JPH01264295A - Cooling fin of electronic device - Google Patents

Cooling fin of electronic device

Info

Publication number
JPH01264295A
JPH01264295A JP9144288A JP9144288A JPH01264295A JP H01264295 A JPH01264295 A JP H01264295A JP 9144288 A JP9144288 A JP 9144288A JP 9144288 A JP9144288 A JP 9144288A JP H01264295 A JPH01264295 A JP H01264295A
Authority
JP
Japan
Prior art keywords
jig
plate
laminate
cooling fin
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9144288A
Other languages
Japanese (ja)
Inventor
Motohiro Sato
佐藤 元宏
Toshihiro Yamada
山田 俊宏
Akiomi Kono
顕臣 河野
Kazuaki Yokoi
和明 横井
Shoei Watanabe
渡辺 昭英
Hideaki Sasaki
秀昭 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9144288A priority Critical patent/JPH01264295A/en
Publication of JPH01264295A publication Critical patent/JPH01264295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain highly accurate cooling fins having a uniform size and accuracy, by dividing cooling fins into plate members that are simple configuration elements and combining these elements by junction. CONSTITUTION:When a base plate 1 consisting of AlN and vertical plates 6 and 7 are joined by a laminate 3, the laminate 3 is set at the side of a junction face between the vertical plates 6 and 7 and the base plate 1, that is, at a part protruding from a jig 8 after the vertical plates 6 and 7, first of all, are inserted in the prescribed positions of grooves 9 of the jig 8. Further, after the base plate 1 is placed on the top of the junction face side, the whole body is pressed by a jig 10. AlN is used as the jig 8 to prevent the generation of differential thermal expansion in comparison with the thermal expansion of a junction member. After performing these preparations, the laminate 3 is heated in an atmosphere of a vacuum of 10<-4>Torr or less up to a temperature of 600 deg.C and it is pressurized under pressure of 0.5kgf/mm<2>. Such a state is maintained for fifteen min. and then, it is cooled. In such a junction process, only both surface layers of the laminate 3 consisting of Al-Si-Mg alloy having a melting point of about 583 deg.C change to a melting state and join to AlN of the base plate 1 and the vertical plates 6 and 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミック部材または焼結合金部材からなる
フィンの構造及びその製造方法に係り、特に電子装置の
冷却に好適な冷却フィンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure of a fin made of a ceramic member or a sintered metal member and a method for manufacturing the same, and particularly to a cooling fin suitable for cooling electronic devices.

〔従来の技術〕[Conventional technology]

従来の電子装置の冷却フィンは、特開昭60−1268
53号公報に記載のように、チップで発生した熱を冷却
するため、チップの背面に・一方の冷却フィンのベース
面を直接押し付け、この冷却フィンと微小間隔を保って
嵌め合される他方のフィンを配置する構造に用いられて
いた。
Conventional cooling fins for electronic devices are disclosed in Japanese Patent Application Laid-Open No. 60-1268.
As described in Publication No. 53, in order to cool the heat generated in the chip, the base surface of one cooling fin is directly pressed against the back of the chip, and the other cooling fin is fitted with a small gap between the two cooling fins. It was used in the structure for arranging fins.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術において対象とする半導体チップは発熱量
が大きく強制的な冷却手段を必要とするものである。し
たがって、冷却部材としてチップ背面に押し付けた冷却
フィンは、チップの発熱を伝導する際に冷却フィン自体
が温度上昇をきたす。
The semiconductor chip targeted in the above-mentioned prior art generates a large amount of heat and requires forced cooling means. Therefore, the temperature of the cooling fin itself, which is pressed against the back surface of the chip as a cooling member, increases when the heat generated by the chip is conducted.

このため、冷却フィンの材質に応じた熱膨張係数に依存
して冷却フィンが熱膨張する。冷却フィンの材質がチッ
プ材質(Si)と同種か異種にかかわらず、チップと冷
却フィン間には温度差が生じ、押し付けた面で熱膨張差
に起因する相対変位が生じ、チップの発熱、冷却に応じ
て繰返えされる。
Therefore, the cooling fins thermally expand depending on the thermal expansion coefficient depending on the material of the cooling fins. Regardless of whether the material of the cooling fin is the same or different from the chip material (Si), a temperature difference will occur between the chip and the cooling fin, and a relative displacement will occur due to the difference in thermal expansion on the pressed surface, causing heat generation and cooling of the chip. is repeated accordingly.

