JPH01262553A - Manufacture of electrophotographic film - Google Patents
Manufacture of electrophotographic filmInfo
- Publication number
- JPH01262553A JPH01262553A JP9094888A JP9094888A JPH01262553A JP H01262553 A JPH01262553 A JP H01262553A JP 9094888 A JP9094888 A JP 9094888A JP 9094888 A JP9094888 A JP 9094888A JP H01262553 A JPH01262553 A JP H01262553A
- Authority
- JP
- Japan
- Prior art keywords
- film
- conductive layer
- substrate
- metal
- metal particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000002923 metal particle Substances 0.000 claims abstract description 18
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 7
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 7
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 5
- 239000010408 film Substances 0.000 claims description 65
- 239000000758 substrate Substances 0.000 claims description 45
- 238000007740 vapor deposition Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 abstract description 13
- 230000008569 process Effects 0.000 abstract description 4
- 238000007738 vacuum evaporation Methods 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 abstract 1
- 208000028659 discharge Diseases 0.000 description 24
- 230000007246 mechanism Effects 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 229920000307 polymer substrate Polymers 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/10—Bases for charge-receiving or other layers
- G03G5/102—Bases for charge-receiving or other layers consisting of or comprising metals
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、フィルム基板上に導電層および光感光層を有
してなる、解像度、コントラスト性に優れた電子写真用
フィルムの製造方法に関し、詳しくは該フィルムの導電
層の製造方法の改良に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing an electrophotographic film having excellent resolution and contrast, which comprises a conductive layer and a photosensitive layer on a film substrate. Specifically, the present invention relates to an improvement in the method for manufacturing the conductive layer of the film.
(従来の技術)
近年、透明で電気絶縁性のある熱可塑性高分子フィルム
を基板とし、その上に導電層及び有機光導電体からなる
感光層を形成してなる電子写真用フィルムが知られてい
る。(Prior Art) In recent years, electrophotographic films have been known which are made of a transparent, electrically insulating thermoplastic polymer film as a substrate, on which a photosensitive layer consisting of a conductive layer and an organic photoconductor is formed. There is.
(発明が解決しようとする課題)
この透明導電層の形成方法としては導電性材料をフィル
ム形成バインダー中に分散させた溶液を該高分子基板上
に塗布する方法、あるいは該高分子基板上に金属含有半
導体化合物を含んだ膨潤性電気絶縁性重合体物質から成
る下塗り層を予め形成しておき、その上に上記従来方法
により導電層を形成する方法などが知られている。しか
しこれらの方法によると、上記基板と導電層との密着性
が不十分となり、また耐候性に乏しくフィルムの長期安
定性に劣るという問題がある。他の従来方法としては、
Fe、Cr、Nl、AI等の金属を真空蒸着法により上
記基板上に堆積させて導電層を形成する方法が知られて
いる。これらの金属からなる導電層は、その層の特性上
光透過性が良くないので必要な光量を得るためには、l
O〜80A程度の薄い膜層とすることが必要である。し
かし、この程度の薄い金属薄膜は、成膜後大気に放置す
ると容品に酸化が進行するため導電層としての電気抵抗
値が変化してしまうという問題がある。また、上記金属
に代えて使用し得る金属酸化物としては酸化錫、酸化亜
鉛などが考えられるが、この場合にも上記金属を使用し
た場合と同様の問題がある。また、真空蒸着法を用いる
と基板と導電層薄膜との間の密着性が低くなるという問
題がある。(Problem to be Solved by the Invention) As a method for forming this transparent conductive layer, a method in which a solution in which a conductive material is dispersed in a film-forming binder is coated on the polymer substrate, or a method in which a metal A method is known in which an undercoat layer made of a swellable electrically insulating polymer material containing a semiconductor compound is formed in advance, and a conductive layer is formed thereon by the above-mentioned conventional method. However, these methods have problems such as insufficient adhesion between the substrate and the conductive layer, poor weather resistance, and poor long-term stability of the film. Other conventional methods include
A method is known in which a conductive layer is formed by depositing metal such as Fe, Cr, Nl, AI, etc. on the substrate by vacuum evaporation. Conductive layers made of these metals do not have good light transmittance due to their characteristics, so in order to obtain the necessary amount of light, it is necessary to
It is necessary to form a thin film layer of about 0 to 80A. However, such a thin metal film has a problem in that if it is left in the atmosphere after being deposited, oxidation progresses on the container, resulting in a change in the electrical resistance value of the conductive layer. In addition, tin oxide, zinc oxide, etc. can be considered as metal oxides that can be used in place of the above metals, but these cases also have the same problems as when the above metals are used. Furthermore, when a vacuum evaporation method is used, there is a problem in that the adhesion between the substrate and the conductive layer thin film becomes low.
