JPH01262604A - Electromagnetic actuator - Google Patents

Electromagnetic actuator

Info

Publication number
JPH01262604A
JPH01262604A JP9200388A JP9200388A JPH01262604A JP H01262604 A JPH01262604 A JP H01262604A JP 9200388 A JP9200388 A JP 9200388A JP 9200388 A JP9200388 A JP 9200388A JP H01262604 A JPH01262604 A JP H01262604A
Authority
JP
Japan
Prior art keywords
iron core
permanent magnet
fixed iron
coil
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9200388A
Other languages
Japanese (ja)
Inventor
Masaki Yamaguchi
正樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9200388A priority Critical patent/JPH01262604A/en
Publication of JPH01262604A publication Critical patent/JPH01262604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce magnetic resistance and increase a difference between the attractive force by a permanent magnet and the repulsive force of a spring in order to obtain a small-sized electromagnetic actuator by forcedly making a leakage magnetic circuit between a fixed iron core and a yoke. CONSTITUTION:A face in contact with a permanent magnet 1 of a fixed iron core 2 has a flange part 2f having a larger diameter than the permanent magnet, the part of a yoke 4a, whereinto the permanent magnet 1 is to be inserted, is phasedly pushed and a distance to a flange part of the fixed iron core 2 is shorter than the distance at the part holding the magnet 1. Consequently, the magnetic resistance between the yoke and the fixed iron core is reduced near the magnet 1, while a magnetic flux generated by the magnetomotive force of a coil is increased. As a result, operation is performed by a low current without increasing the number of coil winding, while a difference between the magnetic attractive force by the permanent magnet and the repulsive force of a spring 6 can be increased. That is to say, a shock-proof property and a power-saving property coexist with each other while a small-sized and low- priced electromagnetic actuator can be simply constituted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、状態の保持を永久磁石およびバネによって行
い、駆動時のみコイルにパルス状の電流を印加し瞬間励
磁する形式の電磁アクチュエータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electromagnetic actuator whose state is maintained by a permanent magnet and a spring, and whose coil is instantaneously excited by applying a pulsed current only during driving. .

従来の技術 従来よりコイルの発熱をさけたり、駆動回路側の省電力
化をはかるために、状態の保持を永久磁石およびバネに
よって行いコイルは瞬間励磁だけに利用する形式の自己
保持型の電磁アクチュエータが利用されている。特に近
年、家庭用電気器具に組み込む電磁アクチュエータの省
電力化や、家庭用ガス器具のガス遮断弁およびガスメー
タに白蟻されガス流量を監視しマイコンによりガスの使
用状態を判断し異常使用の場合はガスを遮断する電池電
源によるマイコン・ガス遮断装置のガス遮断弁としての
用途に自己保持型の電磁アクチュエータの必要性が高ま
ってきた。
Conventional technology In order to avoid heat generation in the coil and save power on the drive circuit side, self-holding electromagnetic actuators use permanent magnets and springs to hold the state and use the coil only for instantaneous excitation. is being used. Particularly in recent years, electromagnetic actuators built into household electrical appliances have become more power-saving, and gas cutoff valves and gas meters in household gas appliances have been fitted with termites to monitor the gas flow rate and use microcomputers to determine the gas usage status. There has been an increasing need for self-holding electromagnetic actuators for use as gas cutoff valves in microcomputer gas cutoff devices powered by battery power.

以下図面を参照しながら、前述した従来の電磁アクチュ
エータの一例について説明する。
An example of the conventional electromagnetic actuator mentioned above will be described below with reference to the drawings.

第6図は従来の電磁アクチュエータの断面を示すもので
ある。第6図において、中心軸方向に着磁された円柱形
の永久磁石1と、永久磁石1と対接する面が永久磁石1
とほぼ等しい直径を有し永久磁石1と同心に配された多
段円柱形の固定鉄芯2と、永久磁石1と同心方向に移動
可能で固定鉄芯2に対接可能な吸着面10を持つ円柱形
の可動鉄芯aと、永久磁石1を固定鉄芯2との間ではさ
み込み他端を可動鉄芯3の近傍に配することにより永久
磁石1による磁気回路を形成するヨーク4m、4bと、
可動鉄芯aの吸着面10とは別の端に永久磁石1と同心
の方向でかつ可動鉄芯aを吸着面10より離脱する方向
の反力を有する様配されたバネ6と、ヨーク4m、4b
にとりかこまれかつ可動鉄芯3をとりかこんで配され電
流印加により可動鉄芯3を励磁するコイル5とで電磁ア
クチュエータが構成されている。コイル5の巻かれたコ
イルボビン5bは円柱形の穴を有し可動鉄芯3を移動方
向にガイドするとともに固定鉄芯2、永久磁石1を、可
動鉄芯3をかかえこんで、固定鉄芯2、永久磁石1の中
心軸が等しくなる様固定している。
FIG. 6 shows a cross section of a conventional electromagnetic actuator. In FIG. 6, a cylindrical permanent magnet 1 is magnetized in the direction of the central axis, and a surface facing the permanent magnet 1 is a permanent magnet 1.
It has a multistage cylindrical fixed iron core 2 having a diameter approximately equal to that of the permanent magnet 1 and arranged concentrically with the permanent magnet 1, and an attraction surface 10 that is movable in the direction concentric with the permanent magnet 1 and can come into contact with the fixed iron core 2. Yokes 4m and 4b which form a magnetic circuit by the permanent magnet 1 by sandwiching the permanent magnet 1 between the cylindrical movable iron core a and the fixed iron core 2 and placing the other end near the movable iron core 3. and,
A spring 6 is arranged at an end other than the attraction surface 10 of the movable iron core a in a direction concentric with the permanent magnet 1 and has a reaction force in a direction to separate the movable iron core a from the attraction surface 10, and a yoke 4m. , 4b
An electromagnetic actuator is constituted by a coil 5 which is surrounded by the movable iron core 3 and is arranged around the movable iron core 3, and which excites the movable iron core 3 by applying an electric current. The coil bobbin 5b on which the coil 5 is wound has a cylindrical hole and guides the movable iron core 3 in the movement direction, and holds the fixed iron core 2, the permanent magnet 1, and the movable iron core 3, and the fixed iron core 2 , the permanent magnets 1 are fixed so that their central axes are equal.