この際、冷却フィンの材質が、Cu 、 A Q等の金
属の場合鋭い切欠を有するチップ背面側の角部が、冷却
フィンのチップ背面への押し付は面を損傷させるという
問題があった。
In this case, when the material of the cooling fin is a metal such as Cu or AQ, there is a problem in that the corners on the back side of the chip have sharp notches, and pressing the cooling fin against the back side of the chip damages the surface.

この問題を解決する手段として、チップ背面に押し付け
る冷却フィンの材質を、高熱伝導のセラミックスもしく
は熱伝導のよい焼結合金等とする方法が考えられる。
As a means to solve this problem, a method may be considered in which the cooling fins pressed against the back of the chip are made of ceramics with high thermal conductivity, sintered alloy with good thermal conductivity, or the like.

しかし、上記従来技術に示すように、微小間隔を保って
嵌め合わされる冷却フィンは、形状精度として高精度を
必要とし、セラミックス等の難削材により形成する場合
、一体構造として加工することが難かしい、また、加工
可能な場合でも工具の損耗が激しく、同−寸法品を多量
に製作することは困難である。
However, as shown in the above-mentioned conventional technology, the cooling fins that are fitted together with minute intervals require high precision in shape, and when formed from difficult-to-cut materials such as ceramics, it is difficult to process them as an integral structure. Moreover, even if machining is possible, the tools are subject to severe wear and tear, making it difficult to produce large quantities of products with the same dimensions.

(課題を解決するための手段〕 上記本発明の目的は、従来技術の問題点である。(Means for solving problems) The object of the present invention is to address the problems of the prior art.

機械加工のみによる製造方法に変え、冷却フィンを単純
な構成要素である板状部材に分割し、それらを接合によ
り組み合せる製造方法とすることにより、達成される。
This can be achieved by changing the manufacturing method to only machining to a manufacturing method in which the cooling fins are divided into plate-like members, which are simple components, and then assembled by joining.

本発明の実施態様例は次の通りである。Examples of embodiments of the invention are as follows.

(1)板状部材として0.25can /em・s・”
0以上の熱伝導率を有するセラミック材を用いたこと。
(1) 0.25can/em・s・” as a plate member
A ceramic material having a thermal conductivity of 0 or more was used.

(2)セラミック部材として、高熱伝導SiC高熱伝導
AAN、BeO等を用いたこと。
(2) High thermal conductivity SiC, high thermal conductivity AAN, BeO, etc. were used as the ceramic member.

(3)板状部材として0.25CaQ/Cm−8・℃以
上の熱伝導率を有する焼結合金材を用いたこと。
(3) A sintered alloy material having a thermal conductivity of 0.25CaQ/Cm-8.degree. C. or higher was used as the plate member.

(4)焼結合金材として、銅タングステン、銅モリブデ
ン焼結合金材を用いたこと。
(4) Copper tungsten and copper molybdenum sintered alloy materials were used as the sintered alloy materials.

(5)両板状部材の接合方法として、心材が純AMまた
はAQ合金2表皮材が心材より溶融温度の低いAQ合金
からなる積層材を用いたこと。
(5) As a method for joining both plate-like members, a laminated material was used in which the core material was pure AM or AQ alloy 2 and the skin material was AQ alloy whose melting temperature was lower than that of the core material.

(6)冷却フィンの接合治具材質を板状部材と同材質と
したこと。
(6) The material of the joining jig for the cooling fins is the same as that of the plate member.

(7)冷却フィン製造方法において、接合治具構造とし
て板状部の積層構造からなること。
(7) In the cooling fin manufacturing method, the bonding jig structure has a laminated structure of plate-like parts.

【作用〕[Effect]

第1図に示す本発明の冷却フィンは、平板からなるベー
ス板1とベース板1の一方の面に垂直に接合される複数
の平板からなる垂直板2、およびベース板1と垂直板2
とを接合する積層板3により構成される。
The cooling fin of the present invention shown in FIG.
It is composed of a laminated plate 3 that joins the two.

