JPH01261342A - Preparation of bis(trichloromethyl)diphenyl ether - Google Patents

Preparation of bis(trichloromethyl)diphenyl ether

Info

Publication number
JPH01261342A
JPH01261342A JP8957488A JP8957488A JPH01261342A JP H01261342 A JPH01261342 A JP H01261342A JP 8957488 A JP8957488 A JP 8957488A JP 8957488 A JP8957488 A JP 8957488A JP H01261342 A JPH01261342 A JP H01261342A
Authority
JP
Japan
Prior art keywords
reaction
chlorine
trichloromethyl
diphenyl ether
chlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8957488A
Other languages
Japanese (ja)
Other versions
JP2549889B2 (en
Inventor
Sadao Takakuwa
高桑 貞夫
Tetsuya Nakada
中田 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP63089574A priority Critical patent/JP2549889B2/en
Publication of JPH01261342A publication Critical patent/JPH01261342A/en
Application granted granted Critical
Publication of JP2549889B2 publication Critical patent/JP2549889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide the subject compound useful as a raw material for heat resistant resins, etc., while controlling the generation of by-products, by diluting dimethyldiphenyl ether with an inert solvent, introducing chlorine in the presence of a radical reaction initiator and subsequently starting the irradiation of light to continue the chlorination reaction until the completion of the reaction. CONSTITUTION:Dimethyldiphenyl ether of formula I (the methyl groups are situated at meta or para positions) is diluted with an inert solvent (e.g., carbon tetrachloride or monochlorobenzene) and into the resultant solution chlorine is introduced in the presence of a radical reaction initiator (e.g., benzoyl peroxide). The chlorine is introduced into the solution under the irradiation of light to continue the chlorination reaction until the reaction is accomplished, thereby providing bis(trichloromethyl)diphenyl ether of formula II (the trichloromethyl groups are located at meta or para positions). The objective compound can be produced in high yield and purity and in a short time and is useful as a raw material for polymeric liquid crystals.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ビス(トリクロロメチル)ジフェニルエーテ
ルを高純度で製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing bis(trichloromethyl)diphenyl ether with high purity.

ビス(トリクロロメチル)ジフェニルエーテルは非常に
反応性に富むトリクロロメチル基を有し、例えばこれよ
り容易に誘導できるジカルボン酸は耐熱性樹脂あるいは
高分子液晶の原料として非常に有用な化合物である。
Bis(trichloromethyl)diphenyl ether has a highly reactive trichloromethyl group, and dicarboxylic acids that can be easily derived from it, for example, are very useful compounds as raw materials for heat-resistant resins or polymeric liquid crystals.

(従来の技術) メチル置換基を有する芳香族化合物の側鎖はラジカル反
応開始剤の添加又は光照射等によるラジカル反応によっ
て選択的に塩素化されることはよく知られている。この
反応は逐次反応であり、メチル基に塩素が導入されてい
くに従って反応速度は大幅に減少し、そのためトリクロ
ロメチル化合物を製造する際にはラジカル源として強力
な光源等を用い、比較的高温で塩素化を行うことが必要
とされてきた。
(Prior Art) It is well known that the side chains of aromatic compounds having methyl substituents can be selectively chlorinated by radical reactions such as the addition of a radical reaction initiator or light irradiation. This reaction is a sequential reaction, and as chlorine is introduced into the methyl group, the reaction rate decreases significantly. Therefore, when producing trichloromethyl compounds, a strong light source is used as a radical source, and a relatively high temperature is used. It has been necessary to carry out chlorination.

従来ビス(トリクロロメチル)ジフェニルエーテルの製
造法としては次のような方法が知られている。
Conventionally, the following method is known as a method for producing bis(trichloromethyl)diphenyl ether.

(1)米国特許 第3376350@ ジフエニルエーテルをクロロメチル化してビス(クロロ
メチル)ジフェニルエーテルとした債、四基化炭素中太
陽灯照射下で塩素化を行う方法。
(1) U.S. Patent No. 3,376,350 for chloromethylating diphenyl ether to produce bis(chloromethyl)diphenyl ether, a method of chlorinating in carbon tetracarbon under irradiation with a solar lamp.

(2)ソビエト特許 第245061号ジメチルジフェ
ニルエーテルに五塩化燐を添加し、110〜250℃で
紫外線を照射しながら塩素化を行う方法。
(2) Soviet Patent No. 245061 A method of adding phosphorus pentachloride to dimethyl diphenyl ether and chlorinating it while irradiating it with ultraviolet rays at 110 to 250°C.

(3)ソビエト特許 第273186号ジメチルジフェ
ニルエーテルに脂肪族ニトロエステルを添加し高温に加
熱して塩素化を行う方法。
(3) Soviet Patent No. 273186 A method of adding an aliphatic nitroester to dimethyl diphenyl ether and heating it to a high temperature for chlorination.