以下に、前記の構成の電磁アクチュエータの動作につい
て説明する。
The operation of the electromagnetic actuator having the above configuration will be explained below.

通常の電流を印加していない状態においては、可動鉄芯
3はバネ6め反力f、に抗して吸着面10において固定
鉄芯2に、永久磁石1による磁束Φmによる磁気吸引力
Foによって吸着保持されている。すなわちFo>fs
pである。駆動時、磁束Φmと逆方向に可動鉄芯3を励
磁する様コイル5にパルス状の電流−を印加することに
よってコイル5による磁束ΦCが発生し、吸着面10を
通る磁束ΦはΦ=Φm−ΦGとなり磁気吸引力FはFo
)Fとなり減小する。もしF (f、、となるに充分な
電流薯が印加されたならば、可動鉄芯3は吸着面10に
おいて固定鉄芯2より離脱し、電磁アクチュエータが作
動する。前記の構成の電磁アクチュエータの等価磁気回
路を近似的に第7図に示した。第7図における磁気ギャ
ップG1の磁気抵抗をRgl、永久磁石1の磁気抵抗を
Rm、永久磁石1の起磁力をFm、コイル5の起磁力を
Fcとし、もれ磁束、吸着面10における磁気抵抗およ
び、ヨーク4m、4b、固定鉄芯3の磁気抵抗は省略し
た。さらに、第7図の等価磁気回路を永久磁石1による
等価磁気回路とコイル5による等価磁気回路とに分離す
るとそれぞれ第8図。
When no normal current is applied, the movable iron core 3 is applied to the fixed iron core 2 on the attraction surface 10 against the reaction force f of the spring 6 by the magnetic attraction force Fo caused by the magnetic flux Φm of the permanent magnet 1. It is retained by adsorption. That is, Fo>fs
It is p. During driving, by applying a pulsed current - to the coil 5 to excite the movable iron core 3 in the opposite direction to the magnetic flux Φm, a magnetic flux ΦC is generated by the coil 5, and the magnetic flux Φ passing through the attraction surface 10 is Φ=Φm -ΦG, and the magnetic attraction force F is Fo
) F and decreases. If a sufficient current is applied to F (f, ,), the movable iron core 3 separates from the fixed iron core 2 at the attraction surface 10, and the electromagnetic actuator operates. The equivalent magnetic circuit is approximately shown in Fig. 7. In Fig. 7, the magnetic resistance of the magnetic gap G1 is Rgl, the magnetic resistance of the permanent magnet 1 is Rm, the magnetomotive force of the permanent magnet 1 is Fm, and the magnetomotive force of the coil 5. is Fc, and the leakage magnetic flux, the magnetic resistance at the attraction surface 10, the magnetic resistance of the yokes 4m, 4b, and the fixed iron core 3 are omitted.Furthermore, the equivalent magnetic circuit in FIG. FIG. 8 shows an equivalent magnetic circuit formed by the coil 5.

第9図の様になる。第8図、第9図より永久磁石となり
、吸着面10をとおる磁束ΦはΦ=Φm−をNとすると
Fo=Nし・・・・(4)となり、磁気吸引力Fは磁束
の2乗に比例するから比例定数をKとすると%′=にΦ
2となるから・・・・・・(5)1電流Jと吸着面10
における磁気吸引力Fの関係はFmに・の様に表される
。第5図中にバネ6の反力f、、を一点鎖線で表した。
It will look like Figure 9. From Figures 8 and 9, it becomes a permanent magnet, and the magnetic flux Φ passing through the attraction surface 10 is Fo = N, where Φ = Φm- is N. (4), and the magnetic attraction force F is the square of the magnetic flux. Since it is proportional to , if the proportionality constant is K, then %' = Φ
Because it becomes 2... (5) 1 current J and attraction surface 10
The relationship between the magnetic attraction force F and Fm is expressed as follows. In FIG. 5, the reaction force f of the spring 6 is represented by a chain line.

吸着面10における力のバランスは吸着方向を正とする
とF −f、、であるから第5図において点Bが電磁ア
クチュエータの動作点となる。
Since the balance of forces on the attracting surface 10 is F - f when the attracting direction is positive, point B in FIG. 5 is the operating point of the electromagnetic actuator.