積層板3は第2図に示すように純AQもしくはAQ合金
からなる心材4と、AQ−8i−Mg合金からなる表面
層5を有する三層構造となっている。
As shown in FIG. 2, the laminate 3 has a three-layer structure including a core material 4 made of pure AQ or an AQ alloy, and a surface layer 5 made of an AQ-8i-Mg alloy.

ベース板1と垂直板2とを接合する場合、積層板3の両
表面層5のみ溶融し接合する。
When joining the base board 1 and the vertical board 2, only both surface layers 5 of the laminate board 3 are melted and joined.

本発明の方法を用いた場合、冷却フィンはベース板1及
びフィンとなる垂直板2ともに1重要な寸法精度である
板厚の高精度加工が容易に達成できる平板により構成さ
れる。垂直板2の板厚は冷却フィンのフィンの厚さに相
当しており、フィン厚さは高精度となる。フィン間の間
隔すなわち溝幅は、接合に用いた組立治具への組立精度
に依存した寸法となり、高精度加工した治具の適用によ
り、高精度の冷却フィンが製作できる。
When the method of the present invention is used, both the base plate 1 and the vertical plate 2 serving as the fins are formed of flat plates that can easily be machined with high accuracy in thickness, which is an important dimensional accuracy. The thickness of the vertical plate 2 corresponds to the thickness of the cooling fins, and the fin thickness is highly accurate. The spacing between the fins, that is, the groove width, is a dimension that depends on the assembly precision of the assembly jig used for joining, and by using a jig machined with high precision, high precision cooling fins can be manufactured.

また1本発明の冷却フィンは高熱伝導性を必要とするた
め、ベース板1と複数の垂直板2とを接合する積層板3
にも高熱伝導性が要求されるが、積層板aは熱伝導率が
高いAQ合金から成るため問題はない。
In addition, since the cooling fin of the present invention requires high thermal conductivity, the laminated plate 3 that joins the base plate 1 and the plurality of vertical plates 2
High thermal conductivity is also required for this, but there is no problem because the laminate a is made of AQ alloy with high thermal conductivity.

したがって1本発明の電子装置の冷却フィンは一体構造
から成る冷却フィンと同等の熱伝導率を有するとともに
、加工が容易な板状部材で形成されるため、セラミック
を研削加工して得られる一体構造から成る冷却フィンの
溝幅、フィン幅が研削砥石の摩耗に依存して次第に変化
し同精度冷却フィンの量産加工が困芝なのに比較し、同
精度冷却フィンの量産加工が容易に達成できる。〔実施
例〕 以下、本発明の一実施例を第3図から第6図により説明
する。
Therefore, (1) the cooling fin of the electronic device of the present invention has a thermal conductivity equivalent to that of a cooling fin having a monolithic structure, and is formed of a plate-like member that is easy to process. The groove width and fin width of the cooling fins gradually change depending on the wear of the grinding wheel, making it difficult to mass-produce cooling fins with the same precision.However, it is easy to mass-produce cooling fins with the same precision. [Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 3 to 6.

第3図から第5図は、中央のフィンに不連続部を有する
冷却フィンの具体的製作方法を示す、まず第3図は、A
QN C熱膨張係数:約4.4×10−’/”C)から
なるベース板1と垂直板A6゜垂直板B7とを積層板3
により接合する場合の接合前の配置を示す、第4図は、
これらの冷却フィンの部材を治具にセットした状態を示
す。
Figures 3 to 5 show a specific method of manufacturing a cooling fin having a discontinuous part in the center fin.
A laminated plate 3 consists of a base plate 1 having a thermal expansion coefficient of QN C: approximately 4.4 x 10-'/''C) and a vertical plate A6° and a vertical plate B7.
Figure 4 shows the arrangement before joining when joining by
These cooling fin members are shown set on a jig.

治具A8はフィンとなる垂直板A6.垂直板B7の板厚
よりわずかに広い溝A9を有する。治具A8の溝A9に
まず垂直板A6.垂直板B7を所定の位置にはめ込んだ
後、積層板3を垂直板A6.垂直板B7のベースFi1
との接合面側、すなわち、治具A8から突き出た部分に
配置する。
Jig A8 is a vertical plate A6 which becomes a fin. It has a groove A9 slightly wider than the thickness of the vertical plate B7. First, insert the vertical plate A6 into the groove A9 of the jig A8. After fitting the vertical plate B7 into the predetermined position, the laminate plate 3 is attached to the vertical plate A6. Base Fi1 of vertical plate B7
It is placed on the joint surface side with the jig A8, that is, on the part protruding from the jig A8.

