JPH01263995A - Dynamic semiconductor storage element - Google Patents

Dynamic semiconductor storage element

Info

Publication number
JPH01263995A
JPH01263995A JP63092329A JP9232988A JPH01263995A JP H01263995 A JPH01263995 A JP H01263995A JP 63092329 A JP63092329 A JP 63092329A JP 9232988 A JP9232988 A JP 9232988A JP H01263995 A JPH01263995 A JP H01263995A
Authority
JP
Japan
Prior art keywords
sense amplifier
timing
signal
circuit
generating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092329A
Other languages
Japanese (ja)
Inventor
Akita Hara
原 明大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63092329A priority Critical patent/JPH01263995A/en
Publication of JPH01263995A publication Critical patent/JPH01263995A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent erroneous discrimination of data by providing a sense amplifier activating timing generating circuit which can change the sense amplifier activating timing in response to a request from the outside and a circuit which causes a wait signal to be outputted against the outside in accordance with the timing generated by the generating circuit. CONSTITUTION:A sense amplifier 1 which compares memory cell data with reference cell data is activated by a sense amplifier activating signal given from a sense amplifier activating timing generating circuit 2 through a signal line 6. When a chip activating signal is inputted to an input buffer 3, a signal which activates the sense amplifier activating timing generating circuit 2 is outputted to a signal line 4. On the other hand, when a timing changing request is inputted to the circuit 2 from an external voltage variation detect circuit through a signal line 5, the signal line 6 transmits the signal which changes the sense amplifier activating timing to the sense amplifier. When the sense amplifier activating timing is changed, a wait signal generating circuit 7 generates a wait signal against the outside. Therefore, erroneous discrimination of data can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はセル自身にはきわめて小さな電荷を蓄積し実質
的なり一ド/ライト動作はセンスアンプによりこのセル
の蓄積電荷の電位を増幅することで行うことを特徴とす
るダイナミック型半導体記憶素子に関する。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention stores extremely small charges in the cell itself, and substantially reduces the read/write operation by amplifying the potential of the accumulated charges in the cell using a sense amplifier. The present invention relates to a dynamic semiconductor memory element characterized in that it is performed in a dynamic manner.

[従来の技術] 従来、この種のダイナミック型半導体記憶素子において
は、1チップ当りの記憶容量は約3年で4倍となってお
り、いかに小さなメモリセルをほぼ同一サイズのチップ
に数多く形成するかが、その製品の擾劣を左右する大き
な要因となっている。
[Prior Art] Conventionally, in this type of dynamic semiconductor memory element, the storage capacity per chip has quadrupled every three years, and it is difficult to form many small memory cells on a chip of approximately the same size. This is a major factor that determines the quality of the product.

一方マイクロプロセッサ、周辺LSIの高速化にともな
い微小メモリセルをデータ線に接続した後に活性化させ
るセンスアンプ活性化タイミングについては、セルによ
る電位変化がセル面積の減少にともない小さくなってい
る(したがって変化事態が遅くなる傾向にある)にもか
かわらず短縮されてきている。 (このタイミングの短
縮はセンスアンプのみならずアドレスバッファ、データ
イン/アウトバッファ、I10アンプなどすべてにわた
っている。) [発明が解決しようとする問題点] しかしながら上述の従来技術については、メモリセルか
らの蓄積電位(以下データという)を増幅するセンスア
ンプについてもメモリセルのレイアウト上十分なサイズ
がとれないため(行×列を構成するセルアレイにおいて
センスアンプ1個は第3図に示すようにメモリセルの大
きさによりそのサイズに制限ができる)そのセンス感度
についても制限が生じ、しかも高速化の要求にともない
センスアンプを活性化させるタイミングが短縮されてい
ることから、電圧変動等によりセルデータが少しでも不
十分となるとメモリセルのデータによるデータ線の電位
変化がセンスアンプにより検出可能とならないうちにリ
ード/ライト動作が実行されてしまいこの結果としてデ
ータの誤判定を引き起こしやすくなる。
On the other hand, as microprocessors and peripheral LSIs become faster, the timing of activating a sense amplifier, which is activated after a micromemory cell is connected to a data line, is becoming smaller as the cell area decreases (therefore, the potential change due to the cell is becoming smaller). (even though things tend to slow down), they have been shortened. (This timing reduction applies not only to the sense amplifier but also to the address buffer, data in/out buffer, I10 amplifier, etc.) [Problems to be solved by the invention] However, with the above-mentioned conventional technology, The sense amplifier that amplifies the stored potential (hereinafter referred to as data) cannot be of sufficient size due to the layout of the memory cells (in a cell array consisting of rows and columns, one sense amplifier occupies the space between the memory cells as shown in Figure 3). There is also a limit to the sense sensitivity (the size is limited depending on the size), and the timing for activating the sense amplifier has been shortened due to the demand for higher speeds, so even if the cell data is lost even slightly due to voltage fluctuations, etc. If insufficient, the read/write operation will be executed before the sense amplifier can detect a change in the potential of the data line due to the data in the memory cell, and as a result, data will likely be erroneously determined.