さらにスパッタ法によって、上述したような導電層薄膜
を作成するという従来方法(特公昭52−5814号公
報)があるが、スパッタ法では成膜速度が遅いためこの
ような従来方法によっては生産速度が上げられず、さら
に製造コストが高くなるという問題がある。Furthermore, there is a conventional method (Japanese Patent Publication No. 52-5814) that uses sputtering to create a thin conductive layer as described above, but since the sputtering method has a slow film formation rate, the production speed is limited by this conventional method. However, there is a problem in that the manufacturing cost is further increased.
本発明は上記問題を解決するためになされたものであり
、電子写真用フィルムのフィルム基板と導電層との密着
性、該フィルムの経時安定性および該フィルムの生産性
を向上させ得る電子写真用フィルムの製造方法を提供す
ることを目的とするものである。The present invention has been made to solve the above problems, and is an electrophotographic film that can improve the adhesion between the film substrate and the conductive layer of the electrophotographic film, the stability of the film over time, and the productivity of the film. The object of the present invention is to provide a method for producing a film.
(課題を解決するための手段)
本発明の電子写真用フィルムの製造方法は、蒸着法を用
いてPd、PC,Irのうちいずれかの金属の粒子をフ
ィルムの基板表面に向けて飛散せしめ、この飛散せしめ
られた金属粒子を放電雰囲気中でイオン化するとともに
加速電極により加速し、この加速された金属粒子を高速
で基板表面に付着せしめてこの基板上に導電層を形成す
ることを特徴とするものである。(Means for Solving the Problems) The method for producing an electrophotographic film of the present invention includes scattering metal particles of one of Pd, PC, and Ir toward the surface of a film substrate using a vapor deposition method, The scattered metal particles are ionized in a discharge atmosphere and accelerated by an accelerating electrode, and the accelerated metal particles are attached to the substrate surface at high speed to form a conductive layer on the substrate. It is something.
上記フィルム基板は絶縁性のある材質で形成されており
、一般には高分子フィルムにより形成され、例えばポリ
エステル、トリアセテート、ポリプロピレン等からなる
。The film substrate is made of an insulating material, and is generally made of a polymer film, such as polyester, triacetate, polypropylene, etc.
放電雰囲気を形成するのは金属粒子をイオン化するため
であり、これは一般には、高電圧を印加した高周波放電
用コイルにより形成され、このコイルは蒸発源およびフ
ィルム基板の間に配設される。The discharge atmosphere is formed to ionize the metal particles, and is generally formed by a high-frequency discharge coil to which a high voltage is applied, and this coil is disposed between the evaporation source and the film substrate.
また、イオン化された金属粒子を加速するための加速電
極は上記放電用コイルとフィルム基板の間、望ましくは
フィルム基板に近接して配設する。Further, an accelerating electrode for accelerating ionized metal particles is disposed between the discharge coil and the film substrate, preferably close to the film substrate.
なお、上述したようにしてフィルム基板表面に導電層を
形成する前に、この基板表面を予めグロー放電雰囲気に
露呈せしめてフィルム基板表面を清浄化しておくことが
望ましい。Note that, before forming the conductive layer on the surface of the film substrate as described above, it is desirable to clean the surface of the film substrate by exposing the surface of the substrate to a glow discharge atmosphere in advance.
グロー放電雰囲気を形成するための放電形態としては交
流グロー(高周波グローを含む)、直流グローのいずれ
であってもよく、さらにはこれらのグロー放電を磁界中
で行なうことでイオン化効率を高めることも可能である
。The discharge form for forming a glow discharge atmosphere may be either alternating current glow (including high frequency glow) or direct current glow, and ionization efficiency can also be increased by performing these glow discharges in a magnetic field. It is possible.