さらに、その上にベース板1を重ねた後、治具B〕−0
で全体を押える、治具A8は、接合部材との熱膨張差を
生じさせないようにAQNを用いた。
Furthermore, after stacking the base plate 1 on top of it, jig B]-0
AQN was used for the jig A8, which holds the whole together, so as not to cause a difference in thermal expansion with the joining member.

かかる準備の後、真空雰囲気(10’−’Torr以下
)中で、600℃まで加熱L;’=I1.0.5kgf
/mwm”の圧力で加圧し、15分間保持した後冷却し
た。
After such preparation, heat to 600°C in a vacuum atmosphere (below 10'-'Torr) L;'=I1.0.5kgf
/mwm'' pressure, maintained for 15 minutes, and then cooled.

この接合過程において、積層板3は融点約583℃のA
l−81−Mg合金からなる両表面層のみ溶融状態とな
り、ベース板1.垂直板A6.垂直板B7のAQNと接
合した。
In this bonding process, the laminate 3 is bonded to A of melting point approximately 583°C.
Only both surface layers made of l-81-Mg alloy are in a molten state, and the base plate 1. Vertical board A6. Connected to AQN of vertical plate B7.

本実施例によれば、加工が容易で且つ寸法精度の良い平
板を用い、さらに接合時の加熱、冷却過程における治具
A8と接合部材との熱膨張係数差に起因した形状不良の
発生を防止するため接合部材と同様の材質AQNで治具
Aを作製したため、寸法精度の良い冷却フィンが容易に
製作できるという効果がある。
According to this example, a flat plate that is easy to process and has good dimensional accuracy is used, and furthermore, the occurrence of shape defects due to the difference in thermal expansion coefficient between jig A8 and the joining member during the heating and cooling process during joining is prevented. In order to do this, the jig A was made of the same material AQN as the joining member, which has the effect that cooling fins with good dimensional accuracy can be easily manufactured.

また、実施例に説明したAQN材に加えて高熱伝導S 
x C@ Cu M o焼結合金、CuW焼組焼金合金
を用いても同様の効果がある。
In addition to the AQN material explained in the example, high thermal conductivity S
Similar effects can be obtained by using a C@CuMo sintered alloy or a CuW sintered sintered alloy.

他の実施例を第6図によりと明する。第6図は高熱伝導
SiCからなるベース板1に、積層板3を介して接合す
る垂直板2の冷却フィン、両端部となる部分には高熱伝
導S3.Cから成る垂直板C1l中央部にはAQNから
なる垂直板D12の2種類の部材を用いた冷却フィンの
例である。接合準備、治具、加熱、加圧条件は前に同じ
である。
Another embodiment will be explained with reference to FIG. FIG. 6 shows cooling fins of a vertical plate 2 that is joined to a base plate 1 made of high thermal conductivity SiC via a laminated plate 3, with high thermal conductivity S3. This is an example of a cooling fin using two types of members: a vertical plate D12 made of AQN at the center of a vertical plate C1l made of C; The bonding preparation, jig, heating, and pressure conditions are the same as before.

表 本実施例によれば、表に示す物理定数から明らかなよう
に、冷却フィン中央部に配置したAQNからなる垂直板
D12の熱伝導率に比較し、両端に配置した高熱伝導S
iCの熱伝導率が高く、冷却フィン全体の熱伝導は、A
QNのみもしくは高熱伝導SiCのみからなる冷却フィ
ンのほぼ中間の値を呈する。AQNと高熱伝導SiCと
の熱膨張差は表1に示すように少なく、接合による変形
は極めてわずかでしかない。
Table According to this embodiment, as is clear from the physical constants shown in the table, the thermal conductivity of the vertical plate D12 made of AQN placed at the center of the cooling fin is higher than that of the vertical plate D12 made of AQN placed at the center of the cooling fin.
The thermal conductivity of iC is high, and the thermal conduction of the entire cooling fin is A
It exhibits a value approximately intermediate between cooling fins made only of QN or only high thermal conductivity SiC. The difference in thermal expansion between AQN and high thermal conductivity SiC is small as shown in Table 1, and deformation due to bonding is extremely small.