また、ビス(トリクロロメチル)ジフェニルエーテルの
製造を目的とするものではないが、ジメチルジフェニル
エーテルの側鎖塩素化に際してラジカル反応開始剤を用
いる従来法として以下のものが知られている。
Although not intended for the production of bis(trichloromethyl)diphenyl ether, the following conventional methods are known as using a radical reaction initiator during side chain chlorination of dimethyldiphenyl ether.

(4)特開昭55−89237号 ジメチルジフェニルエーテルを含窒素化合物及び含硫黄
化合物とラジカル反応開始剤の共存下で塩素化して主と
してジクロロメチル側鎖を有する化合物を得る方法。
(4) JP-A No. 55-89237: A method for obtaining a compound mainly having a dichloromethyl side chain by chlorinating dimethyl diphenyl ether in the coexistence of a nitrogen-containing compound, a sulfur-containing compound, and a radical reaction initiator.

(5)特開昭56−125326号 ジメチルジフェニルエーテルを含硫黄化合物とラジカル
反応開始剤の共存下で塩素化して主としてジクロロメチ
ル側鎖を有する化合物を得る方法。
(5) JP-A No. 56-125326: A method for obtaining a compound mainly having dichloromethyl side chains by chlorinating dimethyl diphenyl ether in the coexistence of a sulfur-containing compound and a radical reaction initiator.

(発明が解決しようとする課題) 上記(1)、(2)の反応初期から紫外線を照射する方
法及び(3)の高温塩素化を行う方法のいずれも得られ
るビス(トリクロロメチル)ジフェニルエーテルは黒色
のタール状副生物で著しく汚染されている。これは分子
内のエーテル結合によって活性化されたベンゼン環によ
り引き起こされる副反応(例えば脱塩化水素によるター
ル状オリゴマー生成、核塩素化、環化反応等)に起因す
るものと考えられる。上記従来の光塩素化法の場合、反
応開始当初からタール状副生物の生成により反応液が着
色するため反応が進行すると共に光の透過が悪くなり、
反応速度の減少、暗黒反応による副生物の増加、最悪の
場合には反応を完結することができないという事態が生
じた。しかもこれらの方法によって得られた反応液から
ビス(トリクロロメチル)ジフェニルエーテルを得るた
めには蒸留あるいは再結晶などの精製の手段が不可欠で
ある。
(Problems to be Solved by the Invention) Bis(trichloromethyl)diphenyl ether obtained by both methods (1) and (2) of irradiating ultraviolet rays from the initial stage of the reaction and method (3) of high-temperature chlorination is black. is heavily contaminated with tar-like by-products. This is considered to be due to side reactions caused by the benzene ring activated by the ether bond in the molecule (eg, formation of tar-like oligomers due to dehydrochlorination, nuclear chlorination, cyclization reactions, etc.). In the case of the conventional photochlorination method described above, the reaction solution is colored due to the production of tar-like by-products from the beginning of the reaction, so as the reaction progresses, light transmission worsens.
This resulted in a decrease in the reaction rate, an increase in by-products due to dark reactions, and in the worst case scenario, the reaction could not be completed. Moreover, in order to obtain bis(trichloromethyl)diphenyl ether from the reaction solution obtained by these methods, purification means such as distillation or recrystallization are essential.

また、従来法の上記(4)、(5)の方法は、主として
ジクロロメチル側鎖を有する化合物の製造を目的とする
ものであるが、このような第三物質を添加する方法は生
成物中にこれらが残存し、これを分離除去せねばならな
いという問題が残っている。
In addition, the conventional methods (4) and (5) above are mainly aimed at producing compounds having a dichloromethyl side chain, but the method of adding such a third substance However, the problem remains that these substances remain and must be separated and removed.

一方、上記含窒素化合物や含硫黄化合物の如き第三物質
を共存させずにラジカル反応開始剤のみによって側鎖塩
素化する方法も考えられるが、この方法は、反応を完結
させるために長時間を要するという難点がある。また、
この方法は反応後期における反応速度の急激な低下をラ
ジカル反応開始剤の逐次添加によって補わねばならない
といった煩わしさがあるし、この大量に添加したラジカ
ル反応開始剤を分離除去せねばならないといった精製処
理上の問題もある。
On the other hand, a method of side chain chlorination using only a radical reaction initiator without the coexistence of a third substance such as the nitrogen-containing compound or sulfur-containing compound is also considered, but this method requires a long time to complete the reaction. The problem is that it requires. Also,
This method has the trouble of having to compensate for the sudden drop in reaction rate in the late stage of the reaction by successive additions of the radical reaction initiator, and the purification process requires that the radical reaction initiator added in large amounts must be separated and removed. There is also the problem of