ここで、本発明の方法を実施するための装置の一例を図
面を用いて説明する。真空槽1の内部に円筒形状の回転
支持体2が回転自在に配され、送出ロール3から送出さ
れた熱可塑性高分子基板4はこの回転支持体2の外周に
沿って配され、巻取ロール5によって巻き取られる。ま
た、上記基板4が回転支持体2に沿って配設されている
部分で、この基板4の表面をグロー放電雰囲気に露呈さ
せるためのグロー放電発生機構6を備えており、また、
この基板4が回転支持体2に沿って配設されている部分
で、かつ上記グロー放電発生機構6配設位置よりも基板
の下流側においてこの基板4に金属を蒸着せしめるため
の蒸着機構7が配設されている。この蒸着機構7は溶融
金属の容器としての坩堝8およびこの坩堝8内の溶融金
属を加熱し、蒸発させるための手段9を備えている。こ
の手段9として通常電子ビーム発生手段が用いられるが
、その他抵抗加熱手段や誘導加熱手段を用いることも可
能である。なお、この坩堝8および手段9は蒸発金属粒
子がフィルム基板上に効率よく付着し得る位置に配され
る。また、坩堝8とフィルム基板4の間には坩堝8から
蒸発した金属粒子をイオン化するだめの高周波放電用コ
イル10が配されている。このコイル10には例えば1
3.56 MHzの周波数でIKW程度の電力がかけら
れる。また、このコイルlOとフィルム基板4の間には
イオン化された金属粒子を加速するための加速電極11
が配されている。この電極11は円環状をなしており、
イオン化された蒸発金属粒子がこの電極11の環内を通
過し得るようになっている。なお、この電極11には直
流電圧が印加され、回転支持体2に対して例えば−IK
V程度の値に設定される。なお、この装置においては蒸
発金属粒子がフィルム基板4に対して直方入射するよう
に設定されているが、斜方入射するように設定すること
も可能である。Here, an example of an apparatus for carrying out the method of the present invention will be explained using the drawings. A cylindrical rotary support 2 is rotatably arranged inside the vacuum chamber 1, and the thermoplastic polymer substrate 4 sent out from the delivery roll 3 is arranged along the outer periphery of this rotation support 2, and then transferred to a take-up roll. It is wound up by 5. Further, a glow discharge generating mechanism 6 is provided at a portion where the substrate 4 is disposed along the rotary support 2 to expose the surface of the substrate 4 to a glow discharge atmosphere, and
A vapor deposition mechanism 7 for vapor depositing metal onto the substrate 4 is provided at a portion where the substrate 4 is disposed along the rotary support 2 and on the downstream side of the substrate from the position where the glow discharge generating mechanism 6 is disposed. It is arranged. The vapor deposition mechanism 7 includes a crucible 8 as a container for molten metal and means 9 for heating and vaporizing the molten metal in the crucible 8. As this means 9, an electron beam generating means is usually used, but it is also possible to use other resistance heating means or induction heating means. The crucible 8 and the means 9 are arranged at a position where the evaporated metal particles can be efficiently attached to the film substrate. Further, a high-frequency discharge coil 10 for ionizing metal particles evaporated from the crucible 8 is arranged between the crucible 8 and the film substrate 4. For example, this coil 10 has one
A power of approximately IKW is applied at a frequency of 3.56 MHz. Further, an acceleration electrode 11 for accelerating ionized metal particles is provided between the coil lO and the film substrate 4.
are arranged. This electrode 11 has an annular shape,
Ionized vaporized metal particles are allowed to pass through the annulus of this electrode 11. Note that a DC voltage is applied to this electrode 11, and for example -IK is applied to the rotating support 2.
It is set to a value of about V. Although this device is set so that the evaporated metal particles are orthogonally incident on the film substrate 4, it is also possible to set the device so that the evaporated metal particles are obliquely incident.
