1は、実際には電極を20〜30m程度離して電極間電
位差を検出して電界強度(V/m)を測定する。As shown in FIG. 3, the present invention uses electromagnetic wave energy 11 radiated from a power transmission line 10 as a signal source. T.L.
E31 wave energy 11 propagates underground, and for example, if a conductor 12 exists underground, an induced current will flow in the conductor 12 due to the electromagnetic wave energy 11, or if there is a conductive layer, an eddy current will flow there. . As a result, electromagnetic wave energy 13 indicated by a broken line is radiated. Therefore, on the ground, for example, by using an electric field sensor 21 and a magnetic field sensor 22 as shown in FIG. , detect the magnetic field components, respectively. Electric field sensor 2
1, the electric field strength (V/m) is actually measured by separating the electrodes by about 20 to 30 m and detecting the potential difference between the electrodes.
ところで、自然環境中の電磁場を測定して地下構造の探
査を行う場合、従来から商用周波数の信号はノイズとし
て除去されてきた。本発明はこのノイズとして除去され
てきた商用周波数信号を植種的に信号源として、利用し
ようというものである。By the way, when investigating underground structures by measuring electromagnetic fields in the natural environment, commercial frequency signals have traditionally been removed as noise. The present invention aims to utilize the commercial frequency signal that has been removed as noise as a signal source.
検出した電場と磁場とから地下比抵抗は(1)式により
求められる。The underground resistivity is determined from the detected electric field and magnetic field using equation (1).
ρ=(1,26X10’/f) lEx/Hyl”
−(1)但しρは比抵抗(Ω・m)、fは周波数(1
/5ee)、Exは送電線に平行な電場成分(V/m)
、Hyは送電線に垂直な方向の磁場成分(A/m)であ
る。ρ=(1,26X10'/f) lEx/Hyl"
-(1) However, ρ is specific resistance (Ω・m), f is frequency (1
/5ee), Ex is the electric field component parallel to the transmission line (V/m)
, Hy is the magnetic field component (A/m) in the direction perpendicular to the power transmission line.
次に第1図により本発明について説明する。Next, the present invention will be explained with reference to FIG.
第3図に示す送電線に流れる商用周波信号を信号源とし
た時に自然環境中に存在する電場、磁場を測定器2で検
出する。一方、商用周波数信号に同期した信号を同期信
号発生回路1で発生させ、検出した信号をサンプリング
回路3で同期信号に同期させてサンプリングする。こう
して抽出した測定データを時間領域で加算回路4におい
て加算する。送電線の発生する電磁場は商用周波数の周
期をもっており、その強さは送電電流に比例し、送電線
を流れる電流の周期は高精度に制御されている。一方、
その他の自然環境中にある電磁場は商用周波数と同じよ
うな周期の周期性はほとんどない。サンプリングされた
データ中には送電線の発生する電磁場とその他の環境中
のTL電磁場和を測定することになるが、サンプリング
回路3で商用周波数信号と同期してサンプリングしてい
るので商用周波数の電磁場のみがスタンキング回数に比
例して増加する。一方その他の自然環境中の電磁場はそ
の周期とは関係がないので、スタンキング回数と比例し
て増加せず、その結果、商用周波数電磁場のみが強調さ
れ、S/N比を向上し、電流の測定精度を向上させるこ
とができる。When a commercial frequency signal flowing through a power transmission line shown in FIG. 3 is used as a signal source, the measuring device 2 detects the electric field and magnetic field that exist in the natural environment. On the other hand, a synchronizing signal generation circuit 1 generates a signal synchronized with a commercial frequency signal, and a sampling circuit 3 samples the detected signal in synchronization with the synchronizing signal. The measurement data thus extracted are added in the adding circuit 4 in the time domain. The electromagnetic field generated by a power transmission line has a commercial frequency period, and its strength is proportional to the transmission current, and the period of the current flowing through the transmission line is controlled with high precision. on the other hand,
Electromagnetic fields in other natural environments rarely have the same periodicity as commercial frequencies. The sampled data includes the sum of the electromagnetic field generated by the power transmission line and the TL electromagnetic field in other environments, but since sampling is performed in synchronization with the commercial frequency signal in the sampling circuit 3, the electromagnetic field of the commercial frequency is measured. only increases in proportion to the number of stunnings. On the other hand, other electromagnetic fields in the natural environment are unrelated to their periods and do not increase in proportion to the number of stunnings. As a result, only the commercial frequency electromagnetic field is emphasized, improving the S/N ratio and increasing the current flow. Measurement accuracy can be improved.