発明が解決しようとする課題 しかしながら前記の様な構成においては、第5図におけ
る電流00時の磁気吸引力すなわち永久磁石1による磁
束Φmによる磁気吸引力Foと、動作点Bにおける磁気
吸着力すなわち、バネ6の反力fs、との差Fo  f
op  が小さいため、外部からの衝撃等の荷重により
可動鉄芯3が吸着面10より容易に離脱し誤作動をおこ
しうる。逆に一定の耐衝撃性を得るためには、バネ6の
反力fspを小さな値にセットすることによりFo  
fop を大きくすることが可能であるが、この場合第
5図より動作点での電流IBが大きくなってゆくため、
省電力性が犠牲となる。もし耐衝撃性と省電力性を両立
させるためには前記式(3) ? (5)よりコイル5
の起磁力Fcの電流Iに対する変化率を大きくすればよ
い、すなわち式(4)又は(6)よりコイル5の巻数N
を大きくすればよいことになる。ただしコイル5の両端
の電圧に対して電流薯を等しくするためにコイル5の電
気抵抗を変えてはならないから、コイル5の巻線の直径
は大きくなり、巻数Nの増加分と加算するとコイルの寸
法および重量は飛躍的に増大する。すなわち、小型性お
よび低価格性の両面が犠牲となる。
Problems to be Solved by the Invention However, in the above-described configuration, the magnetic attraction force Fo when the current is 00 in FIG. The difference Fo f from the reaction force fs of the spring 6
Since op is small, the movable iron core 3 may easily separate from the suction surface 10 due to loads such as external impacts, which may cause malfunction. On the other hand, in order to obtain a certain level of impact resistance, the reaction force fsp of the spring 6 can be set to a small value to reduce Fo.
It is possible to increase fop, but in this case, as shown in Fig. 5, the current IB at the operating point increases.
Power saving is sacrificed. What if the above formula (3) is used to achieve both impact resistance and power saving? (5) From coil 5
It is sufficient to increase the rate of change of the magnetomotive force Fc with respect to the current I, that is, from equation (4) or (6), the number of turns N of the coil 5 can be increased.
It would be better to make it larger. However, in order to make the current value equal to the voltage across the coil 5, the electrical resistance of the coil 5 must not be changed, so the diameter of the winding of the coil 5 increases, and when added to the increase in the number of turns N, the diameter of the coil 5 increases. Size and weight increase dramatically. In other words, both compactness and low cost are sacrificed.

本発明は上記課題に鑑み、コイル巻数を増加させること
なく低い電流罷で永久磁石による磁束Φmによる磁気吸
引力Foとバネの反力fs、の差Fo  fop を大
きくできる。すなわち耐衝撃性。
In view of the above problems, the present invention can increase the difference Fo fop between the magnetic attraction force Fo due to the magnetic flux Φm of the permanent magnet and the spring reaction force fs with a low current flow without increasing the number of coil turns. i.e. impact resistance.

省電力性を両立しかつ小型、低価格な電磁アクチュエー
タを簡単な構成で提供するものである。
The present invention provides an electromagnetic actuator with a simple configuration that is both power saving, compact, and inexpensive.

課題を解決するだめの手段 上記課題を解決するために本発明の電磁アクチュエータ
は、少くとも、中心軸方向に着磁された円柱形の永久磁
石と、永久磁石と対接する面が永久磁石より大きな直径
を有し永久磁石と同心に配された多段円柱形の固定鉄芯
と、永久磁石と同心方向に移動可能で固定鉄芯に対接可
能な吸着面を持つ円柱形の可動鉄芯と、永久磁石を固定
鉄芯との間ではさみ込み固定鉄芯の永久磁石に対接する
面でかつ永久磁石直径より大きな直径の部分との間の距
離が永久磁石をはさみ込んだ部分における固定鉄芯との
間の距離より小さい形状で他端を可動鉄芯の近傍に配す
ることにより永久磁石による磁気回路を形成するヨーク
と、可動鉄芯の吸着面とは別の端に永久磁石と同心の方
向でかつ可動鉄芯を吸着面より離脱する方向の反力を有
する様配されたバネと、ヨークにとりかこまれかつ可動
鉄芯をとりかこんで配され電流印加により可動鉄芯を励
磁するコイルとで構成されている。
Means for Solving the Problems In order to solve the above problems, the electromagnetic actuator of the present invention includes at least a cylindrical permanent magnet magnetized in the direction of the central axis, and a surface in contact with the permanent magnet that is larger than the permanent magnet. a multistage cylindrical fixed iron core having a diameter and arranged concentrically with the permanent magnet; a cylindrical movable iron core that is movable in a direction concentric with the permanent magnet and has an adsorption surface that can come into contact with the fixed iron core; A permanent magnet is sandwiched between the fixed iron core and the part of the fixed iron core that is in contact with the permanent magnet and has a diameter larger than the diameter of the permanent magnet has a distance between the fixed iron core and the part where the permanent magnet is sandwiched. A yoke that forms a magnetic circuit using a permanent magnet by placing the other end near the movable iron core with a shape smaller than the distance between a spring arranged to have a reaction force in the direction of separating the movable iron core from the suction surface; and a coil surrounded by the yoke and arranged around the movable iron core to excite the movable iron core by applying a current. It consists of

又、固定鉄芯と永久磁石と可動鉄芯の中心軸を合せる手
段として本発明の電磁アクチュエータは、コイルが巻か
れ中心に穴を持ったコイルボビンを、穴によって固定鉄
芯と可動鉄芯の中心軸を合せコイルボビンの一部をヨー
クの一部とかみ合せることにより固定鉄芯と永久磁石の
中心軸を合せる様配している。
Furthermore, as a means for aligning the central axes of the fixed iron core, the permanent magnet, and the movable iron core, the electromagnetic actuator of the present invention uses a coil bobbin around which a coil is wound and has a hole in the center, and aligns the centers of the fixed iron core and the movable iron core with the hole. By aligning the axes and engaging a portion of the coil bobbin with a portion of the yoke, the central axes of the fixed iron core and the permanent magnet are aligned.