なお、上記グロー放電発生機構6の配設位置は、この機
構6から発生されるグロー放電により、後工程で蒸着機
構7から発生される金属粒子が妨げられることがない程
度にこの蒸着機構7に近接した位置とすることが望まし
い。なお、上記回転支持体2はその側面内壁部全周に亘
り冷媒を循環させるだめの冷却バイブが配設され、側面
外壁を一定の温度(例えば60℃)に維持することがで
きるようになっており、これにより蒸着等の際に加熱さ
れた基板4を冷却することができるようになっている。The glow discharge generating mechanism 6 is arranged at such a position that the glow discharge generated from the mechanism 6 does not interfere with the metal particles generated from the evaporation mechanism 7 in the subsequent process. It is desirable to locate them in close proximity. The rotary support 2 is provided with a cooling vibrator that circulates a coolant around the entire circumference of the inner wall of the side surface, so that the outer wall of the side surface can be maintained at a constant temperature (for example, 60° C.). This makes it possible to cool the substrate 4 that has been heated during vapor deposition or the like.
さらに、この真空槽1内は遮蔽板12により適宜複数の
部屋に分割されるような構成となっている。このように
複数の部屋に分割するのは主に蒸発金属の蒸気流分子の
付着場所を規制するため、およびグロー放電雰囲気中の
ガス濃度を所定の値に保持するためである。また、グロ
ー放電用のガスを導入するためのガス導入路13が設け
られている。なお、本発明の方法を実施するための装置
の構成としては上述したものに限られるものではない。Furthermore, the inside of this vacuum chamber 1 is configured to be divided into a plurality of rooms as appropriate by shielding plates 12. The reason for dividing the room into a plurality of rooms in this way is mainly to control the attachment location of the vapor flow molecules of the evaporated metal and to maintain the gas concentration in the glow discharge atmosphere at a predetermined value. Further, a gas introduction path 13 for introducing gas for glow discharge is provided. Note that the configuration of the apparatus for carrying out the method of the present invention is not limited to that described above.
さらに、上記坩堝8の形成材料の選択に関して、本研究
者等の実験により以下に記述するような実験結果が得ら
れた。すなわち、従来、金属を溶融保持する坩堝として
水冷銅坩堝が使用されているが、前記高融点金属におい
て水冷銅坩堝を使用した場合、坩堝壁面の温度と溶融材
料の蒸発点の温度との差が大きいため蒸発源全体の温度
が一定になりにくく、これにより蒸発速度が時間的に変
動し膜厚変動が大きくなってしまうという弊害が生じて
いた。またカーボン坩堝を使用すると坩堝材料と前記高
融点金属とが反応して溶融材料中に化合物が生じ導電膜
の抵抗値がフィルム長手方向で変化してしまうという問
題が生じていた。しかし前記蒸発材料に対してセラミッ
ク坩堝を使用して実験を重ねたところ導電膜の膜厚変動
は許容値内となり、フィルム長手方向における電気抵抗
値も一定であった。このような結果から上記坩堝の材質
としてはセラミックを使用することが望ましい。Furthermore, regarding the selection of the material for forming the crucible 8, the following experimental results were obtained through experiments conducted by the present researchers. That is, conventionally, a water-cooled copper crucible has been used as a crucible for melting and holding metal, but when a water-cooled copper crucible is used for the high melting point metal, the difference between the temperature of the crucible wall surface and the temperature of the evaporation point of the molten material is Because of the large size, it is difficult to keep the temperature of the entire evaporation source constant, which has the disadvantage that the evaporation rate fluctuates over time, resulting in large film thickness fluctuations. Further, when a carbon crucible is used, a problem arises in that the crucible material and the high melting point metal react to form a compound in the molten material, causing the resistance value of the conductive film to change in the longitudinal direction of the film. However, after repeated experiments using a ceramic crucible for the evaporation material, the variation in the thickness of the conductive film was within the permissible value, and the electrical resistance value in the longitudinal direction of the film was also constant. From these results, it is desirable to use ceramic as the material for the crucible.