一般にビス(トリクロロメチル)ジフェニルエーテルは
、(i)沸点が高く、熱に対して不安定である、(11
)融点は低く、有機溶媒には易溶である、(iii )
求核性を有する化合物と容易に反応する、等の性質が知
られており、上記従来法によって得られた反応液を通常
の精製法、例えば蒸留を行うと、上記(+>の性質のた
め蒸留中熱分解を起こしたり、また再結晶による精製を
行うには、上記(ii>、  (iii)のため使用可
能な溶媒が限定されるなど、精製に大きな損失を伴うこ
とは避けられなかった。また上記従来法(1)〜(3)
の場合反応液はタール状副生物のためにか過が困難であ
るなど操作上の不利もあった。
In general, bis(trichloromethyl)diphenyl ether (i) has a high boiling point and is unstable to heat, (11
) It has a low melting point and is easily soluble in organic solvents, (iii)
It is known that it easily reacts with compounds that have nucleophilic properties, and when the reaction solution obtained by the above conventional method is subjected to a normal purification method, such as distillation, due to the above property (+>), It was inevitable that purification would involve large losses, such as thermal decomposition during distillation, and the solvents that can be used are limited due to (ii> and (iii) above) when purifying by recrystallization. .Also, the above conventional methods (1) to (3)
In this case, there were operational disadvantages such as the fact that the reaction solution was difficult to filter due to tar-like by-products.

(課題を解決するための手段) 本発明者らは、ビス(トリクロロメチル)ジフェニルエ
ーテルの製造法において、反応後反応液を蒸留もしくは
再結晶などの精製工程を加えることなく、減圧濃縮等の
簡便な操作のみで高純度な目的物を得るためには、上記
副反応を最小限に抑制することが工業生産上重要である
と考え、核塩素化物あるいはタール状副生物の生成を如
何に抑えるかに主眼をおいて鋭意検討を行った。その結
果、ラジカル反応開始剤を用いる塩素化方法はタール状
01生物の生成を抑える最良の方法であること、光照射
によるタール状副生物の生成は反応初期において最も起
こり易いものであること、更に側鎖メチル基に塩素が導
入されていくに従ってタール状副生物、核塩素化物等の
副反応は起こり難くなっていくこと等を見出した。そこ
で原料のジメチルジフェニルエーテルを不活性溶媒で稀
釈し、先ずラジカル反応開始剤の存在下に塩素化を行っ
て側鎖に塩素を導入し、然る後に光照射を開始して塩素
化を続行して反応を完結せしめる方法を採用したところ
、光塩素化法に特有のタール状副生物の生成は認められ
ず、かつ高収率、高純度でしかも短時間で目的物を製造
できることが分かった。
(Means for Solving the Problems) The present inventors have developed a method for producing bis(trichloromethyl)diphenyl ether using simple methods such as vacuum concentration of the reaction solution after the reaction without adding purification steps such as distillation or recrystallization. We believe that it is important for industrial production to minimize the side reactions mentioned above in order to obtain high-purity target products through simple operations, and we are focusing on how to suppress the production of nuclear chlorinated products or tar-like byproducts. We conducted a thorough study with a focus on As a result, we found that the chlorination method using a radical reaction initiator is the best method for suppressing the formation of tar-like 01 organisms, and that the formation of tar-like byproducts by light irradiation is most likely to occur at the early stage of the reaction. It has been found that side reactions such as tar-like by-products and nuclear chlorides become less likely to occur as chlorine is introduced into the side chain methyl group. Therefore, dimethyl diphenyl ether, the raw material, was diluted with an inert solvent, first chlorinated in the presence of a radical reaction initiator to introduce chlorine into the side chain, and then light irradiation started to continue chlorination. When a method of completing the reaction was adopted, it was found that the production of tar-like by-products, which is characteristic of the photochlorination method, was not observed, and that the desired product could be produced in high yield and purity in a short time.

すなわち、本発明は、下記一般式(I>(但し、上記(
I>式中メチル基はメタ位又はパラ位に位置する) で表わされる化合物を不活性溶媒で稀釈し、ラジカル反
応開始剤の存在下で塩素を導入する第一工程と、光照射
下で塩素を導入して反応を完結する第二工程とからなる
ことを特徴とする一般式(II)(但し、上記(n)式
中トリクロロメチル基はメタ位又はパラ位に位装置する
) で表わされるビス(トリクロロメチル)ジフェニルエー
テルの製法である。
That is, the present invention relates to the following general formula (I> (however, the above (
The first step is to dilute the compound represented by the formula I (in which the methyl group is located at the meta or para position) with an inert solvent and introduce chlorine in the presence of a radical reaction initiator, and to introduce chlorine under light irradiation. (However, in the above formula (n), the trichloromethyl group is located at the meta or para position.) This is a method for producing bis(trichloromethyl)diphenyl ether.