作  用 本発明の電磁アクチュエータは、固定鉄芯の永久磁石に
対接する面が永久磁石より大きな直径を有し、ヨークの
固定鉄芯の永久磁石に対接する面で、かつ永久磁石直径
より大きな直径の部分との間の距離が永久磁石をはさみ
込んだ部分における固定鉄芯との間の距離よシ小さい形
状であることよシ、固定鉄芯とヨークとの間の磁気抵抗
は、永久磁石の部分の磁気抵抗と、前記永久磁石の部分
より磁気ギャップが小さな永久磁石直径より大きな部分
の磁気抵抗との並列の磁気抵抗となり、その合成磁気抵
抗は永久磁石の部分単独の磁気抵抗より小さな値となる
。すなわち固定鉄芯とヨークとの間に強制的にもれ磁気
回路を作ることにより、固定鉄芯とヨークの間の磁気抵
抗を減小させている。このため前記もれ磁気回路が無い
場合と比較すると、コイルの起磁力が同じならばコイル
による磁束はより大きくなり、永久磁石による磁気吸引
力とバネの反力の差を大きくすることができる。
Function: In the electromagnetic actuator of the present invention, the surface of the fixed iron core that contacts the permanent magnet has a diameter larger than that of the permanent magnet, and the surface of the fixed iron core of the yoke that contacts the permanent magnet has a diameter that is larger than the diameter of the permanent magnet. The magnetic resistance between the fixed iron core and the yoke is equal to the distance between the fixed iron core and the permanent magnet. The magnetic resistance of the part and the magnetic resistance of the part whose magnetic gap is smaller than the part of the permanent magnet and larger than the diameter of the permanent magnet become parallel magnetic resistance, and the resultant magnetic resistance is a value smaller than the magnetic resistance of the part of the permanent magnet alone. Become. That is, by forcibly creating a leakage magnetic circuit between the fixed iron core and the yoke, the magnetic resistance between the fixed iron core and the yoke is reduced. Therefore, compared to the case without the leakage magnetic circuit, if the magnetomotive force of the coil is the same, the magnetic flux due to the coil becomes larger, and the difference between the magnetic attraction force of the permanent magnet and the reaction force of the spring can be increased.

この様に本発明の電磁アクチユエータは、耐衝撃性、省
電力性を両立し、かつ小型、低価格な電磁アクチュエー
タを簡単な構成で提供するものである。
In this manner, the electromagnetic actuator of the present invention provides a compact, low-cost electromagnetic actuator with a simple configuration that is both impact resistant and power saving.

実施例 以下、本発明の一実施例の自己保持型の電磁アクチュエ
ータを図を参照して説明する。
EXAMPLE Hereinafter, a self-holding electromagnetic actuator according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の電磁アクチュエータの断面
を示すものである。第1図において、中心軸方向に着磁
された円柱形の永久磁石1と、永久磁石1と対接する面
が永久磁石1より大きな直径を有し永久磁石1と同心に
配された多段円柱形の磁性材料製の固定鉄芯2と、永久
磁石1と同心方向に移動可能で固定鉄芯2に対接可能な
吸着面10を持つ円柱形の磁性材料製の可動鉄芯3と、
永久磁石1を固定鉄芯2との間ではさみ込み固定鉄芯2
の永久磁石1に対接する面でかつ永久磁石1の直径より
大きな直径のふち部2fとの間の距離が永久磁石をはさ
み込んだ部分における固定鉄芯2との間の距離すなわち
永久磁石1の厚さより小さい形状で他端を可動鉄芯3の
近傍に配することにより永久磁石1による磁気回路を形
成する磁性材料製のヨーク4a、4bと、可動鉄芯3の
吸着面10とは別の端に永久磁石と同心の方向でかつ可
動鉄芯を吸着面10より離脱する方向の反力を有する様
配されたバネ6と、ヨーク4..4bにとりかこまれか
つ可動鉄芯3をとりかこんで配され電流印加により可動
鉄芯3を励磁するコイル5とで電磁アクチュエータが構
成されている。コイル5の巻かれた非磁性材料性のコイ
ルボビン5bは円柱形の穴を有し可動鉄芯aを移動方向
にガイドするとともに固定鉄芯2を保持し可動鉄芯3と
固定鉄芯2の中心軸が等しくなる様固定していて、また
コイルボビン5の底面よりビン5pが下方にのびヨーク
411にあけられた穴4hとかみあうことにより可動鉄
芯3および固定鉄芯2の中心軸をヨーク4aに対して固
定している。一方、ヨーク4aの底面には段押し部がも
うけられ永久磁石1を固定することにより永久磁石1と
可動鉄芯3と固定鉄芯2の中心軸をそろえているととも
に固定鉄芯2のふち部2fとの間の距離が永久磁石の厚
さより小さくなる形状を実現している。加工上の手段と
しては、固定鉄芯2は底面が広いため軸材を旋盤にて切
削加工後両面研削により吸着面10および永久磁石1と
接する面の表面を仕上げることが可能であり、ヨーク4
−の穴4hおよび段押し部は曲げ加工等と同時に板金加
工にて加工することが可能であり、またコイルボビン5
bは合成樹脂成型にて製造可能である。このため、固定
鉄芯2、ヨーク4・、コイルボビン5bは従来の電磁ア
クチュエータと同等に安価に製造可能である。
FIG. 1 shows a cross section of an electromagnetic actuator according to an embodiment of the present invention. In FIG. 1, there is a cylindrical permanent magnet 1 magnetized in the central axis direction, and a multi-stage cylindrical shape whose surface facing the permanent magnet 1 has a larger diameter than the permanent magnet 1 and is arranged concentrically with the permanent magnet 1. a fixed iron core 2 made of a magnetic material; a movable iron core 3 made of a cylindrical magnetic material and having an adsorption surface 10 movable concentrically with the permanent magnet 1 and capable of coming into contact with the fixed iron core 2;
Sandwich the permanent magnet 1 between the fixed iron core 2 and the fixed iron core 2.
The distance between the edge portion 2f that is in contact with the permanent magnet 1 and has a larger diameter than the diameter of the permanent magnet 1 is the distance between the fixed iron core 2 at the part where the permanent magnet is sandwiched, that is, the distance of the permanent magnet 1. The yokes 4a and 4b made of magnetic material, which have a shape smaller than the thickness and whose other end is arranged near the movable iron core 3 to form a magnetic circuit by the permanent magnet 1, are separate from the attraction surface 10 of the movable iron core 3. A spring 6 is disposed at the end in a direction concentric with the permanent magnet and has a reaction force in a direction to separate the movable iron core from the attraction surface 10, and a yoke 4. .. An electromagnetic actuator is constituted by a coil 5 which is surrounded by the movable iron core 3 and is arranged around the movable iron core 3, and which excites the movable iron core 3 by applying an electric current. The coil bobbin 5b made of a non-magnetic material around which the coil 5 is wound has a cylindrical hole and guides the movable iron core a in the direction of movement and holds the fixed iron core 2, so that the center of the movable iron core 3 and the fixed iron core 2 is The axes of the movable iron core 3 and the fixed iron core 2 are fixed to be equal, and the pin 5p extends downward from the bottom of the coil bobbin 5 and engages with the hole 4h formed in the yoke 411, thereby aligning the central axes of the movable iron core 3 and the fixed iron core 2 to the yoke 4a. It is fixed against. On the other hand, a stepped part is provided on the bottom surface of the yoke 4a, and by fixing the permanent magnet 1, the central axes of the permanent magnet 1, the movable iron core 3, and the fixed iron core 2 are aligned, and the edge of the fixed iron core 2 2f is smaller than the thickness of the permanent magnet. As for processing means, since the fixed iron core 2 has a wide bottom surface, it is possible to finish the surface of the surface in contact with the attraction surface 10 and the permanent magnet 1 by cutting the shaft material with a lathe and then grinding both sides.
- The hole 4h and the stepped part can be processed by sheet metal processing at the same time as bending, etc., and the coil bobbin 5
b can be manufactured by synthetic resin molding. Therefore, the fixed iron core 2, yoke 4, and coil bobbin 5b can be manufactured at a low cost equivalent to that of a conventional electromagnetic actuator.