また、電子写真用フィルムに要求される全体の透過率は
波長550nmの光に対して65〜75%程度以上の値
が必要であり、高分子基板と導電層を構成する薄膜とし
ては同様に波長550n−の光に対して75〜90%程
度以上の値が必要である。さらに導電膜の表面抵抗率は
108Ω/Cシ以下である必要があり、好ましくは10
3Ω/cj以下である。ところが、一般に金属薄膜の表
面抵抗率と透過率の関係は透過率を上げると表面抵抗率
が上がる関係にある。Furthermore, the overall transmittance required for an electrophotographic film must be approximately 65 to 75% or more for light with a wavelength of 550 nm, and the thin film constituting the polymer substrate and conductive layer must have a transmittance of 65% to 75% or more for light with a wavelength of 550 nm. A value of about 75 to 90% or more is required for 550 n- light. Furthermore, the surface resistivity of the conductive film must be 108 Ω/C or less, preferably 10 Ω/C or less.
It is 3Ω/cj or less. However, in general, the relationship between the surface resistivity and transmittance of a metal thin film is such that as the transmittance increases, the surface resistivity increases.
前記金属材料について導電層の表面抵抗率および透過率
について調べたところ白金族元素とAg。When we investigated the surface resistivity and transmittance of the conductive layer of the metal materials, we found that they were platinum group elements and Ag.
Auの各金属が前記電子写真用フィルムとしての条件を
満たすという結果が得られた。しかし、これらの金属の
中でもPd、Pt、Irの各金属は表面抵抗率および透
過率共に最も良好な特性を示した。 なお、上述したよ
うな方法で基板上に導電層を形成した後、この導電層上
に周知の方法で光導電体材料からなる感光層を形成する
。The results showed that each metal of Au satisfied the conditions for the electrophotographic film. However, among these metals, Pd, Pt, and Ir exhibited the best characteristics in both surface resistivity and transmittance. Note that after forming a conductive layer on a substrate by the method described above, a photosensitive layer made of a photoconductor material is formed on this conductive layer by a well-known method.
(作 用)
上記構成に示されるように本発明の方法においては導電
層を形成する際に、蒸着法により蒸発せしめた金属粒子
をイオン化し、加速して高い運動エネルギーを持った状
態でフィルム基板に衝突させ導電膜を形成している。し
たがってスパッタ法を用いた時と同程度に基板と導電層
の密iを良好にし得るとともに、スパッタ法を用いた時
に比べ生産速度を飛躍的に向上させることができ、製造
コストも大幅に低下せしめることが可能となる。(Function) As shown in the above configuration, in the method of the present invention, when forming a conductive layer, metal particles evaporated by vapor deposition are ionized, accelerated, and transferred to a film substrate in a state with high kinetic energy. A conductive film is formed by colliding with the Therefore, the density between the substrate and the conductive layer can be made as good as when using the sputtering method, and the production speed can be dramatically improved compared to when using the sputtering method, and the manufacturing cost can also be significantly reduced. becomes possible.
特に、蒸着法を用いた時の基板と導電層の密着性の低下
は大きな問題となっていたが、この問題をスパッタ法を
用いることなく解決することが可能となる。In particular, the reduction in adhesion between the substrate and the conductive layer when using the vapor deposition method has been a major problem, but this problem can be solved without using the sputtering method.
また、蒸着工程において基板は蒸発源からの輻射熱や蒸
発分子の潜熱を受けて加熱され、その結果基板を構成す
る高分子材料から分解したモノマーやその他の放出ガス
が発生する。この状態で成膜された導電層と高分子基板
の界面には上記モノマーや分解吸着気体が存在してこの
導電層と高分子基板との密着性が悪化すると考えられ、
この結果導電層の層剥離等が生じていた。そこで蒸着に
より導電層を形成する前にフィルム基板表面にグロー放
電処理を施こし、基板表面をクリーニングするとともに
、この基板表面に凹凸を形成し、さらにこの表面にOH
基等の極性基を形成することにより導電層の付着強度を
高め、この状態で蒸着を行なうようにすることが好まし
い。Further, in the vapor deposition process, the substrate is heated by radiant heat from the evaporation source and latent heat of the evaporated molecules, and as a result, monomers decomposed from the polymeric material constituting the substrate and other released gases are generated. It is thought that the monomers and decomposed and adsorbed gases exist at the interface between the conductive layer and the polymer substrate formed in this state, which deteriorates the adhesion between the conductive layer and the polymer substrate.