本発明は、ラジカル反応開始剤による塩素化と光照射に
よる塩素化とをそれぞれ相補的に組合せた方法であり、
特に光塩素化の致命的欠点というべきタール状副生物の
生成を、反応初期にラジカル反応開始剤を用いることに
よって抑制し、反応俊期において該開始剤が消費される
ことにより低下する反応速度を光照射によって促進させ
る効果を有する。すなわち、本発明の目的物の製法のよ
うに反応初期における反応条件の設定が製品の純度に大
きく影響するような場合、光塩素化のみでは光量、反応
容器の形状等の解析は複雑であり、これに着色の要因が
加わるため装置のスケールアップには大きな困難を伴う
ものであるが、反応を完結する最終段階において光照射
を行う方法を採れば、たとえ光照射下に過剰の塩素を供
給したとしてもタール状副生物、核塩素化物の副生は殆
んど認められず、従って装置のスケールアップは容易に
行うことができる。ラジカル反応開始剤のみでも長時間
かけて反応を行うことは可能ではあるが、本発明法によ
れば最短の反応時間、最少のラジカル反応開始剤により
反応を遂行することができる。生成物中のラジカル反応
開始剤の分解物は、本発明の目的物であるビス(トリク
ロロメチル)ジフェニルエーテルとの間に大きな沸点差
があり、精留を行うまでもなく、単なる減圧濃縮操作だ
けで容易に反応混合物から除くことができる。
The present invention is a method that complementarily combines chlorination using a radical reaction initiator and chlorination using light irradiation,
In particular, the formation of tar-like byproducts, which is a fatal drawback of photochlorination, can be suppressed by using a radical reaction initiator at the beginning of the reaction, and the reaction rate, which decreases as the initiator is consumed in the early stages of the reaction, can be suppressed. It has the effect of being promoted by light irradiation. In other words, in cases where the setting of reaction conditions at the initial stage of the reaction greatly affects the purity of the product, such as in the production method of the target product of the present invention, analysis of the amount of light, the shape of the reaction vessel, etc. is complicated with only photochlorination. Scaling up the device is very difficult due to the addition of a coloring factor, but if a method is adopted in which light irradiation is performed in the final stage of completing the reaction, even if excess chlorine is supplied during light irradiation. However, almost no tar-like by-products or nuclear chloride by-products are observed, and therefore the scale-up of the device can be easily carried out. Although it is possible to carry out the reaction over a long period of time using only a radical reaction initiator, according to the method of the present invention, the reaction can be carried out in the shortest reaction time and with the minimum amount of radical reaction initiator. The decomposition product of the radical reaction initiator in the product has a large boiling point difference with bis(trichloromethyl)diphenyl ether, which is the object of the present invention, and can be easily resolved by simply concentrating under reduced pressure without the need for rectification. It can be easily removed from the reaction mixture.

本発明に用いられる上記式(I)の化合物の具体例とし
ては、3,3゛−ジメチルジフェニルエーテル、 3.
1’−ジメチルジフェニルエーテル及び4,4゜−ジメ
チルジフェニルエーテル等の前記(I)式中のメチル基
がメタ位又はパラ位に位置する化合物が挙げられる。
Specific examples of the compound of formula (I) used in the present invention include 3,3'-dimethyl diphenyl ether; 3.
Examples include compounds in which the methyl group in the formula (I) is located at the meta or para position, such as 1'-dimethyldiphenyl ether and 4,4°-dimethyldiphenyl ether.

本発明に用いられる不活性溶媒としては、例えば四塩化
炭素、モノクロロベンゼン、ジクロロベンゼン等の塩素
化に対して不活性なものが挙げられる。
Examples of the inert solvent used in the present invention include those inert to chlorination, such as carbon tetrachloride, monochlorobenzene, and dichlorobenzene.

反応に際しての原料ジメチルジフェニルエーテルの濃度
は製品の純度に大きく影響し、濃度が10重世%を超え
ると目的物の純度は大きく低下し始め、30重母%以上
では殆んどが核塩素化物となることが確められた。従っ
て溶媒の使用量は式(I)原料化合物に対して重量で1
0倍以上、好ましくは10〜50倍、更に好ましくは1
3〜30倍の範囲が適当である。
The concentration of raw material dimethyl diphenyl ether during the reaction greatly affects the purity of the product; when the concentration exceeds 10%, the purity of the target product begins to decrease significantly, and when it exceeds 30%, most of it becomes nuclear chloride. It was confirmed that it would happen. Therefore, the amount of solvent used is 1% by weight based on the starting compound of formula (I).
0 times or more, preferably 10 to 50 times, more preferably 1
A range of 3 to 30 times is appropriate.