次に第2図により本発明による地下比抵抗探査の処理フ
ローを説明する。Next, the processing flow of underground resistivity exploration according to the present invention will be explained with reference to FIG.
ステップ■においては、各パラメータの読み込みを行う
0例えば、MNの長さ(電極間隔)、サンプリング時間
、増幅器のゲイン、電力線周波数(50Hzまたは60
Hz )というパラメータを読み込む、このデータを
元にデータサンプリングを行い、サンプリングしたデー
タをメモリにおいて加算する(ステップ■、■)、そし
て、サンプリング時間が終了したか否か判断しくステッ
プ■)、終了していない間はステップ■に戻って同様の
データサンプリングを行う、こうしてサンプリング時間
が終了すると、得られたデータを高速フーリエ変換し、
(ステップ■)、各周波数成分毎にデータを読み込んで
(ステップ■)、電場、磁場あるいは電場と磁場の比率
を演算してそれを出力する(ステップ■)。これを全て
の周波数成分に対して行って処理を終了する。本発明の
データ処理においては、高速フーリエ変換を時間データ
のスクッキング部分から除いているので、スタック回数
は電磁波の波長とスタック回数自体に依存し、従来のよ
うにデータ取得毎にフーリエ変、換ずろ必要がないため
処理時間を大幅に短縮することができる。In step ■, each parameter is read. For example, MN length (electrode spacing), sampling time, amplifier gain, power line frequency (50 Hz or 60 Hz).
Hz), perform data sampling based on this data, add the sampled data in memory (steps ■, ■), and determine whether the sampling time has ended (step ■). While not, go back to step ■ and perform similar data sampling, and when the sampling time ends, fast Fourier transform the obtained data,
(Step ■), reads data for each frequency component (Step ■), calculates the electric field, magnetic field, or the ratio of the electric field to the magnetic field, and outputs it (Step ■). This is performed for all frequency components and the processing is completed. In the data processing of the present invention, fast Fourier transform is excluded from the scooking part of time data, so the number of stacks depends on the wavelength of the electromagnetic wave and the number of stacks itself. Since there is no need to shift, processing time can be significantly shortened.
第5図〜第8図は本発明によるデータ処理により得られ
た電磁場の波形を示す図で、第5図は商用周波#&電磁
場の強度を示す図である。第6図は商用周波数以外の自
然環境中における電磁場の強さを示す図である。この第
5図と第6図の電磁場を重ね合わせたのが第7図で、こ
れをサンプリングして100回スタックした結果が第8
図に示す図である。第8図から分かるように、商用周波
数の電磁場信号の強さに対し、それ以外の自然環境中の
電磁場が抑制されてS/N比を大幅に向上させることが
できることが分かる。5 to 8 are diagrams showing waveforms of electromagnetic fields obtained by data processing according to the present invention, and FIG. 5 is a diagram showing commercial frequency #& strength of electromagnetic fields. FIG. 6 is a diagram showing the strength of electromagnetic fields in a natural environment other than commercial frequencies. Figure 7 is a superimposition of the electromagnetic fields in Figures 5 and 6, and Figure 8 is the result of sampling this and stacking it 100 times.
FIG. As can be seen from FIG. 8, it is possible to significantly improve the S/N ratio by suppressing other electromagnetic fields in the natural environment with respect to the strength of the commercial frequency electromagnetic field signal.
以上のように本発明によれば、信号源として高精度に周
波数制御された商用周波数信号を用い、この周期性を利
用して時間1頁域でスタックし、その結果を高速フーリ
エ変換を行うようにしたので、非常に血便かつ高精度に
測定することができると共に換算時間を大幅に短縮する
ことが可能となる。As described above, according to the present invention, a commercial frequency signal whose frequency is controlled with high accuracy is used as a signal source, and this periodicity is used to stack in one page area of time, and the result is subjected to fast Fourier transform. This makes it possible to measure extremely bloody stool with high precision, and to significantly shorten the conversion time.
また、スタック回数は事実上無制限にすることができる
ので、その回数を増やすことにより測定精度を大幅に向
上させることが可能となる。Furthermore, since the number of times of stacking can be virtually unlimited, increasing the number of times of stacking makes it possible to significantly improve measurement accuracy.