As a result, delamination of the conductive layer occurred. Therefore, before forming a conductive layer by vapor deposition, glow discharge treatment is performed on the surface of the film substrate to clean the substrate surface, and to form irregularities on the surface of the substrate.
It is preferable to increase the adhesion strength of the conductive layer by forming a polar group such as a polar group, and to perform vapor deposition in this state.
また、本発明の方法によっては、蒸着に用いる金属をP
d、Pt、Irの各金属に限定している。Further, depending on the method of the present invention, the metal used for vapor deposition may be P
It is limited to the following metals: d, Pt, and Ir.
これは、これらの金属以外の金属、例えばFe。This includes metals other than these metals, such as Fe.
Cr、Nl 、 AQ、等の金属を蒸着材料として用い
て導電層を形成した場合に比べ導電層の光透過率を大幅
に向上させ得るからである。この光透過率が高くなれば
膜厚を厚くしても必要な光量を得ることができるので、
膜厚を厚くして導電層の酸化を防止することができ、こ
の結果導電層の表面抵抗率を低い値とすることが可能と
なる。また、上記Pd、Pt、Irの各金属、特にPd
は耐酸性に優れ、また格子欠陥が少ないので電子写真用
フィルムの導電層の構成材料として最適である。This is because the light transmittance of the conductive layer can be significantly improved compared to the case where the conductive layer is formed using a metal such as Cr, Nl, AQ, etc. as a vapor deposition material. If this light transmittance increases, the necessary amount of light can be obtained even if the film thickness is increased.
Oxidation of the conductive layer can be prevented by increasing the film thickness, and as a result, the surface resistivity of the conductive layer can be reduced to a low value. In addition, each of the above-mentioned Pd, Pt, and Ir metals, especially Pd
Because it has excellent acid resistance and few lattice defects, it is ideal as a constituent material for the conductive layer of electrophotographic film.
(実 施 例)
真空槽内においてポリエステルフィルム(厚み75μm
幅300 mm)をlh /ll1nのスピードで
送り出しグロー処理室に導き、このグロー処理室におい
てArガスを導入して1〜5 mTorrのArガス雰
囲気を形成し、コイル状の高周波電極に13.58MI
Izの高周波電力を投入し、グロー放電処理を行った。(Example) A polyester film (thickness 75 μm) was prepared in a vacuum chamber.
(width 300 mm) at a speed of lh/ll1n and guided into a glow processing chamber, Ar gas was introduced into the glow processing chamber to form an Ar gas atmosphere of 1 to 5 mTorr, and a coiled high frequency electrode was heated to 13.58 MI.
Iz high frequency power was applied to perform glow discharge treatment.
高周波電力は1〜3KWであった。しかる後、フィルム
基板を成膜質(2〜5 X 10’ Torr)に導
き、電子ビーム加熱により30〜70人の導電層を形成
し得るようにPd、Pt、Irを順に蒸着した。また、
蒸発源と高分子基板フィルムの間にはイオン化のための
高周波放電用コイルを、またこの高分子基板直前に加速
電極を配設し、高周波放電コイルにはIKWO高周波電
力を印加して蒸発金属粒子をイオン化せしめるようにし
、加速電極には−IKvの直流電圧を印加してイオン化
粒子を加速せしめて高分子基板に付着せしめるようにし
た。その後このフィルム基板を巻き取り室において巻き
取ってサンプルを形成した。Pdの導電膜を形成したサ
ンプルを実施例1、ptの導電膜を形成したサンプルを
実施例2、Irの導電膜を形成したサンプルを実施例3
とした。また、上記グロー放電処理は行なわず、その他
は上記と同様の方法でPdの導電膜を形成したサンプル
を実施例4(I!厚70A)および実施例5(膜厚BO
A)とした。さらに、これらの実施例と比較するため、
上記グロー放電処理、蒸発粒子のイオン化および加速を
行なうことなく蒸着のみによりフィルム基板上にPd、
PL、Irの各導電膜を形成したサンプルをそれぞれ比
較Ml、2.3とした。この後、これら実施例1〜5お
よび比較例1〜3のサンプルの表面抵抗値、光透過率お
よびフィルム基板と導電層の密着性について評価した。The high frequency power was 1-3KW. Thereafter, the film substrate was brought to a film forming quality (2 to 5 X 10' Torr), and Pd, Pt, and Ir were sequentially deposited by electron beam heating to form a conductive layer of 30 to 70 layers. Also,
A high-frequency discharge coil for ionization is placed between the evaporation source and the polymer substrate film, and an accelerating electrode is placed just in front of the polymer substrate. IKWO high-frequency power is applied to the high-frequency discharge coil to generate evaporated metal particles. A DC voltage of -IKv was applied to the accelerating electrode to accelerate the ionized particles and make them adhere to the polymer substrate. The film substrate was then wound up in a winding chamber to form a sample. Example 1 is a sample with a Pd conductive film, Example 2 is a sample with a PT conductive film, and Example 3 is a sample with an Ir conductive film.