本発明に用いられるラジカル反応開始剤としては、ベン
ゾイルパーオキサイドに代表される有機過駿化物やアゾ
ビスイソブチロニトリルに代表されるアゾ化合物が挙げ
られ、ラジカル反応開始剤と溶媒との組合せは反応温度
と該開始剤の半減期を考慮して適宜選択される。ラジカ
ル反応開始剤の添加量は、実施に際して反応初期に過剰
の塩素を発生させず、また第一工程における最適塩素導
入咄を考慮して定められるが、通常原料ジメチルジフェ
ニルエーテルに対して0.1〜10重珊%、好ましくは
1〜5重量%の範囲である。
Examples of the radical reaction initiator used in the present invention include organic perfluorides represented by benzoyl peroxide and azo compounds represented by azobisisobutyronitrile. It is appropriately selected in consideration of the reaction temperature and the half-life of the initiator. The amount of the radical reaction initiator to be added is determined in consideration of not generating excessive chlorine at the initial stage of the reaction and taking into account the optimum amount of chlorine introduced in the first step, but it is usually 0.1 to 0.1 to 100% of the raw material dimethyl diphenyl ether. 10% by weight, preferably in the range of 1 to 5% by weight.

本発明の実施において、第一工程のラジカル反応開始剤
存在下での塩素化は、原料化合物を溶かした不活性溶媒
中に塩素を導入して原料化合物の側鎖の塩素化率が70
%以上、好ましくは70〜90%に達するまで行われる
。特に塩素化された原料化合物からベンジルプロトンが
消失したときに第二工程の光照射下での塩素化を開始す
るのが好ましい。この段階での側鎖塩素化率は反応条件
によって異なるが、通常75〜85%の範囲にある。従
って、第一工程におけるラジカル反応開始剤の添加量は
反応初期に過剰の塩素を発生させず、しかも側鎖に70
%以上の塩素を導入しうる旧である。第一工程における
塩素の導入量が側鎖塩素化率70%未満のとぎは、低次
塩素化物(例えば、メチル及びベンジルプロトンを有す
るもの〉の占める割合が多く、第二工程での光塩素化時
に副反応を起こしし易いので好ましくない。また塩素の
導入量が90%を超えるときは、反応速度の減少によっ
て反応に長時間を要する結果となり、更に系内に過剰の
塩素が蓄積するために第二工程での光照射時に爆発的な
反応が起こり操作上好ましくない。
In carrying out the present invention, chlorination in the presence of a radical reaction initiator in the first step involves introducing chlorine into an inert solvent in which the raw material compound is dissolved, so that the chlorination rate of the side chain of the raw material compound is 70%.
% or more, preferably 70 to 90%. In particular, it is preferable to start the second step of chlorination under light irradiation when benzyl protons disappear from the chlorinated raw material compound. The side chain chlorination rate at this stage varies depending on the reaction conditions, but is usually in the range of 75 to 85%. Therefore, the amount of radical reaction initiator added in the first step is such that it does not generate excessive chlorine at the initial stage of the reaction, and also
% or more of chlorine can be introduced. When the amount of chlorine introduced in the first step is less than 70%, the percentage of lower chlorinated compounds (for example, those with methyl and benzyl protons) is high, and the photochlorination in the second step is less than 70%. This is undesirable because it tends to cause side reactions.Also, when the amount of chlorine introduced exceeds 90%, the reaction rate decreases and the reaction takes a long time, and excess chlorine accumulates in the system. An explosive reaction occurs during light irradiation in the second step, which is unfavorable for operation.

第二工程で用いられる光源は350〜500nm程度の
通常の紫外線が用いられ、高圧水銀灯を用いるのが好適
である。第二工程での光塩素化の開始は、上記したとお
り、原料化合物の側鎖塩素化率が70%以上のときであ
る。
The light source used in the second step uses normal ultraviolet rays of about 350 to 500 nm, and preferably uses a high-pressure mercury lamp. As described above, photochlorination in the second step starts when the side chain chlorination rate of the raw material compound is 70% or more.

反応はバッチ式で行われるが、例えば第一工程のラジカ
ル反応槽と第二工程の光反応槽の二種で連続式に行うこ
とも可能である。
Although the reaction is carried out batchwise, it is also possible to carry out the reaction continuously in two types, for example, a radical reaction tank in the first step and a photoreaction tank in the second step.

反応によって生成する塩化水素は核塩素化の触媒効果を
もつことが知られており、反応温度が低いと塩化水素の
溶解徂が増大するため製品純度は低下する。従って本発
明における第−工程及び第二工程での好適な反応温度は
50〜150℃の範囲、特に反応系が緩やかに還流する
温度で行うとよい。
Hydrogen chloride produced by the reaction is known to have a catalytic effect on nuclear chlorination, and when the reaction temperature is low, the solubility of hydrogen chloride increases, resulting in a decrease in product purity. Therefore, the preferred reaction temperature in the first and second steps of the present invention is in the range of 50 to 150°C, particularly at a temperature at which the reaction system gently refluxes.