第1図〜第4図は本発明を説明するための図で、第1図
は本発明の構成を示す図、第2図は処理フローを示す図
、第3図、第4図は本発明のデータ取得方法を説明する
ための図、第5図〜第8図は本発明によるデータ処理に
より得られた電磁場の波形を示す図である。
l・・・同期信号発生回路、2・・・測定器、3・・・
サンプリング回路、4・・・加算回路、5・・・FF7
回路、6・・・出力回路、10・・・送電線、11・・
・電磁波エネルギー、12・・・導体、14・・・地表
面、13・・・電磁波エネルギー、20・・・測定器、
21・・・電場センサ、22・・・磁場センサ。
出 願 人 動力炉・核燃料開発事業団(外1名)代理
人弁理士 蛭 川 昌 信(外4名)第3図
第4図
第5図
第7図
第6図
第8図
00 4αO吟間(m
s)FIGS. 1 to 4 are diagrams for explaining the present invention. FIG. 1 is a diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the processing flow, and FIGS. 3 and 4 are diagrams showing the present invention. FIGS. 5 to 8 are diagrams for explaining the data acquisition method of the present invention, and are diagrams showing waveforms of electromagnetic fields obtained by data processing according to the present invention. l...Synchronization signal generation circuit, 2...Measuring instrument, 3...
Sampling circuit, 4...Addition circuit, 5...FF7
Circuit, 6... Output circuit, 10... Power transmission line, 11...
・Electromagnetic wave energy, 12... Conductor, 14... Ground surface, 13... Electromagnetic wave energy, 20... Measuring instrument,
21... Electric field sensor, 22... Magnetic field sensor. Applicant Power Reactor and Nuclear Fuel Development Corporation (1 other person) Representative Patent Attorney Masanobu Hirukawa (4 others) Figure 3 Figure 4 Figure 5 Figure 7 Figure 6 Figure 8 00 4αO Ginma (m
s)
Claims (3)
比抵抗を求める地下比抵抗探査方法において、送電線を
流れる商用周波数信号を信号源とし、検出した電場、磁
場信号を商用周波数信号に同期してサンプリングし、時
間領域で加算することを特徴とする地下比抵抗探査にお
けるデータ処理方法。(1) In the underground resistivity exploration method, which measures the electromagnetic field in the natural environment and calculates the underground resistivity from the ratio of the two, the signal source is a commercial frequency signal flowing through a power transmission line, and the detected electric field and magnetic field signals are used as the commercial frequency signal. A data processing method for underground resistivity exploration, characterized by sampling in synchronization with and adding in the time domain.
出力する請求項1記載の地下比抵抗探査におけるデータ
処理方法。(2) The data processing method for underground resistivity exploration according to claim 1, wherein the data obtained by the addition is subjected to fast Fourier transform and output.
する装置において、電磁場を検出する検出手段、商用周
波数信号に同期した信号を発生する同期信号発生回路、
検出信号を同期信号に応じてサンプリングするサンプリ
ング回路、サンプリングしたデータを加算する加算回路
、加算データを高速フーリエ変換する高速フーリエ変換
回路、フーリエ変換したデータから電場、磁場あるいは
電場と磁場の比を出力する出力回路とを備えた地下比抵
抗探査におけるデータ処理装置。(3) In a device that measures electromagnetic fields in the natural environment and explores underground resistivity, a detection means for detecting electromagnetic fields, a synchronous signal generation circuit that generates a signal synchronized with a commercial frequency signal,
A sampling circuit that samples the detection signal according to the synchronization signal, an addition circuit that adds the sampled data, a fast Fourier transform circuit that performs fast Fourier transform on the added data, and outputs the electric field, magnetic field, or ratio of electric field and magnetic field from the Fourier transformed data. A data processing device for underground resistivity exploration, which is equipped with an output circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63094876A JPH0641985B2 (en) | 1988-04-18 | 1988-04-18 | Data processing method and device for underground resistivity survey |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63094876A JPH0641985B2 (en) | 1988-04-18 | 1988-04-18 | Data processing method and device for underground resistivity survey |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01265189A true JPH01265189A (en) | 1989-10-23 |
JPH0641985B2 JPH0641985B2 (en) | 1994-06-01 |
Family
ID=14122252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63094876A Expired - Lifetime JPH0641985B2 (en) | 1988-04-18 | 1988-04-18 | Data processing method and device for underground resistivity survey |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0641985B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100720356B1 (en) * | 2004-07-27 | 2007-05-22 | 삼성전자주식회사 | Ion generator |
CN110865240A (en) * | 2019-11-28 | 2020-03-06 | 中国科学院地质与地球物理研究所 | Method and device for detecting earth electrical structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866111A (en) * | 1973-07-18 | 1975-02-11 | Exxon Production Research Co | Method of mineral exploration by detecting electromagnetic energy at power line frequency |