なお、本実施例では表に示す低熱膨張、高熱伝導材料の
中から選んだ2種類の材料について説明したが1表中の
材料を種々組合せ任意の熱伝導を有する冷却フィンを製
作できる。
In this example, two types of materials selected from among the low thermal expansion and high thermal conductivity materials shown in the table were explained, but cooling fins having any heat conductivity can be manufactured by various combinations of the materials in the table.

さらに他の実施例について第7図〜第9図により説明す
る。
Still other embodiments will be described with reference to FIGS. 7 to 9.

第7図は治具及び治具へのAQN冷却フィン素材の組立
順序を示す。
FIG. 7 shows the assembly order of the jig and the AQN cooling fin material onto the jig.

まず、板治具A1−7と板治具B18を収納する溝B1
5と、押し治具14をガイドする溝C16を有する治具
ベース13の溝B15に、板治具A17と板治具B18
とを交互に積層する。積層方向は押し治具14により押
される方向とする。
First, groove B1 accommodates plate jig A1-7 and plate jig B18.
5, and a plate jig A17 and a plate jig B18 in the groove B15 of the jig base 13 having the groove C16 for guiding the pushing jig 14.
and are laminated alternately. The stacking direction is the direction pushed by the pushing jig 14.

板治具A1−7と板治具B18とは高さhi 、 h2
が異なり両者の差hx−haは、冷却フィンの垂直板2
の高さaより小とする。さらに板治具A、Bの板厚tt
 、tzと垂直板2の板厚tとの関係はtz >tとし
、tlは冷却フィンのピッチに依存するため任意寸法と
する。本実施例においては、h工=12m、hz =6
m、h=8w、ti =2 、0 m 、  t、 z
 = 2 、30 m 、  t = 2 、28 m
とした。
The heights of plate jig A1-7 and plate jig B18 are hi and h2.
The difference hx-ha between the two is the vertical plate 2 of the cooling fin.
be smaller than the height a. Furthermore, the plate thickness tt of plate jigs A and B
, tz and the plate thickness t of the vertical plate 2 is set as tz > t, and tl is an arbitrary dimension since it depends on the pitch of the cooling fins. In this example, h = 12 m, hz = 6
m, h=8w, ti=2, 0 m, t, z
= 2, 30 m, t = 2, 28 m
And so.

また、垂直板2の長さaは25+sとした。Further, the length a of the vertical plate 2 was set to 25+s.

本実施例では冷却フィンの垂直板2の枚数を5枚とした
。したがって板治具は第7図に示すごとく、板治具A1
7を6枚、板治具818を5枚用いた。各板治具は高さ
方向の一面紮、治具ベース13の溝B15の底に密着さ
せた状態で、溝016に装填した加圧ピース14により
、板治具積層方向に加圧する。加圧ピース14の加圧は
治具ベース13の端面23にボルト26で固定した押し
板24に取付けた加圧ボルト25を用いて行う。板治具
の加圧位置は、溝B15の底面に押し付けた板治具B1
8の高さ範囲に対し行い、且つ加圧により積層した板治
具が浮き上らないよう加圧ピース14は、第8図に示す
形状とした。すなわち、ボルト26が接する端面側を、
ボルト26による加圧力の分力が加圧ピース14を溝C
16へ押し付ける方向へも生ずるように傾斜部27を設
けた。
In this embodiment, the number of vertical plates 2 of the cooling fins is five. Therefore, as shown in FIG. 7, the plate jig is plate jig A1.
7 and five plate jigs 818 were used. Each plate jig is placed in close contact with the bottom of the groove B15 of the jig base 13, and is pressed in the stacking direction of the plate jig by the pressure piece 14 loaded in the groove 016. The pressurizing piece 14 is pressurized using a pressurizing bolt 25 attached to a push plate 24 fixed to the end face 23 of the jig base 13 with a bolt 26. The pressing position of the plate jig is the plate jig B1 pressed against the bottom of the groove B15.
The pressure piece 14 was shaped as shown in FIG. 8 to prevent the laminated plate jigs from lifting up due to pressure. In other words, the end surface side that the bolt 26 contacts is
A component of the pressure applied by the bolt 26 moves the pressure piece 14 into the groove C.
The inclined portion 27 is provided so as to also occur in the direction in which it is pressed against the portion 16.