また窒素ガスの如き不活性ガスを導入して反応系から塩
化水素を追い出しながら反応を行ってもよい。
Alternatively, the reaction may be carried out while introducing an inert gas such as nitrogen gas to drive out hydrogen chloride from the reaction system.

反応時間は、塩素導入速度によっても異なるが、通常第
一工程及び第二工程を通して1〜30時間の範囲である
。特に反応初期では塩素の過剰供給が製品の純度を大き
く低下させることになるので、反応初期は系外に過剰の
塩素を排出させないように塩素導入量を調節して反応時
間を設定することが目的物を高純度で製造する上で重要
である。また使用する塩素及び溶媒は乾燥していること
が好ましい。核塩素化の触媒となり得る重金属をマスキ
ングするために反応系内にアミド系化合物等を添加する
方法が知られているが、本発明においてもかようなマス
キング剤を添加することは勿論可能であり、反応の遂行
上何ら問題はない。
The reaction time varies depending on the rate of chlorine introduction, but is usually in the range of 1 to 30 hours throughout the first and second steps. Particularly at the beginning of the reaction, excessive supply of chlorine will greatly reduce the purity of the product, so the purpose of the initial stage of the reaction is to adjust the amount of chlorine introduced and set the reaction time so as not to discharge excess chlorine outside the system. It is important for manufacturing products with high purity. Further, it is preferable that the chlorine and solvent used are dry. A method is known in which an amide compound or the like is added to the reaction system in order to mask heavy metals that can act as a catalyst for nuclear chlorination, but it is of course possible to add such a masking agent in the present invention. , there is no problem in carrying out the reaction.

反応中の攪拌は局部的な塩素の高濃度化を防ぐために重
要であり、塩素の導入方法等は目的物のII!度に影響
を与えるが、これらは実施に際し実験等により容易に定
めることができる。
Stirring during the reaction is important to prevent localized high concentrations of chlorine, and the method of introducing chlorine etc. depends on the target product II! However, these can be easily determined through experiments etc. in practice.

(実施例) 実施例1 100W高圧水銀灯照射装置を内部に備えた反応器に、
3,4°−ジメチルジフェニルエーテル58.5(J(
0,29モル)、四塩化炭素915g及びベンゾイルパ
ーオキサイド1.8gを仕込み、系が緩やかに還流する
まで加熱した。まず水銀灯非点灯下でガス導入管より塩
素ガスを140d/minの割合で導入し塩素化を行っ
た。約4時間後NMRによりベンジルプロトンの消失が
ほぼ確認できたので(この時点での側鎖塩素化率はガス
クロマトグラフィ分析によると83%であった)、高圧
水銀灯を点灯し光照射下で更に塩素化を続行した。反応
開始より5時間30分後にNMRでベンザルプロトンの
消失が確認できたので塩素導入を停止し反応を終了した
(Example) Example 1 A reactor equipped with a 100W high-pressure mercury lamp irradiation device was
3,4°-dimethyl diphenyl ether 58.5 (J(
0.29 mol), 915 g of carbon tetrachloride, and 1.8 g of benzoyl peroxide were charged, and the system was heated until it gently refluxed. First, chlorine gas was introduced from the gas introduction tube at a rate of 140 d/min to perform chlorination without lighting the mercury lamp. After about 4 hours, it was confirmed by NMR that the benzyl protons had almost disappeared (the side chain chlorination rate at this point was 83% according to gas chromatography analysis), so a high-pressure mercury lamp was turned on and further chlorine was added under light irradiation. continued to develop. Five hours and 30 minutes after the start of the reaction, the disappearance of benzal protons was confirmed by NMR, so the introduction of chlorine was stopped and the reaction was completed.

系に窒素ガスを導入して溶存する塩化水素及び塩素ガス
を追い出した後濃縮し、更に80℃、2mm1lc+で
減圧濃縮して無色油状物120(lを得た。ガスクロマ
トグラフィで分析したところ、3,4゛−ビス(トリク
ロロメチル)ジフェニルエーテル98.5重量%及び核
塩素化物1.5重量%の割合で生成していた。
Nitrogen gas was introduced into the system to drive out dissolved hydrogen chloride and chlorine gas, and the system was concentrated, and further concentrated under reduced pressure at 80°C and 2 mm 1 lc+ to obtain 120 (l) of a colorless oil. Analysis by gas chromatography revealed that 3. , 4'-bis(trichloromethyl)diphenyl ether in a proportion of 98.5% by weight and a nuclear chloride in a proportion of 1.5% by weight.