And so. In addition, samples in which a Pd conductive film was formed in the same manner as described above without performing the above glow discharge treatment were used in Example 4 (I! thickness 70A) and Example 5 (film thickness BO
A). Furthermore, for comparison with these examples,
Pd is deposited on the film substrate only by vapor deposition without performing the above glow discharge treatment, ionization or acceleration of the evaporated particles.
Samples in which PL and Ir conductive films were formed were each given a comparative Ml of 2.3. Thereafter, the samples of Examples 1 to 5 and Comparative Examples 1 to 3 were evaluated for surface resistance, light transmittance, and adhesion between the film substrate and the conductive layer.
なお、この表面抵抗値はΩ/C−の単位で表わし、光透
過率はフィルム表面への総照射光m(波長55Qnm
)に対するフィルム透過光量の割合を百分率で表わした
。さらに密着性の評価方法は50m層X5(haのサン
プルの蒸着層面にテープを貼着し、180 ’″の方向
への引き剥しにおいてフィルムから剥離した導電層の面
積の、全体の面積に対する割合を百分率で表わした。な
お、これらの評価の結果を第1表に示した。また、この
第1表において、各サンプルの総合評価を示した。すな
ちわ、◎は実用可能であって高耐久性、高安定性を有す
ることを示すものであり、0は実用可能であることを示
すものであり、さらに×は実用には適さないことを示す
ものである。Note that this surface resistance value is expressed in the unit of Ω/C-, and the light transmittance is the total irradiation light m (wavelength 55Qnm) on the film surface.
) is expressed as a percentage. Furthermore, the adhesion was evaluated by attaching a tape to the vapor-deposited layer surface of a 50 m layer x 5 (ha) sample, and calculating the ratio of the area of the conductive layer peeled from the film to the total area by peeling in the 180'' direction. It is expressed as a percentage.The results of these evaluations are shown in Table 1.In addition, in this Table 1, the overall evaluation of each sample is shown. It shows that it has durability and high stability, 0 shows that it can be put to practical use, and x shows that it is not suitable for practical use.
第1表
上記第1表から明らかなように、実施例のものは比較例
のものに比べて優れた総合特性を有している。Table 1 As is clear from Table 1 above, the examples have better overall characteristics than the comparative examples.
(発明の効果)
以上説明したように本発明の電子写真用フィルムの製造
方法によれば、蒸着と蒸発粒子のイオン化処理、加速操
作とを組み合わせ、さらに導電層を形成するための蒸着
金属をPd、Pt、Irに限定しているので、フィルム
基板と導電層との密着性、フィルムの経時安定性、フィ
ルムの表面抵抗値と光透過率およびフィルムの生産性の
全ての面に亘って優れた電子写真用フィルムを製造する
ことができる。(Effects of the Invention) As explained above, according to the method for producing an electrophotographic film of the present invention, vapor deposition, ionization treatment of evaporated particles, and acceleration operation are combined, and further, the vapor deposited metal for forming a conductive layer is Pd. , Pt, and Ir, it is excellent in all aspects such as adhesion between the film substrate and the conductive layer, stability of the film over time, surface resistance and light transmittance of the film, and productivity of the film. An electrophotographic film can be produced.