したがって本来センスアンプが持っている検出能力を十
分にいかしきれていない状態が生ずることになり、この
結果動作マージンなどが狭くなるという欠点があった。
Therefore, a situation arises in which the detection capability originally possessed by the sense amplifier is not fully utilized, resulting in a drawback that the operating margin is narrowed.

またこの状態はたとえセルデータが十分であってもリー
ト/ライト動作時メモリセルがデータ線と接続され次に
センスアンプが活性化されるときデータ線の電位変化に
対してセンスアンプ活性化信号が相対的に早く出力され
る低温時や電源電圧が高い場合にもやはり同様:こおこ
り得るという欠点があった。
Furthermore, even if the cell data is sufficient, this state occurs when the memory cell is connected to the data line during a read/write operation and the sense amplifier is activated next. The same problem can occur even when the output is relatively fast at low temperatures or when the power supply voltage is high.

[発明の従来技術に対する相違点] 上述の従来技術ではセンスアンプ活性化信号は、常に一
定のタイミングとなっており、ノイズ、電源変動などに
より少しても期待するメモリセルデータレベルからはず
れるとセンス不能(したがってデータをまちがえる)と
なってしまうことになる。−力木発明では内部または外
部よりこのタイミングを必要に応じて切り換えることが
可能となるという点において相違点を有する。
[Differences between the invention and the prior art] In the prior art described above, the sense amplifier activation signal always has a constant timing, and if it deviates even slightly from the expected memory cell data level due to noise, power supply fluctuations, etc., sensing becomes impossible. (Therefore, the data will be incorrect). - The strength tree invention is different in that the timing can be switched internally or externally as necessary.

口問題点を解決するための手段] 本発明のダイナミック型半導体記憶素子はチップ内部ま
たは外部からの要求に対し通常使用時のセンスアンプ活
性化タイミングを変化させることが可能なセンスアンプ
活性化タイミング発生回路と、このタイミング発生回路
が発生するセンスアンプ活性化タイミングに応じて外部
に対してウェイト信号を出力させるウェイト信号出力回
路とを備えている。
Means for Solving Problems] The dynamic semiconductor memory element of the present invention has a sense amplifier activation timing generation system that can change the sense amplifier activation timing during normal use in response to requests from inside or outside the chip. and a wait signal output circuit that outputs a wait signal to the outside in accordance with the sense amplifier activation timing generated by the timing generation circuit.

[実施例コ 次に本発明について実施例を用いて説明する。[Example code] Next, the present invention will be explained using examples.

第1図は一実施例のブロック図である。図において1は
メモリセルデータとリファレンスセルデータを比較する
ためのセンスアンプであり、センスアンプ活性化タイミ
ング発生回路2より、信号線6を通して与えられるセン
スアンプ活性化信号により、活性化される。3は入力バ
ッファであり、外部よりのチップ活性化信号、アドレス
信号などが人力される。この人力バッファにチップ活性
化信号が人力されると、信号線4にセンスアンプ活性化
タイミング発生回路2を活性化させる信号を出力する(
これが通常のアクセス時のタイミング)。一方、外部に
設けられた電圧変動検出回路よりのタイミング変更要求
が信号線5を経由してセンスアンプ活性化タイミング発
生回路2に人力されると6の信号線はセンスアンプ活性
化タイミングを変化させた信号をセンスアンプ電こ伝え
るぐこれが変更時のタイミング)。7はこのタイミング
変(ヒがあったときに、外部に対してウェイト要求を発
生するウェイト信号発生回路である。第2図に以上のタ
イミングを示す。第2図ではタイミング変更時はセンス
信号をおくらせるようにしている。
FIG. 1 is a block diagram of one embodiment. In the figure, reference numeral 1 denotes a sense amplifier for comparing memory cell data and reference cell data, and is activated by a sense amplifier activation signal applied from a sense amplifier activation timing generation circuit 2 through a signal line 6. Reference numeral 3 denotes an input buffer, into which chip activation signals, address signals, etc. from the outside are manually input. When a chip activation signal is manually input to this buffer, a signal that activates the sense amplifier activation timing generation circuit 2 is output to the signal line 4 (
This is the normal access timing). On the other hand, when a timing change request from an external voltage fluctuation detection circuit is input to the sense amplifier activation timing generation circuit 2 via the signal line 5, the signal line 6 changes the sense amplifier activation timing. (This is the timing when the change is made.) 7 is a wait signal generation circuit that generates a wait request to the outside when there is a timing change. Fig. 2 shows the above timing. In Fig. 2, the sense signal is output when the timing is changed. I'm trying to keep her awake.

変更後はマイクロプロセッサなどはデータアクセスが遅
くなっていることを、このウェイト信号により知ること
が可能となる。
After this change, microprocessors and the like will be able to know from this wait signal that data access is becoming slower.

尚、本実施例で用いた電圧変動(または低下)検出回路
とは予め定められた電圧範囲を越えた場合に外部に検出
信号を出力するものであり、ツェナーダイオードとトラ
ンジスタあるいはオペアンプ等により構成される公知の
回路である。
The voltage fluctuation (or drop) detection circuit used in this example outputs a detection signal to the outside when a predetermined voltage range is exceeded, and is composed of a Zener diode, a transistor, an operational amplifier, etc. This is a known circuit.

ざらに外部よりのタイミング変更要求としては、推奨動
作範囲を越える温度の変化が他にも考えられ、このとき
センスタイミングはやはり遅らせる必要がある。この場
合には外部に温度センサを含む温度検出回路を使用すれ
ばよい。
Another possible external timing change request is a change in temperature that exceeds the recommended operating range, and in this case the sense timing must be delayed. In this case, a temperature detection circuit including an external temperature sensor may be used.

[発明の効果コ 以上説明したように本発明ではチップ内部または外部に
設けられた電圧変動低下検出回路、又温度検出回路より
のタイミング変更要求を受は入れそれに応じたセンスタ
イミング変更を行うことを可能とする制御回路を有し、
セルレベル電圧が外部温度の急激な変化、電圧の上下変
動により通常のタイミングではセンス不十分となるよう
な範囲においてもセルデータの検出タイミングをおくら
せ、セルデータによるデータ線の電位変化を十分におこ
させることでセンス可能となる動作マージンの広いダイ
ナミック型半導体記憶素子を実現できる。
[Effects of the Invention] As explained above, the present invention accepts timing change requests from the voltage fluctuation drop detection circuit or temperature detection circuit provided inside or outside the chip, and changes the sense timing accordingly. It has a control circuit that enables
Even in the range where the cell level voltage cannot be sensed at normal timing due to sudden changes in external temperature or fluctuations in voltage, the cell data detection timing is delayed to ensure that the potential changes in the data line due to cell data are sufficiently detected. By causing this to occur, it is possible to realize a dynamic semiconductor memory element that can be sensed and has a wide operating margin.

また特に通常の使用電圧から低電圧に電源を切りかえ使
用するバッテリバックアップなどへの応用においては、
より低い電圧にての使用が可能となる効果がある。
In addition, especially in applications such as battery backup where the power supply is switched from the normal operating voltage to a lower voltage,
This has the effect of allowing use at a lower voltage.

さらに規格で定められたリフレッシュ周期(256KD
RAMでは4m5)、を越えてリフレッシュあるいはリ
ードする(特にメモリセル自体の保持能力の検査等)な
との場合においてもセンスタイミングに依存する要素を
除くことが可能となるなどの効果もある。
Furthermore, the refresh period specified by the standard (256KD
4m5 in RAM), it is possible to eliminate elements that depend on sense timing even when refreshing or reading data (in particular, testing the retention capacity of the memory cell itself).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例を示す回路図、第2図は一実施例のタ
イミング図、第3図は従来例のレイアウト図である。 1・・・センスアンプ、 2・・・センスアンプ活性化タイミング発生回路、3・
・・入力バッファ、 7・・・ウェイト信号発生回路。 特許出願人  日本電気株式会社 代理人 弁理士  桑 井 清 −
FIG. 1 is a circuit diagram showing one embodiment, FIG. 2 is a timing diagram of one embodiment, and FIG. 3 is a layout diagram of a conventional example. DESCRIPTION OF SYMBOLS 1...Sense amplifier, 2...Sense amplifier activation timing generation circuit, 3...
...Input buffer, 7...Wait signal generation circuit. Patent Applicant: NEC Corporation Representative, Patent Attorney: Kiyoshi Kuwai −

Claims (1)