比較例1 100Wの高圧水銀灯照9A装置を内部に価えた反応器
に、3,4゛−ジメチルジフェニルエーテル 。
Comparative Example 1 3,4'-dimethyldiphenyl ether was placed in a reactor equipped with a 9A 100W high-pressure mercury lamp.

58.5CI(0,29モル)、四塩化灰素916gを
仕込んだ。
58.5 CI (0.29 mol) and 916 g of ash tetrachloride were charged.

系を緩やかに還流させて水銀灯照射下で塩素を140m
/minの速度で導入して塩素化を行った。
The system was slowly refluxed and chlorine was removed for 140 m under mercury lamp irradiation.
Chlorination was carried out by introducing at a rate of /min.

反応開始と共に反応液は次第に褐色を帯び、反応後半は
反応速度が著しく低下したが、反応開始から1時間30
分後、NMRによりベンザルプロトンの消失が確認され
たのでこの時点で反応を終了した。
As the reaction started, the reaction solution gradually turned brown, and the reaction rate decreased significantly in the latter half of the reaction.
After a few minutes, the disappearance of the benzal proton was confirmed by NMR, so the reaction was terminated at this point.

反応後、窒素ガスを導入して溶存する塩化水素、塩素ガ
スを追い出した後減圧濃縮して粘稠な黒褐色油状物12
3gを得た。これをガスクロマトグラフィを用いて分析
したところ、3,4°−ビス(トリクロロメチル)ジフ
ェニルエーテル92.5重漬%、核塩素化物3.4重(
6)%、その他高沸点物4.1重量%のvj合で生成し
ていた。
After the reaction, nitrogen gas is introduced to drive out dissolved hydrogen chloride and chlorine gas, and the mixture is concentrated under reduced pressure to form a viscous dark brown oil 12
3g was obtained. When this was analyzed using gas chromatography, it was found that 92.5% of 3,4°-bis(trichloromethyl)diphenyl ether and 3.4% of nuclear chloride (
6)% and other high boiling point substances 4.1% by weight.

比較例2 3.4°−ジメチルジフェニルエーテル58.2g(0
,29モル)、ベンゾイルパーオキサイド2.9gを四
塩化炭素916gに溶解し、系を緩やかに還流させた。
Comparative Example 2 3.4°-dimethyldiphenyl ether 58.2g (0
, 29 mol) and 2.9 g of benzoyl peroxide were dissolved in 916 g of carbon tetrachloride, and the system was gently refluxed.

これに塩素を140m1/minの速度で導入しNMR
で反応を追跡した。反応開始より8時間目にベンザルプ
ロトンが消失したので反応を終了した。
Chlorine was introduced into this at a rate of 140ml/min, and NMR
The reaction was tracked. Eight hours after the start of the reaction, the benzal proton disappeared, so the reaction was terminated.

反応後、系に窒素ガスを導入して溶存する塩化水素、塩
素ガスを追い出した後、減圧濃縮して淡黄色油状物12
1gを得た。これをガスクロマトグラフィで分析したと
ころ、3,4°−ビス(トリクロロメチル)ジフェニル
エーテル91.0重間%、核塩素化物3.0重量%の割
合で生成していた。
After the reaction, nitrogen gas is introduced into the system to drive out dissolved hydrogen chloride and chlorine gas, and the mixture is concentrated under reduced pressure to form a pale yellow oil 12.
1g was obtained. When this was analyzed by gas chromatography, it was found that 91.0% by weight of 3,4°-bis(trichloromethyl)diphenyl ether and 3.0% by weight of nuclear chloride were produced.

(発明の効果) 本発明は、穏和な条件で、しかも何らの装置上あるいは
工程上の煩雑さはなく、簡便で、しかも短時間で高純度
な目的物を高収率で得ることができる。得られた目的物
は耐熱性樹脂、高分子液晶の原料としてそのまま使用す
ることができる。
(Effects of the Invention) The present invention can easily obtain a highly purified target product in a high yield in a short period of time under mild conditions without any equipment or process complexity. The obtained target product can be used as it is as a raw material for heat-resistant resins and polymeric liquid crystals.

Claims (1)

【特許請求の範囲】 下記一般式( I ) ▲数式、化学式、表等があります▼( I ) (但し、上記( I )式中メチル基はメタ位又はパラ位
に位置する) で表わされる化合物を不活性溶媒で稀釈し、ラジカル反
応開始剤の存在下で塩素を導入する第一工程と、光照射
下で塩素を導入して反応を完結する第二工程とからなる
ことを特徴とする一般式(II)▲数式、化学式、表等が
あります▼(II) (但し、上記(II)式中トリクロロメチル基はメタ位又
はパラ位に位置する) で表わされるビス(トリクロロメチル)ジフェニルエー
テルの製法。
[Claims] Compounds represented by the following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (However, in the above formula (I), the methyl group is located at the meta or para position) A general method characterized by comprising a first step of diluting with an inert solvent and introducing chlorine in the presence of a radical reaction initiator, and a second step of introducing chlorine under light irradiation to complete the reaction. Method for producing bis(trichloromethyl) diphenyl ether represented by formula (II) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (II) (However, in the above formula (II), the trichloromethyl group is located at the meta or para position) .
JP63089574A 1988-04-12 1988-04-12 Process for producing bis (trichloromethyl) diphenyl ether Expired - Lifetime JP2549889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089574A JP2549889B2 (en) 1988-04-12 1988-04-12 Process for producing bis (trichloromethyl) diphenyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089574A JP2549889B2 (en) 1988-04-12 1988-04-12 Process for producing bis (trichloromethyl) diphenyl ether