つぎに1本実施例に用いた治具における治具材の熱膨張
係数と治具材の長さについて述べる1水接合治具は、板
状部材を積層した構造を有し、且つ接合においては高温
(約600℃)状態にさらされる。したがって高温状態
においても積層した板状部客が所定位置から移動しない
ように治具構成が必要となる。第9図に示す、治具構成
部材の寸法と熱膨張係数において、次の関係式が成り立
つ必要がある。
Next, we will discuss the thermal expansion coefficient and length of the jig material in the jig used in this example.1 The water bonding jig has a structure in which plate-like members are laminated, and in bonding. Exposure to high temperatures (approximately 600°C). Therefore, it is necessary to construct a jig so that the stacked plate members do not move from a predetermined position even under high temperature conditions. Regarding the dimensions and thermal expansion coefficients of the jig constituent members shown in FIG. 9, the following relational expression must hold true.

Lxax+Lzax>CLx+Lz>as   −(1
)ここでLlは、板治具A17と板治具B18との積層
後の積層厚さ、Lxは加圧ピース14の長さ、α1は板
治具A17及び板治具B18の熱膨張係数、α2は加圧
ピース、α3は治具ベースの熱膨張係数である。
Lxax+Lzax>CLx+Lz>as −(1
) Here, Ll is the laminated thickness of plate jig A17 and plate jig B18 after lamination, Lx is the length of pressure piece 14, α1 is the thermal expansion coefficient of plate jig A17 and plate jig B18, α2 is the pressure piece, and α3 is the jig-based thermal expansion coefficient.

本実施例では板治具A17及び板治具B18には、冷却
フィン材質と同じAQNをまた、治具ベースには炭素鋼
を、加圧ピースにはオーステナイト系ステンレス鋼を用
いた。それぞれの熱膨張係数としてαz=4.4X10
−’/”C,ax =18X10−6/’C,αg =
13xlO−’/’Cを用い、(1)式により加圧ピー
ス長さLzを求めると。
In this example, the plate jig A17 and the plate jig B18 were made of AQN, which is the same material as the cooling fin, the jig base was made of carbon steel, and the pressure piece was made of austenitic stainless steel. αz=4.4X10 as each thermal expansion coefficient
-'/"C, ax = 18X10-6/'C, αg =
Using 13xlO-'/'C, the pressure piece length Lz is determined by equation (1).

LlはL L = 2 、3 X 5 + 2 、 O
X 4 =19 、5 wmより、Lz>33.5mm
 となる、したがって、本実施例ではLxを35閣とし
た。
Ll is L L = 2, 3 X 5 + 2, O
From X 4 = 19, 5 wm, Lz>33.5mm
Therefore, in this embodiment, Lx is set to 35 cabinets.

かかる準備のもとに、板治具A17と板治具B18とに
より形成される溝19に、冷却フィンの垂直板2を挿入
する。垂直板2の溝19内における長さ方向の位置は、
板治具A17及び板治具18の長さを垂直板2の長さa
にほぼ一致させ、板治具A17及び板治具B18の長さ
方向の端面に、板治具B18の高さh2より高く且つ、
積層した板治具の積層厚さ程度の幅を有するワーク固定
用ピースを配置し固定する。
Based on this preparation, the vertical plate 2 of the cooling fin is inserted into the groove 19 formed by the plate jig A17 and the plate jig B18. The longitudinal position within the groove 19 of the vertical plate 2 is
The length of the plate jig A17 and the plate jig 18 is the length a of the vertical plate 2.
The height h2 of the plate jig A17 and the plate jig B18 are higher than the height h2 of the plate jig B18, and
A workpiece fixing piece having a width approximately equal to the stacking thickness of the stacked plate jigs is arranged and fixed.

つぎに、板治具から突き出た垂直板2のベース板との接
合面に積層板3を配置し、その上にベース板1を配置す
る。さらに、垂直板2と積層板3及びベース板1との相
対位置を接合作業中において安定させるための固定板2
1を、治具ベース13のネジ穴20に固定板21を形成
した穴22を介しボルトにより固定した。
Next, the laminated plate 3 is placed on the joint surface of the vertical plate 2 protruding from the plate jig with the base plate, and the base plate 1 is placed on top of the laminated plate 3. Furthermore, a fixing plate 2 is provided for stabilizing the relative positions of the vertical plate 2, the laminated plate 3, and the base plate 1 during the joining operation.
1 was fixed to the screw hole 20 of the jig base 13 with a bolt through a hole 22 in which a fixing plate 21 was formed.