以上の様に構成された電磁アクチュエータに関してその
動作を図を参照して説明する。
The operation of the electromagnetic actuator configured as above will be explained with reference to the drawings.

第1図の電磁アクチュエータにおいて、通常の電流を印
加していない状態においては、可動鉄芯3はバネ6の反
力fs、に抗して吸着面10において固定鉄芯2に、永
久磁石1による磁束Φmによる磁気吸着力Foによって
吸着保持されている。
In the electromagnetic actuator shown in FIG. 1, when no normal current is applied, the movable iron core 3 is attached to the fixed iron core 2 on the attraction surface 10 against the reaction force fs of the spring 6 by the permanent magnet 1. It is attracted and held by the magnetic attraction force Fo caused by the magnetic flux Φm.

すなわちFo ) fspである。駆動時、磁束Φmと
逆方向に可動鉄芯3を励磁する様コイル5にパルス状の
電流1を印加することによってコイル5に磁束ΦCが発
生し、吸着面10を通る磁束ΦはΦ=Φm−ΦCとなり
磁気吸引力FはFo)Fとなり減小する。もしF < 
f、pとなるに充分な電流iが印加されたならば、可動
鉄芯3は吸着面10において固定鉄芯2より離脱し、電
磁アクチュエータが作動する。第1図の構成の電磁アク
チュエータの等価磁気回路を近似的に第2図に示した。
That is, Fo ) fsp. During driving, a pulsed current 1 is applied to the coil 5 so as to excite the movable iron core 3 in the opposite direction to the magnetic flux Φm, so that a magnetic flux ΦC is generated in the coil 5, and the magnetic flux Φ passing through the attraction surface 10 is Φ=Φm -ΦC and the magnetic attraction force F becomes Fo)F and decreases. If F <
When a sufficient current i is applied to make f and p, the movable iron core 3 separates from the fixed iron core 2 at the attraction surface 10, and the electromagnetic actuator operates. An equivalent magnetic circuit of the electromagnetic actuator having the configuration shown in FIG. 1 is approximately shown in FIG.

第1図における磁気ギャップG1の磁気抵抗をRQl+
固定鉄芯2のふち部2fの磁気ギャップG2の磁気抵抗
をRg2、永久磁石1の磁気抵抗をRm、永久磁石1の
起磁力をFm、  コイル5の起磁力をFcとし、磁気
ギャップGl、G2以外でのもれ磁束、吸着面10にお
ける磁気抵抗および、ヨーク4m、4b、固定鉄芯3の
磁気抵抗は省略した。
The magnetic resistance of the magnetic gap G1 in FIG. 1 is RQl+
The magnetic resistance of the magnetic gap G2 at the edge 2f of the fixed iron core 2 is Rg2, the magnetic resistance of the permanent magnet 1 is Rm, the magnetomotive force of the permanent magnet 1 is Fm, the magnetomotive force of the coil 5 is Fc, and the magnetic gaps Gl, G2 Leakage magnetic flux other than that, magnetic resistance at the attraction surface 10, magnetic resistance of the yokes 4m and 4b, and the fixed iron core 3 are omitted.

さらに、第2図の等価磁気回路を永久磁石1による等価
磁気回路とコイル5による等価磁気回路とに分離すると
それぞれ第3図、第4図の様になる。
Furthermore, if the equivalent magnetic circuit shown in FIG. 2 is separated into an equivalent magnetic circuit made up of the permanent magnet 1 and an equivalent magnetic circuit made up of the coil 5, they become as shown in FIGS. 3 and 4, respectively.

第3図より永久磁石1による磁束は磁気ギャップG1を
通る磁束Φm1と磁気ギャップG2を通る磁束Φm2に
分離され、それぞれΦm、−のうち吸着面10を通る磁
束はΦm1のみである。
From FIG. 3, the magnetic flux caused by the permanent magnet 1 is separated into a magnetic flux Φm1 passing through the magnetic gap G1 and a magnetic flux Φm2 passing through the magnetic gap G2, and of each Φm and -, only Φm1 passes through the attraction surface 10.