Publications (2)

Publication Number Publication Date
JPH01261342A true JPH01261342A (en) 1989-10-18
JP2549889B2 JP2549889B2 (en) 1996-10-30

Family

ID=13974573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089574A Expired - Lifetime JP2549889B2 (en) 1988-04-12 1988-04-12 Process for producing bis (trichloromethyl) diphenyl ether

Country Status (1)

Country Link
JP (1) JP2549889B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589237A (en) * 1978-12-25 1980-07-05 Asahi Kagaku Kogyo Kk Highly selective preparation of alpha-chlorinated-phenoxy- toluene
JPS5687528A (en) * 1979-12-19 1981-07-16 Asahi Kagaku Kogyo Kk Highly selective preparation of chlorinated phenoxytoluene
JPS56125326A (en) * 1980-03-07 1981-10-01 Asahi Kagaku Kogyo Kk Preparation of chlorinated phenoxytoluenes in high selectivity
JPS62286944A (en) * 1986-06-04 1987-12-12 Teijin Yuka Kk Production of trichloromethyl-substituted phenyl ether compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589237A (en) * 1978-12-25 1980-07-05 Asahi Kagaku Kogyo Kk Highly selective preparation of alpha-chlorinated-phenoxy- toluene
JPS5687528A (en) * 1979-12-19 1981-07-16 Asahi Kagaku Kogyo Kk Highly selective preparation of chlorinated phenoxytoluene
JPS56125326A (en) * 1980-03-07 1981-10-01 Asahi Kagaku Kogyo Kk Preparation of chlorinated phenoxytoluenes in high selectivity
JPS62286944A (en) * 1986-06-04 1987-12-12 Teijin Yuka Kk Production of trichloromethyl-substituted phenyl ether compound

Also Published As

Publication number Publication date
JP2549889B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JP2001512090A (en) Method for producing substituted benzyl bromide
JP2839483B2 (en) Method for producing trichloromethoxybenzene
JP4520712B2 (en) Method for producing fluorohalogen ethers
EP0253836B1 (en) Preparation of fluoroaromatic compounds in dispersion of potassium fluoride
JPH01261342A (en) Preparation of bis(trichloromethyl)diphenyl ether
US4849552A (en) Preparation of fluoroaromatic compounds in dispersion of potassium fluoride
US5259938A (en) Process for omega-halo-perfluoro acid chlorides
JP2549890B2 (en) Process for producing bis (trichloromethyl) diphenyl ether
JP3059717B2 (en) Continuous production method of mono and / or bis (mono and / or di and / or trichloromethyl) benzene
JP3125956B2 (en) Method for chlorinating side chains of aromatic compounds
US3265603A (en) Process for the chlorination of 2-chloro-6-nitro-benzonitrile
US3637479A (en) Halogenation process using ultraviolet light
JP3882855B2 (en) Method for producing alkylbenzoyl chloride
US3963751A (en) Chlorination of butadiene sulfone to 3,3,4,4-tetrachlorotetrahydrothiophene-1,1-dioxide
US6093858A (en) Method for producing bis (trifluoromethyl) benzene
KR20010078281A (en) Process for the preparation of 3,5-bis-(trifluoromethyl)-benzoyl chlorides and novel 3,5-bis-(trihalogenomethyl)- and 3,5-dimethylbenzoyl halides
JPH01149740A (en) Production of 4,4'-dibromobiphenyl
WO2022186162A1 (en) Method for producing nucleophilic reaction product and reagent for production of nucleophilic reaction product
JPH01160804A (en) Production of iodine monochloride
JP3788482B2 (en) Method for producing alkylbenzoyl chloride
EP0253837A1 (en) Catalytic method for producing fluoroaromatic compounds using branched alkyl pyridinium salts.
WO2020138434A1 (en) Production method for haloalkyl acid halide, production method for haloalkyl acid ester, and production method for haloalkyl acid amide
JP4076618B2 (en) Method for producing 3-chlorocycloalkene
JPS6372632A (en) Production of alpha,alpha'-dichloroxylene
JPS62181234A (en) Production of isophthaloyl dichloride