JPS5845587A (en) * | 1981-09-11 | 1983-03-16 | Kensetsu Kikaku Consultant:Kk | Probing and analyzing method and device for underground structure |
JPS62257083A (en) * | 1986-04-25 | 1987-11-09 | ボ−ド・オブ・リ−ジエンツ,ザ・ユニバ−シテイ−・オブ・テキサス・システム | Electromagnetic physical investigation method |
-
1988
- 1988-04-18 JP JP63094876A patent/JPH0641985B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866111A (en) * | 1973-07-18 | 1975-02-11 | Exxon Production Research Co | Method of mineral exploration by detecting electromagnetic energy at power line frequency |
JPS5845587A (en) * | 1981-09-11 | 1983-03-16 | Kensetsu Kikaku Consultant:Kk | Probing and analyzing method and device for underground structure |
JPS62257083A (en) * | 1986-04-25 | 1987-11-09 | ボ−ド・オブ・リ−ジエンツ,ザ・ユニバ−シテイ−・オブ・テキサス・システム | Electromagnetic physical investigation method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100720356B1 (en) * | 2004-07-27 | 2007-05-22 | 삼성전자주식회사 | Ion generator |
CN110865240A (en) * | 2019-11-28 | 2020-03-06 | 中国科学院地质与地球物理研究所 | Method and device for detecting earth electrical structure |
Also Published As
Publication number | Publication date |
---|---|
JPH0641985B2 (en) | 1994-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7030617B2 (en) | System, apparatus, and method for conducting electromagnetic induction surveys | |
US4757262A (en) | Method for geophysical exploration using electromagnetic array | |
EP1703304A1 (en) | The method and apparatus for measuring resistivity of earth by elelctromagnetic waves | |
Labson et al. | Geophysical exploration with audiofrequency natural magnetic fields | |
CN110940725A (en) | Detection device and method for internal leakage channel of dike | |
US4835473A (en) | Method using a d.c. source for determining resistivity distribution of the earth as a function of depth | |
US3391334A (en) | Resistivity logging based upon electromagnetic field measurements carried out with three vertically spaced detectors | |
CN111538093A (en) | Method for shallow surface detection and transient electromagnetic instrument | |
Lin et al. | Rapid and high-resolution detection of urban underground space using transient electromagnetic method | |
JP2939334B2 (en) | Sub-audio low-frequency magnetometer | |
Thiesson et al. | Characterization of buried cables and pipes using electromagnetic induction loop-loop frequency-domain devices | |
Sogade et al. | Electromagnetic cave-to-surface mapping system | |
JPH01265189A (en) | Data processing method and device for probing underground specific resistance | |
JP3130418B2 (en) | Underground electromagnetic exploration method and apparatus | |
GB2148012A (en) | Induced magnetic field borehole surveying method and probe | |
JPH01265187A (en) | Underground probing method and device utilizing commercial frequency signal | |
Belyakov | Magnetoelastic sensors and geophones for vector measurements in geoacoustics | |
CN118210066B (en) | Ground nuclear magnetic resonance small coil signal enhancement method based on wave field transformation | |
RU2365946C1 (en) | Electromagnetic isoparametric logging method | |
Zhou et al. | A calibration method of ground-airborne frequency domain electromagnetic receving system based on magnetic source excitation | |
CA1246673A (en) | Electromagnetic array profiling survey method | |
RU2386152C1 (en) | Method of determining route for laying underwater pipelines and device for realising said method | |
Wang et al. | The fault detection of transmitting current encoded by m-sequence using triple-correlation function in helicopter-borne electromagnetic method | |
JPH11190778A (en) | Underground prospecting method and system using compact generator | |
Anderson | Theory of borehole magnetic susceptibility measurements with coil pairs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080601 Year of fee payment: 14 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080601 Year of fee payment: 14 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080601 Year of fee payment: 14 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080601 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |