JPH01263476A - Method and apparatus for air cooling - Google Patents

Method and apparatus for air cooling

Info

Publication number
JPH01263476A
JPH01263476A JP9093788A JP9093788A JPH01263476A JP H01263476 A JPH01263476 A JP H01263476A JP 9093788 A JP9093788 A JP 9093788A JP 9093788 A JP9093788 A JP 9093788A JP H01263476 A JPH01263476 A JP H01263476A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
pipe
low
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9093788A
Other languages
Japanese (ja)
Inventor
Motokimi Takemae
元仁 竹前
Tsuguo Okada
岡田 次穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9093788A priority Critical patent/JPH01263476A/en
Publication of JPH01263476A publication Critical patent/JPH01263476A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To save an energy of an air-cooled cooling device by a method wherein a coolant low temperature supplied from a pump is divided into a flow passage entering a load and a flow passage flowing directly into a heat exchanger and the two flow passages are connected within the heat exchanger. CONSTITUTION:A coolant 2 such a cold water is stored within a tank 1 and the coolant 2 of low temperature is sent out to a main pipe 15 by a pump 3 having a capability AHP. The coolant 2 of low temperature sent out of the main pipe 15 is divided approximately into a second pipe 16 and a first pipe 17 of passages so as to cool a load 6. The coolant 2a of which temperature is increased flows into a heat exchanger 19. In turn, the coolant 2 of low temperature discharged out of the second pipe 16 directly flows into the heat exchanger 19 with its temperature kept low. The coolant 2a of high temperature gives heat to the coolant 2 of low temperature, gives heat to air generated by a fan 9 and then the coolant is cooled. With this arrangement, the coolant 2 discharged out of the first pipe 20 and the second pipe 21 of the heat exchanger 19 has a low temperature and both coolants are merged and they are stored again in the tank 1. The above-mentioned operation is repeated to keep the load 6 always within a normal temperature range.

Description

【発明の詳細な説明】 (概要〕 電子装置の回路素子からなる負荷を、その発熱による過
熱から守るために行う空気式冷却方法に関し、 空冷式冷却装置の省エネルギー化を図り、小型・軽量化
と騒音の低減化を達成することを目的とし、冷却用の低
温冷媒をポンプにより送出する段階と、該低温冷媒を2
つの流路に分割する段階と、−の流路の低温冷媒が電子
回路の負荷を冷却する段階と、この冷媒が該負荷から熱
を与えられ高温冷媒となって熱交換器に流入する段階と
、該二〇流路の低温冷媒が直接核熱交換器に流入する段
階と、該高温冷媒が該熱交換器内で該低温冷媒及びファ
ンにより送られてくる空気としてより冷却されて熱を失
い元の低温冷媒になる段階とから構成する。
[Detailed Description of the Invention] (Summary) Regarding an air cooling method for protecting a load consisting of circuit elements of an electronic device from overheating due to the heat generated by the circuit element, the present invention aims to save energy in an air cooling system, making it smaller and lighter. For the purpose of achieving noise reduction, there is a step of pumping out a low-temperature refrigerant for cooling, and a step of pumping out the low-temperature refrigerant for cooling.
A step in which the low-temperature refrigerant in the - flow path cools the electronic circuit load; A step in which this refrigerant receives heat from the load and becomes a high-temperature refrigerant and flows into the heat exchanger. , the low-temperature refrigerant in the twenty flow paths directly flows into the nuclear heat exchanger, and the high-temperature refrigerant is further cooled and loses heat as the low-temperature refrigerant and the air sent by the fan in the heat exchanger. It consists of a stage in which it becomes the original low-temperature refrigerant.

〔産業上の利用骨1i′) この発明は、電子装置の回路素子からなる負荷を、その
発熱による加熱から守るために行う空気式冷却方法に関
する。
[Industrial Applications 1i'] The present invention relates to an air cooling method for protecting a load consisting of circuit elements of an electronic device from heating due to heat generated by the load.

電子装置の回路素子は、通常より常時発熱しており、こ
れを設置すると回路素子の各イオン層に変動を起こし、
正常な機能動作を遂行できなくなる。これを防止するた
めに回路素子の1′1荷に冷たい風を送り冷却する方式
が通常行われている。
The circuit elements of electronic devices constantly generate more heat than usual, and when installed, it causes fluctuations in each ion layer of the circuit elements.
Inability to perform normal functional movements. In order to prevent this, a method is usually used in which cold air is sent to the parts 1'1 of the circuit elements to cool them down.

送られる風は電子装置が設置された室内の空気をファン
等を用いて送り込むものである。
The air that is sent is the air inside the room where the electronic device is installed using a fan or the like.

負荷の回路素子は露出したものばかりではないので、装
置の奥深く複雑な位置に設DJられている場合も多く、
このときは負荷の近傍に冷媒用の配管を設けて、低温の
冷媒を介して負荷を冷却するようにしている。そして熱
を得た冷媒を製造上で送風により冷却している。
Load circuit elements are not always exposed; they are often located deep inside the equipment in complex locations.
In this case, a refrigerant pipe is provided near the load to cool the load via the low-temperature refrigerant. The refrigerant that has gained heat is then cooled by blowing air during manufacturing.

冷媒をいかに効率よく冷却するかが重要となるが、冷却
能力は使用されるボ゛/プ、熱交換器及びファンの送風
能力により決定される。
It is important to efficiently cool the refrigerant, and the cooling capacity is determined by the air blowing capacity of the bow/pump, heat exchanger, and fan used.

熱交換器を大型化したり、ファンを強力にするか、各種
方法があるか特にファンを強力なものにすると、振動や
騒音の原因となり、冷却能力の向上と、小型化低騒音化
の調和点を見出すのが困難であった。
Is there any way to increase the size of the heat exchanger or make the fan more powerful? In particular, making the fan more powerful can cause vibration and noise, so there is a balance between improving cooling capacity and reducing size and noise. It was difficult to find out.

このような状況下で省スペースで騒音性能の良い冷却方
法が望まれていた。特に電子装置自体は集積回路の発達
で小型化しても、冷却装置がそれに伴うバランスで小型
化されないこともあり、開発が必要とされていた分野で
ある。
Under these circumstances, a space-saving cooling method with good noise performance has been desired. In particular, even though electronic devices themselves have become smaller due to the development of integrated circuits, cooling devices have not been able to be made smaller due to the accompanying balance, so this is an area where development is needed.

〔従来の技術〕[Conventional technology]

第5回は従来の空冷式冷却システムの構成を示す図で、
タンク1には低温の冷温水等の冷媒2が蓄えられる。低
温の冷媒2は能力A Hpのポンプ3によりパイプ4を
介して流管5に流入され負荷6を冷却する。この負荷6
は電子計算機等の回路素子であって、通電により発熱し
ており、低温の冷媒2により常に冷却し、回路素子が正
常動作を維持できる負荷許容最高温度以下に保たれるよ
うにしている。
The fifth part is a diagram showing the configuration of a conventional air-cooled cooling system.
A tank 1 stores a refrigerant 2 such as cold and hot water at a low temperature. The low-temperature refrigerant 2 is flowed into the flow tube 5 via the pipe 4 by the pump 3 having a capacity of A Hp to cool the load 6 . This load 6
is a circuit element of an electronic computer, etc., which generates heat when energized, and is constantly cooled by a low-temperature refrigerant 2 so that the circuit element is maintained at a maximum allowable load temperature at which the circuit element can maintain normal operation.

負荷6を冷却して自らは温度が上昇した高温の冷媒2は
熱交換器7に流入し、室温の空気により冷却される。温
度が降下した低温の冷媒2は再びタンク1に蓄えられる
The high temperature refrigerant 2 whose temperature has increased by cooling the load 6 flows into the heat exchanger 7 and is cooled by air at room temperature. The low-temperature refrigerant 2 whose temperature has decreased is stored in the tank 1 again.

熱交換器7は風洞8と、風洞8内に室内の空気を送風す
るB1.、と、冷媒2が流れる管10の回りに取りつけ
た多数のフィン11とから構成される。
The heat exchanger 7 includes a wind tunnel 8 and a B1. , and a large number of fins 11 attached around a tube 10 through which the refrigerant 2 flows.

第2図は冷媒2の温度変化を時間の関数として表したも
ので、実線のグラフGは従来の冷媒2の温度変化を示し
ている。
FIG. 2 shows the temperature change of the refrigerant 2 as a function of time, and the solid line graph G shows the temperature change of the conventional refrigerant 2.

IC回路素子が正常動作可能な温度を負荷許容最高温度
T、とじ、電子計算機等が置かれる室内の空気温度をT
とすると、冷媒2の温度Gは負荷6の近傍を通る時上昇
し、熱交換器7に入ると降下し始める。
The maximum allowable load temperature T is the temperature at which IC circuit elements can operate normally, and T is the air temperature in the room where electronic computers, etc. are placed.
Then, the temperature G of the refrigerant 2 increases when passing near the load 6, and begins to decrease when it enters the heat exchanger 7.

冷媒2の最高温度を常に温度′PMより低くするために
ポンプ3の吐出量を毎秒θ(ρ)とし、ポンプ3の馬力
をAHPとする。
In order to keep the maximum temperature of the refrigerant 2 always lower than the temperature 'PM, the discharge rate of the pump 3 is set to θ (ρ) per second, and the horsepower of the pump 3 is set to AHP.

室内の空気温度は略一定でTであれば、この空気を熱交
換器7に送風して高温の冷媒2をフィン11を介して冷
却する。この時送風■が大きいほど冷媒2は空気温度T
に近づけることができる。しかしながらファン9の能力
即ちワット数、B8は冷媒2が負荷6を温度T、以下に
冷却するだけの能力があればいい程度に設定される。
If the indoor air temperature is substantially constant T, this air is blown to the heat exchanger 7 to cool the high temperature refrigerant 2 through the fins 11. At this time, the larger the air blast ■, the higher the air temperature T of the refrigerant 2.
can be approached. However, the capacity, ie, wattage, B8 of the fan 9 is set to such an extent that the refrigerant 2 only needs to have the ability to cool the load 6 to a temperature T or lower.

[発明カー′1lri’決し2ようとする課題〕しかし
ながら、従来の方法にあっては、負荷6に対する冷却は
、室温1゛まて冷媒2の温度を降下させて、負荷6の温
度も室温近くに保つのが理想であるので、熱交換器7の
能力を高める必要があり、フィン11を犬きクシて表面
積を増大させることと、ファン9のマノ、・ト数を増す
ことに限られていた。フィン11を大きくすると、電子
装置自体は小型・高密度化が進んでいるためその方向に
反ずろという問題かあり、ファン9の能力をアップする
と大型になったり、高速回転となるため振動や騒音が太
き(なり好ましくないという問題かあ、った。
[Problem to be resolved by the invention car] However, in the conventional method, the temperature of the refrigerant 2 is lowered by 1° to room temperature to cool the load 6, and the temperature of the load 6 is also close to room temperature. Ideally, it is necessary to increase the capacity of the heat exchanger 7, and this is limited to increasing the surface area by combing the fins 11 and increasing the number of manholes of the fan 9. Ta. If the fins 11 are made larger, there will be a problem with the electronic devices themselves shifting in that direction as they become smaller and more dense.If the capacity of the fan 9 is increased, it will become larger and rotate at higher speeds, which will cause vibrations and noise. The problem is that it's thick (and undesirable).

この発明は−1−記問題点を解決ずへくなされたもので
、空冷式冷却装置の省エネルギー化を図り、小型・軽量
化と騒音の低減化を達成することを目的としている。
This invention has been made without solving the problem mentioned in item 1-1, and aims to save energy in an air-cooled cooling device, and to achieve reduction in size, weight, and noise.

(課題を解決するための手段〕 上記問題点は、冷却用の低温冷媒をポンプにより送出す
る段階と、該低温冷媒を2つの流路に分割する段階と、
−の流路の低温冷媒が電子回路の負荷を冷却する段階と
、この冷媒が該負荷から熱を与えられ高温冷媒となって
熱交換器に流入する段階と、該二〇流路の低温冷媒が直
接核熱交換器に流入する段階と、該高温冷媒が該熱交換
器内で該低温冷媒及びファンにより送られてくる空気と
により冷却されて熱を失い元の低温冷媒になる段階とか
らなる空気式冷却方法により解決される。
(Means for Solving the Problem) The above problem consists of a step of sending out a low-temperature refrigerant for cooling by a pump, a step of dividing the low-temperature refrigerant into two flow paths,
- a stage in which the low-temperature refrigerant in the flow path cools the load of the electronic circuit; a stage in which this refrigerant receives heat from the load and becomes a high-temperature refrigerant and flows into the heat exchanger; and a stage in which the low-temperature refrigerant in the flow path directly flows into the nuclear heat exchanger, and the high-temperature refrigerant is cooled in the heat exchanger by the low-temperature refrigerant and air sent by a fan, losing heat and becoming the original low-temperature refrigerant. The problem is solved by an air cooling method.

〔作用〕[Effect]

即ち、本発明は、ポンプから供給される低温冷媒を、負
荷側へ入る流路とを直接熱交換器側へ入     ′る
流路とに2分割する。
That is, in the present invention, the low-temperature refrigerant supplied from the pump is divided into two channels: a flow path that enters the load side and a flow path that directly enters the heat exchanger side.

そして熱交換器内で2つの流路を接続させることにより
、引き続き低温の冷媒とファンから送られる低温の空気
とにより、負荷側から熱を得てきた高温の冷媒を冷却す
る。これにより熱交換器におりる効率を向上させること
ができる。
By connecting the two flow paths within the heat exchanger, the high-temperature refrigerant that has obtained heat from the load side is subsequently cooled by the low-temperature refrigerant and the low-temperature air sent from the fan. This can improve the efficiency of the heat exchanger.

熱交換率の向−1=した分ファンのワンド数を滅らし、
小型・低ワツト数で同一の冷却が可能となり低騒音と軽
量化が可能となる。
The direction of the heat exchange rate - 1 = decreases the number of wands of the fan,
The same cooling can be achieved with a smaller size and lower wattage, resulting in lower noise and lighter weight.

〔実施例〕〔Example〕

以下、本発明を図示の一実施例により具体的に説明する
Hereinafter, the present invention will be specifically explained with reference to an illustrated embodiment.

第1図は本発明の空気式冷却方法の構成を示す図であり
、第2図は本発明の冷却原理を示すグラフ図である。
FIG. 1 is a diagram showing the configuration of the air cooling method of the present invention, and FIG. 2 is a graph diagram showing the cooling principle of the present invention.

タンク1には低温の冷温水等の冷媒2が蓄えられ、低温
の冷媒2は能力A04.のポンプ3により王バイブ15
に送出される。主バイブ15を出た低温冷媒2は流路の
第2パイプ16と第1パイプ17により略2等分され、
第1パイプ17を出た低温の冷媒2は冷却流管5に流入
され負荷6を冷却する。この負荷6は通電により発熱し
ており、低温の冷媒2により常に冷却し、負荷6の回路
素子を許容最高温度以下保つようにしている。
A refrigerant 2 such as low-temperature cold and hot water is stored in the tank 1, and the low-temperature refrigerant 2 has a capacity of A04. King Vibrator 15 by Pump 3
sent to. The low-temperature refrigerant 2 that has exited the main vibrator 15 is divided into approximately two equal parts by the second pipe 16 and the first pipe 17 of the flow path.
The low temperature refrigerant 2 exiting the first pipe 17 flows into the cooling flow tube 5 and cools the load 6 . This load 6 generates heat when it is energized, and is constantly cooled by the low-temperature refrigerant 2 to keep the circuit elements of the load 6 at or below the maximum allowable temperature.

負荷6を冷却して自らは温度が上昇した高温の冷媒2a
は熱交換器19に流入する。
High-temperature refrigerant 2a whose temperature has increased by cooling the load 6
flows into the heat exchanger 19.

−1第2パイプ16を出た低温冷媒2は低温のまま直接
熱交換器19に流入する。
-1 The low temperature refrigerant 2 that has exited the second pipe 16 directly flows into the heat exchanger 19 while remaining at a low temperature.

熱交換器19は風洞8と、風洞8内に室内の空気を送風
するBw(ワソI〜)のファン9と、高温冷媒2aが流
れる第1管20と低温冷媒2が流れる第2管21と、こ
れら第1・第2管20.21の回りに取りつげた多数の
フィン23とから構成される。
The heat exchanger 19 includes a wind tunnel 8, a Bw fan 9 that blows indoor air into the wind tunnel 8, a first pipe 20 through which high-temperature refrigerant 2a flows, and a second pipe 21 through which low-temperature refrigerant 2 flows. , and a large number of fins 23 attached around these first and second tubes 20, 21.

第1管20と第2管21とは接近面が最大となるように
捻り合わせた様な構造となっており、高温の冷媒2aは
第2管21中の低温冷媒2にも熱を与え、かつファン9
による風にも熱を与え冷却される。これにより熱交換器
19の第1管20、第2管21を出た冷媒2は低温であ
り、合流された後タンク1に再び蓄えられる。
The first pipe 20 and the second pipe 21 have a structure in which they are twisted together so that the approach surface is maximized, and the high temperature refrigerant 2a also gives heat to the low temperature refrigerant 2 in the second pipe 21. Katsufan 9
The wind also gives heat and is cooled. As a result, the refrigerant 2 exiting the first pipe 20 and the second pipe 21 of the heat exchanger 19 is at a low temperature, and is stored in the tank 1 again after being combined.

以上の動作を繰り返して負荷6を常に正常温度内に保維
している。
By repeating the above operations, the load 6 is always maintained at a normal temperature.

第3図ば熱交換器内部の拡大側面図を示し、第4図は第
3図のA−A線断面図を示す図であり、高温冷媒2aが
流れる第1管20と低温冷媒2が流れる第2管21とは
捻しり構造に合体されている。第1管20と第2管21
とは熱伝導性の高い金属25により互いに溶着され、更
に合体された第1管20、第2管21の外周には平板状
のフィン23が多数離隅して設けられている。
Figure 3 shows an enlarged side view of the inside of the heat exchanger, and Figure 4 is a cross-sectional view taken along line A-A in Figure 3, showing the first pipe 20 through which the high temperature refrigerant 2a flows and the first pipe 20 through which the low temperature refrigerant 2 flows. It is combined with the second pipe 21 in a twisted structure. First pipe 20 and second pipe 21
The first tube 20 and the second tube 21 are welded to each other by a highly thermally conductive metal 25, and a large number of flat plate-shaped fins 23 are provided on the outer periphery of the combined first tube 20 and second tube 21, spaced apart from each other.

高温冷媒2aの流入方向と低温冷媒2の流入方向は図中
矢印のように互いに反対方向となっており、熱交換の効
率を高めている。高温冷媒2aは、第2管21内の低温
冷媒2および送風により室温まで冷やされた多数のフィ
ン23により冷却される。なお、第3図では第1管20
及び第1管21をよしって直線状の日本の捻しり合ね・
上管として示したが、ごの捻しり合わセ管を蛇行させて
、曲がりくねった長い形状にして冷却効果を更に上げる
ようにしてもよい。
The inflow direction of the high-temperature refrigerant 2a and the inflow direction of the low-temperature refrigerant 2 are opposite to each other as indicated by arrows in the figure, thereby increasing the efficiency of heat exchange. The high-temperature refrigerant 2a is cooled by the low-temperature refrigerant 2 in the second pipe 21 and the many fins 23 that are cooled to room temperature by air blowing. In addition, in FIG. 3, the first pipe 20
And twist the first pipe 21 together in a straight line.
Although shown as an upper tube, the upper and lower tubes may be twisted together to form a meandering long shape to further enhance the cooling effect.

第2図の点線グラフHは本発明に係る冷媒2の温度変化
を示しており、IC回路が機能する温度を負荷許容最高
温度TOとし、室内の空気温度をT とすると、冷媒2
の温度Hは、負荷6の近傍を流れる時熱を受けて上昇し
、熱交換器19を流れる時熱を失って降下する。
The dotted line graph H in FIG. 2 shows the temperature change of the refrigerant 2 according to the present invention.If the temperature at which the IC circuit functions is the maximum allowable load temperature TO, and the indoor air temperature is T, then the refrigerant 2
When flowing near the load 6, the temperature H increases as it receives heat, and as it flows through the heat exchanger 19, it loses heat and falls.

今ポンプ3の馬力をA Ill’としその冷媒吐出h±
を毎秒0(r)とし、室内の空気温度は略一定のTとす
る。ポンプ3を出た低温の冷媒2は2分割されて、2θ
(ρ)は負荷6の近傍の流管5に流入する。
Now let the horsepower of pump 3 be A Ill', and its refrigerant discharge h±
is 0 (r) per second, and the indoor air temperature is assumed to be approximately constant T. The low-temperature refrigerant 2 that exits the pump 3 is divided into two parts, 2θ
(ρ) flows into the flow tube 5 near the load 6.

負荷6の発熱址は略一定であるため、2θの低温冷媒2
は、時間t11区間では、負荷許容最高温度T4をR1
だげ突破する(理論」二)。
Since the heat generation value of the load 6 is approximately constant, the 2θ low temperature refrigerant 2
In the time t11 section, the load allowable maximum temperature T4 is set to R1.
Just break through (theory" 2).

しかしながら、熱交換器19に流入した突破高温となっ
た冷媒2aは、時間シア1区間では、低温のまま流入し
てくる他方の2θの低温冷媒2及びファン9からの送風
乙こよる双方からの冷却作用を受は象、激に冷却され、
ファン9のワット数をB、Aとした場合でも室温に向か
って降下する。
However, during the time shear 1 section, the refrigerant 2a that has reached a breakthrough temperature and has flown into the heat exchanger 19 is affected by both the low temperature refrigerant 2 at 2θ, which is flowing in at a low temperature, and the air blowing from the fan 9. The elephant that receives the cooling effect is intensely cooled,
Even when the wattage of the fan 9 is set to B or A, the wattage decreases toward room temperature.

次のサイクルの時間t12区間では、ポンプ3を出る時
点で冷媒2の温度は前サイクル時より低くなっているの
で、負荷による温度上昇は小さくなり突破量R2は、R
,>R2となる。
In the time t12 section of the next cycle, the temperature of the refrigerant 2 is lower than that in the previous cycle when it leaves the pump 3, so the temperature rise due to the load is small and the breakthrough amount R2 is
,>R2.

この比較的高温の冷媒2aは、前述同様の冷却作用を、
時間区間t2゜で受け、より室温近くまで低温化される
This relatively high temperature refrigerant 2a has the same cooling effect as described above.
The temperature is lowered to near room temperature during the time interval t2°.

更に次のサイクルの負荷6の冷却区間t13では、ポン
プ3を出る冷媒2の室温がより低温となっているため、
2θ(j2)の冷媒2しか負荷6近傍を流れないが、負
荷6の温度を負荷許容最高温度T。以下に冷却可能とな
る。
Furthermore, in the cooling section t13 of the load 6 in the next cycle, the room temperature of the refrigerant 2 exiting the pump 3 is lower;
Although only the refrigerant 2 of 2θ(j2) flows near the load 6, the temperature of the load 6 is set to the maximum allowable load temperature T. It can be cooled to below.

か(て時間tzzの区間では前述同様の冷却作用を受け
て比較的高温の冷媒2は、更に室温近くまで低温化され
る。このようなサイクルを繰り返しているうちに、負荷
6の近傍を流れるt14区間の冷媒2は、元々の流入温
度が低くなっているため、負荷許容最高温度Tイより逆
にT。分も低い温度までしか上昇せず、熱交換器19内
では区間L24で、限りなく室温に近く冷却される。
(In the section of time tzz, the relatively high temperature refrigerant 2 is further cooled to near room temperature by the same cooling effect as described above. While repeating this cycle, the refrigerant 2 flowing near the load 6 Since the original inflow temperature of the refrigerant 2 in section t14 is low, the temperature rises only to a temperature lower than the maximum allowable load temperature T, and within the heat exchanger 19, it reaches a limit in section L24. It is cooled to near room temperature.

従ってポンプ3のAHP、ファン9の出力B8て同一負
荷6に対して、負荷許容量最高温度Tイより常にT。低
い冷却温度を保つことができる。
Therefore, for the same load 6, the AHP of the pump 3 and the output B8 of the fan 9 are always T than the maximum allowable load temperature T. Able to maintain low cooling temperature.

逆に、このT。の過冷却はファン9の出力B11を縮小
して、To−→0即ち、負荷許容量最高温度になるよう
ファン9を小型化、省エネルギー化することができる。
On the contrary, this T. For supercooling, the output B11 of the fan 9 is reduced, and the fan 9 can be downsized and energy-saving so that To-→0, that is, the maximum temperature of the allowable load.

これに伴い熱交換器19も小型化し、ファン9の発生ず
る騒音も小さくなる。
Along with this, the heat exchanger 19 is also downsized, and the noise generated by the fan 9 is also reduced.

なお、上記説明では、冷却始動時に冷媒2ば負荷6を充
分に低温化できず、負荷許容最高温度]゛。
In addition, in the above explanation, the refrigerant 2 cannot sufficiently lower the temperature of the load 6 at the start of cooling, and the maximum allowable load temperature].

を突破すると説明したが、現実には始動時の負荷6は未
だそれほど発熱していないため、突破量R+、R2・・
・は生じない、従って冷却の機能も始動後直ちに現れる
Although I explained that it would exceed R+, R2...
- does not occur, so the cooling function also appears immediately after startup.

又ポンプ3による流量2θは流路が並列となるので実際
には抵抗が減少した分増加し、負荷6に流れる冷媒2の
量も元の流量θ(Iり近くにまで増大し、ファン9の小
型化、小ワット化は更に強力に実現される。
Also, since the flow paths are parallel, the flow rate 2θ of the pump 3 actually increases due to the decrease in resistance, and the amount of refrigerant 2 flowing to the load 6 also increases to nearly the original flow rate θ(I), and the flow rate of the fan 9 increases. Smaller size and lower wattage can be realized even more powerfully.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、冷却装置の効率を高
め、低馬力、小型・軽量化が実現され、騒音と振動の発
生を最小に押さえた冷却方法および装置が捉供できる。
As described above, according to the present invention, it is possible to provide a cooling method and device that improves the efficiency of the cooling device, achieves low horsepower, is compact and lightweight, and minimizes noise and vibration.

従って、電子装置自体がコンパクト化する中で、遅れて
いた冷却装置も含めてコンバクI・化し、移動、据え付
iJ及び機動性の高い電子装置が実現できる。
Therefore, as electronic devices themselves become more compact, electronic devices including cooling devices, which have been lagging behind, can be made compact, making it possible to realize mobile, stationary, and highly mobile electronic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空気式冷却力法の構成図、第2し1は
本発明の冷却原理を示すクラフ図であり、第3図は本発
明の熱交換器内部の拡大側面図、第4図4j第3図のA
−A線断面図であり、第5回は従来の冷却装置の構成図
である。 2.2a・・ 冷媒、 3   ・ポンプ、 6・・・負荷、 9・・ ・ファン、 16.17   流路、 19  ・熱交換器、 20・  第1管、 21・・ 第2管、 23・・・フィン、 25・・・金属である。
Fig. 1 is a block diagram of the air cooling power method of the present invention, Fig. 2 is a graph diagram showing the cooling principle of the present invention, and Fig. 3 is an enlarged side view of the inside of the heat exchanger of the present invention. 4 Figure 4j A in Figure 3
- A sectional view, and the fifth is a configuration diagram of a conventional cooling device. 2.2a... Refrigerant, 3. Pump, 6. Load, 9.. Fan, 16.17 Channel, 19. Heat exchanger, 20. First pipe, 21.. Second pipe, 23. ...Fin, 25...Metal.

Claims (2)

【特許請求の範囲】[Claims] 1.冷却用の低温冷媒(2)をポンプ(3)により送出
する段階と、該低温冷媒(2)を2つの流路(16)、
(17)に分割する段階と、一方の流路(17)の低温
冷媒(2)が電子回路の負荷(6)を冷却する段階と、
この冷媒(2)が該負荷(6)から熱を与えられ高温冷
媒(2a)となって、熱交換器(19)に流入する段階
と、該他方の流路(16)の低温冷媒(2)が直接熱交
換器(19)に流入する段階と、該高温冷媒(2a)が
該熱交換器(19)内で該低温冷媒(2)及びファン(
9)により送られてくる空気とにより冷却されて熱を失
い元の低温冷媒(2)になる段階とからなる空気式冷却
方法。
1. a step of delivering a low-temperature refrigerant (2) for cooling by a pump (3);
(17), and a step in which the low temperature refrigerant (2) in one flow path (17) cools the load (6) of the electronic circuit;
This refrigerant (2) is given heat from the load (6) to become a high temperature refrigerant (2a) and flows into the heat exchanger (19), and the low temperature refrigerant (2) in the other flow path (16) ) flows directly into the heat exchanger (19), and the high temperature refrigerant (2a) flows within the heat exchanger (19) into the low temperature refrigerant (2) and the fan (
9) The air cooling method consists of the step of being cooled by the air sent by (9), losing heat and becoming the original low-temperature refrigerant (2).
2.低温冷媒(2)を吐出するポンプ(3)と、この低
温冷媒(2)が流入され電子回路からなる負荷(6)の
近傍に配設された冷却流管(5)と、この冷却流管(5
)から流出する高温冷媒(2a)が流入される熱交換器
(19)と、この熱交換器(19)に低温空気を送るフ
ァン(8)とを有する空気式冷却装置において、 該低温冷媒(2)を分流してその一部を該冷却流管(5
)に送出する第1パイプ(17)及び他の一部を熱交換
器(19)に直接送出する第2パイプ(16)と、該熱
交換器(19)に設けられ該冷却流管(5)からの高温
冷媒(2a)が流入される第1管(20)と、該第1パ
イプ(17)からの低温冷媒(2)が流入される第2管
(21)とを備え、これら第1管(20)と第2管(2
1)とを捻り合わせたことを特徴とする空気式冷却装置
2. A pump (3) that discharges low-temperature refrigerant (2), a cooling flow pipe (5) into which this low-temperature refrigerant (2) flows and which is arranged near a load (6) consisting of an electronic circuit, and this cooling flow pipe. (5
), a heat exchanger (19) into which a high-temperature refrigerant (2a) flows out, and a fan (8) that sends low-temperature air to the heat exchanger (19). 2) and part of it is sent to the cooling flow pipe (5).
) and a second pipe (16) that directly sends the other part to the heat exchanger (19), and ) into which the high temperature refrigerant (2a) flows, and a second pipe (21) into which the low temperature refrigerant (2) flows from the first pipe (17). 1 tube (20) and 2nd tube (2
1) An air-type cooling device characterized by being twisted together.
JP9093788A 1988-04-13 1988-04-13 Method and apparatus for air cooling Pending JPH01263476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9093788A JPH01263476A (en) 1988-04-13 1988-04-13 Method and apparatus for air cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9093788A JPH01263476A (en) 1988-04-13 1988-04-13 Method and apparatus for air cooling

Publications (1)

Publication Number Publication Date
JPH01263476A true JPH01263476A (en) 1989-10-19

Family

ID=14012363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9093788A Pending JPH01263476A (en) 1988-04-13 1988-04-13 Method and apparatus for air cooling

Country Status (1)

Country Link
JP (1) JPH01263476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225159A1 (en) * 2022-05-20 2023-11-23 Commonwealth Fusion Systems Llc Tritium shunt heat exchanger with sweep gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225159A1 (en) * 2022-05-20 2023-11-23 Commonwealth Fusion Systems Llc Tritium shunt heat exchanger with sweep gas

Similar Documents

Publication Publication Date Title
JP2006509370A (en) Method, system and apparatus for cooling high power density devices
WO2006073007A1 (en) Thermoacoustic device
JP2004204793A (en) Air-cooled heat exchanger
JPS63153343A (en) Control-module cooling device
US6330809B1 (en) Application of a chiller in an apparatus for cooling a generator/motor
JPH0550674B2 (en)
JPH01263476A (en) Method and apparatus for air cooling
JP2019128071A (en) Air conditioner
RU2689502C1 (en) Thermoacoustic energy conversion system
JPH09306722A (en) Superconducting magnet device
JPH1163722A (en) Fluid cooler
CN217236132U (en) Variable frequency air conditioning system
Ross Beat the heat
JP4517962B2 (en) Cooling device for electronic equipment
JP2004335516A (en) Power converter
JP7141342B2 (en) Cryogenic fluid circulation cooling system and cryogenic fluid circulation cooling method
JP2004218969A (en) Heat exchanger
KR101897931B1 (en) System for cooling a processor in electronic device
JPH01215098A (en) Cooling system
JPH08241943A (en) Liquid-cooled heat sink for power semiconductor element
JP2003166766A (en) Heat exchanger for pulse pipe refrigerator
JPH08111321A (en) Forced convection cooling transformer
CN211348972U (en) Laser projection equipment and heat dissipation system thereof
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JP2009088051A (en) Cooling device for electronic instrument