図面は本発明に係る電子写真用フィルムの製造方法を実
施するための装置の一例を示す概略図である。
1・・・真空槽 2・・・回転支持体4・
・・熱可塑性高分子基板
6・・・グロー放電発生機構
7・・・蒸着機構 8・・・坩 堝l
O・・・高周波放電用コイル
11・・・加速電極The drawing is a schematic diagram showing an example of an apparatus for carrying out the method for producing an electrophotographic film according to the present invention. 1... Vacuum chamber 2... Rotating support body 4.
・・Thermoplastic polymer substrate 6 ・Glow discharge generation mechanism 7 ・Vapor deposition mechanism 8 ・Crucible 1
O... High frequency discharge coil 11... Accelerating electrode
Claims (1)
導電層と光導電体材料からなる感光層をこの順に形成し
てなる電子写真用フィルムの製造方法において、 蒸着法を用いてPd、Pt、Irのうちいずれかの金属
の粒子を前記フィルムの基板表面に向けて飛散せしめ、 この飛散せしめられた金属粒子を放電雰囲気中でイオン
化するとともに加速電極を用いて加速し、前記基板表面
に前記加速された金属粒子を付着せしめて前記導電層を
形成することを特徴とする電子写真用フィルムの製造方
法。[Claims] A method for producing an electrophotographic film, which comprises forming a conductive layer made of a metal thin film and a photosensitive layer made of a photoconductor material in this order on an electrically insulating film substrate, comprising: a vapor deposition method; scattering metal particles of one of Pd, Pt, and Ir toward the surface of the substrate of the film, ionizing the scattered metal particles in a discharge atmosphere and accelerating them using an accelerating electrode, A method for producing an electrophotographic film, characterized in that the conductive layer is formed by depositing the accelerated metal particles on the surface of the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9094888A JPH01262553A (en) | 1988-04-13 | 1988-04-13 | Manufacture of electrophotographic film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9094888A JPH01262553A (en) | 1988-04-13 | 1988-04-13 | Manufacture of electrophotographic film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01262553A true JPH01262553A (en) | 1989-10-19 |
Family
ID=14012694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9094888A Pending JPH01262553A (en) | 1988-04-13 | 1988-04-13 | Manufacture of electrophotographic film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01262553A (en) |
-
1988
- 1988-04-13 JP JP9094888A patent/JPH01262553A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6103320A (en) | Method for forming a thin film of a metal compound by vacuum deposition | |
US4310614A (en) | Method and apparatus for pretreating and depositing thin films on substrates | |
EP0041850B1 (en) | A method of vacuum depositing a layer on a plastics film substrate | |
KR100336621B1 (en) | Method of depositing an io or ito thin film on polymer substrate | |
EP0046090B1 (en) | Process fpr producing a magnetic recording medium | |
JP4167833B2 (en) | Film forming apparatus, oxide thin film forming substrate and manufacturing method thereof | |
JPH08188873A (en) | Method and apparatus for forming multi-layer optical film | |
EP0035894A1 (en) | Process for producing a magnetic recording medium | |
JPS626746B2 (en) | ||
JPH01262553A (en) | Manufacture of electrophotographic film | |
JPH0318253B2 (en) | ||
JPH01262552A (en) | Manufacture of electrophotographic film | |
JP2520969B2 (en) | Conductive surface fastener tape and manufacturing method thereof | |
JPH0120490B2 (en) | ||
JPS61292817A (en) | Formation of transparent conducting metal oxide film | |
JPH05166236A (en) | Apparatus for producing magneto-optical recording medium | |
JPS6240373A (en) | Semi-continuous take-up type vacuum deposition device | |
JPS5941509B2 (en) | Equipment for depositing highly adhesive, particularly hard carbon layers over large areas | |
JPS6112992B2 (en) | ||
JP2000171606A (en) | Production of titanium oxide-coated plastic film and titanium oxide-coated plastic film | |
JP2686139B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JPH0121539B2 (en) | ||
JPS5831078A (en) | Method and device for pretreatment of film substrate | |
JPH0754147A (en) | Dynamic mixing device | |
JP2002069616A (en) | Production method for thin film of anatase-type titanium oxide |