以上の準備の後、前述した加熱、加圧の処理を行い、ベ
ース板1と垂直板2とを積層板3により接合しAQNか
らなる冷却フィンを作成した。
After the above preparations, the heating and pressurizing processes described above were performed, and the base plate 1 and the vertical plate 2 were joined by the laminated plate 3 to create a cooling fin made of AQN.

本実施例によれば、接合に用いた治具が冷却フィンのベ
ース板1と同材質からなるため、接合時の加熱による治
具とベース板1との熱膨張差がな 4く、寸法精度の良
好な冷却フィンが製作できる。
According to this embodiment, since the jig used for bonding is made of the same material as the base plate 1 of the cooling fin, there is no difference in thermal expansion between the jig and the base plate 1 due to heating during bonding, resulting in dimensional accuracy. Good quality cooling fins can be manufactured.

さらに、垂直板2が挿入された治具が板状部材の積層構
造から成っているため、接合処理後の離型作業が容易と
なる。すなわち冷却フィンの垂直板2がベース板1の垂
線に対し若干傾いてベース板に接合された場合、治具と
の接触部に摩擦力が生じ離型がスムースに行かない場合
が生ずる。かかる場合においては、加圧ピース14への
加圧を緩めることによって板治具A17及び板治具B1
8は独立して存在するため、冷却フィンから容易に除去
できる。
Furthermore, since the jig into which the vertical plate 2 is inserted has a laminated structure of plate-like members, the mold release operation after the bonding process is facilitated. That is, if the vertical plate 2 of the cooling fin is joined to the base plate at a slight angle with respect to the perpendicular line of the base plate 1, a frictional force is generated at the contact portion with the jig, and mold release may not proceed smoothly. In such a case, by relaxing the pressure on the pressure piece 14, the plate jig A17 and the plate jig B1
Since 8 exists independently, it can be easily removed from the cooling fin.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子装置の冷却に用いられる高精度冷
却フィンを熱伝導の良いセラミックスもしくは焼結合金
により製作する方法として、AQインサート材を用いた
拡散接合法を適用し、加工が容易な平板を組合せた方法
を用いることにより、寸法精度の−様な高精度冷却フィ
ンを得ることができる。
According to the present invention, as a method for manufacturing high-precision cooling fins used for cooling electronic devices from ceramics or sintered alloys with good thermal conductivity, a diffusion bonding method using AQ insert material is applied, and processing is easy. By using the method of combining flat plates, it is possible to obtain cooling fins with high dimensional accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る冷却フィンの斜視図、第
2図は接合用積層板の断面図、第3図は本発明の実施例
に係る冷却フィンの分解斜視図、第4図は同じく接合工
程を示す斜視図、第5図は同じく得られた冷却フィン例
の斜視図、第6図は他の実施例に係る冷却フィンの斜視
図、第7図は他の実施例の組立を説明する冷却フィン及
び治具の分解斜視図、第8図は治具部品形状を説明する
斜視図、第9図は治具の寸法を説明する側断面図である
。 1・・・ベース板、2・・・垂直板、3・・・積層板、
4・・・心材、5・・・表面層、6・・・垂直板A、7
・・・垂直板B、8・・・治具A、9・・・溝A、10
・・・治具B、11・・・垂直板C112・・・垂直板
D、13・・・治具ベース、14・・・加圧ピース、1
5・・・溝B、16・・・溝C117・・・板治具A、
18・・・板治具B、19・・・溝、21・・・固定板
、24・・・押し板、25・・・加圧ボルト。 等 1 ■ 茅 Z 圀 S 表面層 ギ6 図 茅乙図 ”” J−&I)
1 is a perspective view of a cooling fin according to an embodiment of the present invention, FIG. 2 is a sectional view of a bonding laminate, FIG. 3 is an exploded perspective view of a cooling fin according to an embodiment of the present invention, and FIG. 4 is a perspective view of a cooling fin according to an embodiment of the present invention. 5 is a perspective view of a cooling fin example similarly obtained, FIG. 6 is a perspective view of a cooling fin according to another embodiment, and FIG. 7 is an assembly of another embodiment. FIG. 8 is an exploded perspective view of the cooling fins and the jig, FIG. 8 is a perspective view explaining the shape of the jig parts, and FIG. 9 is a side sectional view explaining the dimensions of the jig. 1... Base board, 2... Vertical board, 3... Laminated board,
4... Heartwood, 5... Surface layer, 6... Vertical plate A, 7
... Vertical plate B, 8... Jig A, 9... Groove A, 10
... Jig B, 11... Vertical plate C112... Vertical plate D, 13... Jig base, 14... Pressure piece, 1
5...Groove B, 16...Groove C117...Plate jig A,
18...Plate jig B, 19...Groove, 21...Fixing plate, 24...Press plate, 25...Pressure bolt. etc. 1 ■ Kaya Z 圀S Surface layer Gi 6 Figure Kayaotsu ``''J-&I)