一方、第4図よりコイル5による磁束は磁気ギャップG
1と永久磁石1を通る磁束Φc1と磁気ギャップG2を
通る磁束Φc2に分離され、それぞとなる。したがって
吸着面10を通るコイル5による磁束ΦCばΦC=Φc
1+Φc2=る。以上より、駆動時に吸着面10を通る
磁束Φ(12)となり、コイル50巻数をNとするとF
a=Nし・・・・・(4)となり、磁気吸引力Fは磁束
の2乗に比例するから比例定数をにとするとF=にΦ2
・・・・・・β)となり、電流1と吸着面10における
磁気吸引力Fの関係はF= となる。
On the other hand, from Fig. 4, the magnetic flux due to the coil 5 is caused by the magnetic gap G.
1, the magnetic flux Φc1 passing through the permanent magnet 1, and the magnetic flux Φc2 passing through the magnetic gap G2, respectively. Therefore, the magnetic flux ΦC due to the coil 5 passing through the attraction surface 10 is ΦC=Φc
1+Φc2=ru. From the above, the magnetic flux passing through the attraction surface 10 during driving becomes Φ(12), and if the number of turns of the coil 50 is N, then F
a=N...(4), and the magnetic attraction force F is proportional to the square of the magnetic flux, so if we set the proportionality constant to F=Φ2
......β), and the relationship between the current 1 and the magnetic attraction force F on the attraction surface 10 is F=.

ここで第6図の従来の電磁アクチュエータのコイル5に
よる磁束ΦCと本発明の電磁アクチュエータのコイル5
による磁束ΦGを比較する。便宜上、従来のΦCをΦC
=Φc /、本発明のΦCをΦ◎=ΦGとし、各磁気抵
抗およびコイル5の起磁力Fcは等しいとすると、ΦC
−Φo′=(14)であるからΦO〉ΦC′となる。し
たがって、本発明の磁気吸引力Fの電流lに対する変化
率は、式(6)又は(13)より、従来の電磁アクチュ
エータにおける同変化率より大きくなる。したがって、
本発明の永久磁石1による磁束Φm、が従来の電磁アク
チュエータの永久磁石1による磁束Φmと等しい。すな
わち電流1=Oの時の吸着面10における磁気吸引力F
oが等しいとすると、本発明の吸着面10における磁気
吸引力Fと電流Iの関係は第5図の実線FAの様に表さ
れる。第5図中にバネ6の反力f□を一点鎖線で表した
Here, the magnetic flux ΦC due to the coil 5 of the conventional electromagnetic actuator in FIG. 6 and the coil 5 of the electromagnetic actuator of the present invention
Compare the magnetic flux ΦG due to For convenience, the conventional ΦC is replaced by ΦC
= Φc /, ΦC of the present invention is Φ◎ = ΦG, and each magnetic resistance and the magnetomotive force Fc of the coil 5 are equal, then ΦC
Since -Φo'=(14), ΦO>ΦC'. Therefore, according to equation (6) or (13), the rate of change of the magnetic attraction force F with respect to the current l of the present invention is larger than the same rate of change in the conventional electromagnetic actuator. therefore,
The magnetic flux Φm caused by the permanent magnet 1 of the present invention is equal to the magnetic flux Φm caused by the permanent magnet 1 of the conventional electromagnetic actuator. That is, the magnetic attraction force F on the attraction surface 10 when the current 1=O
Assuming that o is equal, the relationship between the magnetic attraction force F and the current I on the attraction surface 10 of the present invention is expressed as a solid line FA in FIG. In FIG. 5, the reaction force f□ of the spring 6 is represented by a chain line.

吸着面10における力のバランスは吸着方向を正とする
とF −f、pであるから第5図において点Aが電磁ア
クチュエータの動作点となる。
Since the force balance on the attracting surface 10 is F-f,p when the attracting direction is positive, point A in FIG. 5 is the operating point of the electromagnetic actuator.

第5図における本発明の電磁アクチュエータの動作点A
と従来の電磁アクチュエータの動作点を比較すると、本
発明の電磁アクチュエータの方がより小さな電流へて作
動することがわかる。仮に従来の電磁アクチュエータの
動作点での電流+8と同じ電流が与えられるならば、バ
ネ6の反力は第5図中に二点鎖線で示したfsp Aに
設定することができるため、永久磁石1による磁気吸引
力Foとバネ6の反力fs、  の差Fo −tspA
が従来の電磁アクチュエータより大きくなり耐衝撃性が
向上する。しかも本発明の電磁アクチュエータのコイル
5の巻数は従来の電磁アクチュエータと同等でよいため
小型、低価格で製造可能である。
Operating point A of the electromagnetic actuator of the present invention in FIG.
Comparing the operating points of the conventional electromagnetic actuator and the electromagnetic actuator of the present invention, it is found that the electromagnetic actuator of the present invention operates with a smaller current. If the same current as the current +8 at the operating point of the conventional electromagnetic actuator is applied, the reaction force of the spring 6 can be set to fsp A shown by the two-dot chain line in Fig. 5, so the permanent magnet The difference between the magnetic attraction force Fo due to 1 and the reaction force fs of the spring 6, Fo - tspA
is larger than conventional electromagnetic actuators, improving impact resistance. Moreover, the number of turns of the coil 5 of the electromagnetic actuator of the present invention may be the same as that of a conventional electromagnetic actuator, so that it can be manufactured in a small size and at low cost.

以上の様に本発明は、耐衝撃性が高く、省電力。As described above, the present invention has high impact resistance and saves power.

小型、低価格な電磁アクチュエータを簡単な構成で提供
可能である。
It is possible to provide a small, low-cost electromagnetic actuator with a simple configuration.

発明の効果 以上のように、本発明ておいては固定鉄芯の永久磁石と
対接する面が永久磁石より大きな直径のふち部を有し、
ヨークの永久磁石を挿入する部分が段押しされている等
前記固定鉄芯のふち部との距離が永久磁石をはさみこん
だ部分における固定鉄芯との間の距離より小さい形状で
あるため、永久磁石近傍でのヨークと固定鉄芯間の磁気
抵抗が減小しするため、コイルの起磁力によって発生す
る磁束が大きくなる。このため、コイル巻数を増加させ
ることなく、低い電流で作動し、かつ永久磁石による磁
気吸引力とバネ反力の差を大きくすることができる。す
なわち耐衝繋性、省電力性を両立しかつ小型、低価格な
電磁アクチュエータを簡単な構成で提示することができ
る。
Effects of the Invention As described above, in the present invention, the surface of the fixed iron core that comes into contact with the permanent magnet has an edge portion with a diameter larger than that of the permanent magnet,
The part of the yoke into which the permanent magnet is inserted is stepped, etc., and the distance from the edge of the fixed iron core is smaller than the distance between the fixed iron core and the part where the permanent magnet is inserted, so it is not permanent. Since the magnetic resistance between the yoke and the fixed iron core near the magnet decreases, the magnetic flux generated by the magnetomotive force of the coil increases. Therefore, it is possible to operate with a low current without increasing the number of coil turns, and to increase the difference between the magnetic attraction force of the permanent magnet and the spring reaction force. In other words, it is possible to provide an electromagnetic actuator with a simple configuration that is compact and inexpensive and has both impact resistance and power saving properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電磁アクチュエータの一実施例におけ
る断面図、第2図、第3図、第4図は本発明の電磁アク
チュエータにおけるそれぞれ等価磁気回路図および、永
久磁石による等価磁気回路図、コイルによる等価磁気回
路図、第5図は本発明および従来の電磁アクチュエータ
における電流と吸着面における磁気吸引力の関係図、第
6図は従来の電磁アクチュエータにおける断面図、第7
図、第8図、第9図は従来の電磁アクチュエータにおけ
るそれぞれ等価磁気回路図、永久磁石による等価磁気回
路図、コイルによる等価磁気回路図である。 1・・・・・・永久磁石、2・・・・・・固定鉄芯、3
・・・・・・可動鉄芯、4m、4b・・・・・・ヨーク
、5・・・・・・コイル、5b・・・・・・コイルボビ
ン、6・・・・・・バネ、7・・・・・・ハネ受け、2
f・・・・・・固定鉄芯のふち部、5p・・・・・・ピ
ン、4h・・・・・・穴、Gl、G2・・・・・・磁気
ギャップ、Φrn1.Φm2・・・・・・永久磁石によ
る磁束、Φc、。 ΦC・・・・・・コイルによる磁束、fsp・・・・・
・バネ反力、F・・・・・・磁気吸引力、Fo・・・・
・・永久磁石による磁気吸引力、し・・・・・電流、R
gl 、 Rg2 、 Rm・・・・・・磁気抵抗、F
m・・・・・・永久磁石の起磁力、Fo・・・・・・コ
イルの起磁力、A・・・・・・動作点。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
 永久磁石 2  ・−!!I  疋 炊 疋 2f−・−3、ら卒 3−・汀勤鉄処 如−ヨークa 4b−・−ヨークb 仙−・−穴 5−  コイル 5b・−・コイルポどン 5P−ど ソ ロ−・−バ 年 7−・べ年受げ Gr1G2−・膿晟キ〒ツブ 1−+、ht −−一永ス砒石による磁束に+、kz−
・−コイル;;よる、磁束φm2 第2図  第3図  第4図 第5図 電流 L 第6図 第7図  第8図 第9図
FIG. 1 is a sectional view of an embodiment of the electromagnetic actuator of the present invention, and FIGS. 2, 3, and 4 are equivalent magnetic circuit diagrams and equivalent magnetic circuit diagrams using permanent magnets in the electromagnetic actuator of the present invention, respectively. An equivalent magnetic circuit diagram using a coil; FIG. 5 is a diagram showing the relationship between current and magnetic attraction force on the attraction surface in the electromagnetic actuator of the present invention and the conventional one; FIG. 6 is a cross-sectional view of the conventional electromagnetic actuator;
8 and 9 are an equivalent magnetic circuit diagram, an equivalent magnetic circuit diagram using a permanent magnet, and an equivalent magnetic circuit diagram using a coil, respectively, in a conventional electromagnetic actuator. 1...Permanent magnet, 2...Fixed iron core, 3
......Movable iron core, 4m, 4b...Yoke, 5...Coil, 5b...Coil bobbin, 6...Spring, 7. ...Splash catcher, 2
f...Edge of fixed iron core, 5p...pin, 4h...hole, Gl, G2...magnetic gap, Φrn1. Φm2...Magnetic flux due to permanent magnet, Φc. ΦC...Magnetic flux due to coil, fsp...
・Spring reaction force, F...Magnetic attraction force, Fo...
...Magnetic attraction force by permanent magnet, ...Current, R
gl, Rg2, Rm...Magnetic resistance, F
m... Magnetomotive force of permanent magnet, Fo... Magnetomotive force of coil, A... Operating point. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
Permanent magnet 2 ・-! ! I Cooking 2f-・-3, Ra graduate 3-・Yoke a 4b-・-Yoke b Sen-・-hole 5- Coil 5b・-・Coil pot 5P-do Solo・・-Ba Year 7-・Ba Year-bearing Gr1G2-・Pussaki〒Tub 1-+, ht--To the magnetic flux by Ichinei Su arsenite +, kz-
- Magnetic flux φm2 due to the coil; Fig. 2 Fig. 3 Fig. 4 Fig. 5 Current L Fig. 6 Fig. 7 Fig. 8 Fig. 9

Claims (2)

【特許請求の範囲】[Claims] (1)少くとも中心軸方向に着磁された円柱形の永久磁
石と、前記永久磁石と対接する面が前記永久磁石より大
きな直径を有し前記永久磁石と同心に配された多段円柱
形の固定鉄芯と、前記永久磁石と同心方向に移動可能で
前記固定鉄芯に対接可能な吸着面を持つ円柱形の可動鉄
芯と、前記永久磁石を前記固定鉄芯との間ではさみ込み
前記固定鉄芯の前記永久磁石に対接する面でかつ前記永
久磁石の直径より大きな直径の部分との間の距離が前記
永久磁石をはさみ込んだ部分における前記固定鉄芯との
間の距離より小さい形状で他端を前記可動鉄芯の近傍に
配することにより前記永久磁石による磁気回路を形成す
るヨークと、前記可動鉄芯の前記吸着面とは別の端に前
記永久磁石と同心の方向で、かつ前記可動鉄芯を前記吸
着面より離脱する方向の反力を有する様配されたバネと
、前記ヨークにとりかこまれ、かつ前記可動鉄芯をとり
かこんで配され電流印加により前記可動鉄芯を励磁する
コイルとで構成された電磁アクチュエータ。
(1) A cylindrical permanent magnet magnetized at least in the central axis direction, and a multistage cylindrical permanent magnet whose surface facing the permanent magnet has a larger diameter than the permanent magnet and which is arranged concentrically with the permanent magnet. A fixed iron core, a cylindrical movable iron core that is movable in a direction concentric with the permanent magnet and has an adsorption surface that can come into contact with the fixed iron core, and the permanent magnet is sandwiched between the fixed iron core. The distance between a portion of the fixed iron core that is in contact with the permanent magnet and has a diameter larger than the diameter of the permanent magnet is smaller than the distance between the fixed iron core and a portion that sandwiches the permanent magnet. a yoke whose other end is arranged in the vicinity of the movable iron core to form a magnetic circuit by the permanent magnet; , and a spring arranged to have a reaction force in a direction to separate the movable iron core from the attracting surface, and a spring surrounded by the yoke and arranged around the movable iron core, and the spring is arranged to have a reaction force in a direction in which the movable iron core is separated from the attraction surface, and the spring is surrounded by the yoke and is arranged around the movable iron core, and the movable iron core is An electromagnetic actuator consisting of a coil that excites the core.
(2)前記コイルが巻かれ中心に穴を持ったコイルボビ
ンを、前記穴によって前記固定鉄芯と前記可動鉄芯の中
心軸を合せ前記コイルボビンの一部を前記ヨークの一部
とかみあわせることにより前記固定鉄芯と前記永久磁石
の中心軸を合せる様配した特許請求の範囲第1項記載の
電磁アクチュエータ。
(2) By using a coil bobbin around which the coil is wound and having a hole in the center, the central axes of the fixed iron core and the movable iron core are aligned through the hole, and a part of the coil bobbin is engaged with a part of the yoke. The electromagnetic actuator according to claim 1, wherein the fixed iron core and the central axis of the permanent magnet are aligned.
JP9200388A 1988-04-14 1988-04-14 Electromagnetic actuator Pending JPH01262604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9200388A JPH01262604A (en) 1988-04-14 1988-04-14 Electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9200388A JPH01262604A (en) 1988-04-14 1988-04-14 Electromagnetic actuator

Publications (1)

Publication Number Publication Date
JPH01262604A true JPH01262604A (en) 1989-10-19

Family

ID=14042257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9200388A Pending JPH01262604A (en) 1988-04-14 1988-04-14 Electromagnetic actuator

Country Status (1)

Country Link
JP (1) JPH01262604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109074A (en) * 2008-10-29 2010-05-13 Mitsubishi Electric Corp Released type electromagnet apparatus
WO2011033654A1 (en) * 2009-09-18 2011-03-24 三菱電機株式会社 Releasing type electromagnet device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109074A (en) * 2008-10-29 2010-05-13 Mitsubishi Electric Corp Released type electromagnet apparatus
WO2011033654A1 (en) * 2009-09-18 2011-03-24 三菱電機株式会社 Releasing type electromagnet device
CN102473561A (en) * 2009-09-18 2012-05-23 三菱电机株式会社 Releasing type electromagnet device
JP5124048B2 (en) * 2009-09-18 2013-01-23 三菱電機株式会社 Release-type electromagnet device

Similar Documents

Publication Publication Date Title
JP2552179B2 (en) Polarized electromagnet device
JP2000224829A (en) Linear vibration actuator
JPH01262604A (en) Electromagnetic actuator
JP2613904B2 (en) Polarized electromagnet
JPH0353446Y2 (en)
US5162764A (en) Slim-type polarized electromagnetic relay
JPS63133505A (en) Release type electromagnet device
JP2604534B2 (en) Electromagnetic relay
JPS63133604A (en) Polarized electromagnet
JPH0114646B2 (en)
JPS63133605A (en) Polarized electromagnet device
JP2836390B2 (en) Electromagnet device
JPH0117797Y2 (en)
JPH0329871Y2 (en)
US3735301A (en) Alternating current relays
JPH0322837Y2 (en)
KR920003075Y1 (en) Apparatus for polar electro magnets
JPH0290503A (en) Polarized electromagnet
JPS61127105A (en) Electromagnet device
JPS6257208A (en) Transformer, which also serves role of electromagnet
JPH1126227A (en) Electromagnetic contactor
JPS5938010Y2 (en) electromagnet iron core
JPS63156307A (en) Electromagnetic actuator
JPH02125406A (en) Monostable electromagnet
JPS6178106A (en) Electromagnet device