【特許請求の範囲】[Claims] ダイナミック型メモリセルへの蓄積電荷が不十分である
ときのセンスアンプによるデータレベル判定タイミング
を変化させるタイミング発生手段と、上記蓄積電荷が不
十分であるとき、この判定タイミングを変化させている
ことを外部へ伝える手段とを有することを特徴とするダ
イナミック型半導体記憶素子。
Timing generation means for changing data level judgment timing by a sense amplifier when the accumulated charge in a dynamic memory cell is insufficient; and timing generation means for changing the judgment timing when the accumulated charge is insufficient. What is claimed is: 1. A dynamic semiconductor memory element characterized by having a means for transmitting information to the outside.
JP63092329A 1988-04-13 1988-04-13 Dynamic semiconductor storage element Pending JPH01263995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092329A JPH01263995A (en) 1988-04-13 1988-04-13 Dynamic semiconductor storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092329A JPH01263995A (en) 1988-04-13 1988-04-13 Dynamic semiconductor storage element

Publications (1)

Publication Number Publication Date
JPH01263995A true JPH01263995A (en) 1989-10-20

Family

ID=14051352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092329A Pending JPH01263995A (en) 1988-04-13 1988-04-13 Dynamic semiconductor storage element

Country Status (1)

Country Link
JP (1) JPH01263995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052903A (en) * 2005-08-17 2007-03-01 Qimonda Ag Semiconductor memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888895A (en) * 1981-11-20 1983-05-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor storage device
JPS61126693A (en) * 1984-11-19 1986-06-14 ソーン、イーエムアイ、ノース、アメリカ、インコーポレーテッド Stabilization of current during sensing action and return action of dynamic random access memory circuit, circuit itself and compensation for temperature changes and power source variations of circuit
JPS61180990A (en) * 1985-10-25 1986-08-13 Nec Corp Semiconductor device
JPS6242393A (en) * 1985-08-19 1987-02-24 Sanyo Electric Co Ltd Semiconductor memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888895A (en) * 1981-11-20 1983-05-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor storage device
JPS61126693A (en) * 1984-11-19 1986-06-14 ソーン、イーエムアイ、ノース、アメリカ、インコーポレーテッド Stabilization of current during sensing action and return action of dynamic random access memory circuit, circuit itself and compensation for temperature changes and power source variations of circuit
JPS6242393A (en) * 1985-08-19 1987-02-24 Sanyo Electric Co Ltd Semiconductor memory
JPS61180990A (en) * 1985-10-25 1986-08-13 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052903A (en) * 2005-08-17 2007-03-01 Qimonda Ag Semiconductor memory device

Similar Documents

Publication Publication Date Title
KR100298432B1 (en) Control Circuit for Controlling Power Consumption in Semiconductor Memory Device And Method Varying Bit-line Precharge Voltage Using the Same
KR101242809B1 (en) Temperature based dram refresh
US8037237B2 (en) Method and circuit for adjusting a self-refresh rate to maintain dynamic data at low supply voltages
US7272063B1 (en) Memory with a temperature sensor, dynamic memory and memory with a clock unit and method of sensing a temperature of a memory
US20070091703A1 (en) Semiconductor memory
US20040213036A1 (en) Memory device operable in either a high-power, full-page size mode or a low-power, reduced-page size mode
US6768693B2 (en) Integrated dynamic memory with control circuit for controlling a refresh mode of memory cells, and method for driving the memory
KR940010102A (en) Improved semiconductor memory with address transition detector
US6809914B2 (en) Use of DQ pins on a ram memory chip for a temperature sensing protocol
KR880014564A (en) Output buffer control circuit for memory device
US5309398A (en) Semiconductor memory device and method for controlling its output
US6873509B2 (en) Use of an on-die temperature sensing scheme for thermal protection of DRAMS
KR100252050B1 (en) Sdram having multibanks sharing column selection line and data transfer method thereof
US6826114B2 (en) Data path reset circuit using clock enable signal, reset method, and semiconductor memory device including the data path reset circuit and adopting the reset method
US7085185B2 (en) Circuit and method for controlling an access to an integrated memory
US6012122A (en) Systems and methods for distinguishing between memory types
JPH01263995A (en) Dynamic semiconductor storage element
US5202888A (en) Semiconductor memory device having a multibit parallel test function and a method of testing the same
US8027221B2 (en) Memory device
US6735103B2 (en) System and method to avoid voltage read errors in open digit line array dynamic random access memories
EP0418914B1 (en) Semiconductor memory device
KR920022297A (en) Dynamic Random Access Memory Device
GB2239539A (en) Refreshing drams: controlling refresh rate
US5586129A (en) Parity bit memory simulator
US7111112B2 (en) Semiconductor memory device having control circuit