Claims (1)

【特許請求の範囲】[Claims] 1、板状部材と、前記板状部材に垂直な方向に形成され
た複数の板状部材から成る冷却フィンにおいて、両板状
部材を接合したことを特徴とする電子装置の冷却フィン
1. A cooling fin for an electronic device comprising a plate-like member and a plurality of plate-like members formed in a direction perpendicular to the plate-like member, wherein both plate-like members are joined.
JP9144288A 1988-04-15 1988-04-15 Cooling fin of electronic device Pending JPH01264295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9144288A JPH01264295A (en) 1988-04-15 1988-04-15 Cooling fin of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9144288A JPH01264295A (en) 1988-04-15 1988-04-15 Cooling fin of electronic device

Publications (1)

Publication Number Publication Date
JPH01264295A true JPH01264295A (en) 1989-10-20

Family

ID=14026485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9144288A Pending JPH01264295A (en) 1988-04-15 1988-04-15 Cooling fin of electronic device

Country Status (1)

Country Link
JP (1) JPH01264295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569954U (en) * 1992-02-28 1993-09-21 京セラ株式会社 Semiconductor package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569954U (en) * 1992-02-28 1993-09-21 京セラ株式会社 Semiconductor package

Similar Documents

Publication Publication Date Title
KR101344152B1 (en) - aluminum/silicon carbide composite and radiating part comprising the same
WO2015053316A1 (en) Substrate for heat sink-equipped power module, and production method for same
KR101021450B1 (en) Aluminum-silicon carbide composite
JP5759902B2 (en) Laminate and method for producing the same
EP3121847B1 (en) Aluminium-silicon carbide composite, and power-module base plate
JP4382154B2 (en) Heat spreader and manufacturing method thereof
CN110169211B (en) Metal-ceramic bonded substrate and method for producing same
JP2012160722A (en) Method of manufacturing liquid-cooled integrated substrate, and liquid-cooled integrated substrate
EP3104406A1 (en) Silicon carbide complex, method for manufacturing same, and heat dissipation component using same
JP2018133350A (en) Heat sink with circuit board and manufacturing method thereof
JP4864593B2 (en) Method for producing aluminum-silicon carbide composite
US11919288B2 (en) Method for producing heat radiation member
JPH01264295A (en) Cooling fin of electronic device
JPH08186204A (en) Heat sink and its manufacture
WO2019138744A1 (en) Composite member, heat-radiation member, semiconductor device, and method for manufacturing composite member
JP2006307269A (en) Method for manufacturing composite material
JP7154410B2 (en) Warpage control structure of metal base plate, semiconductor module and inverter device
JP4999983B2 (en) Heat spreader and manufacturing method thereof
JP2506330B2 (en) Method for producing composite material composed of metal and ceramics
JPH04168267A (en) Coupling body for sputtering
JP2019202331A (en) Joining method of dissimilar material, and joined body of dissimilar material
JP3051598B2 (en) Ag brazed seal ring and its manufacturing method
WO2023032414A1 (en) Mold for glass molding and method for molding glass molded article
WO2022209024A1 (en) Metal-ceramic bonded substrate and manufacturing method therefor
JPS6053036A (en) Manufacture of semiconductor element