JPH01261258A - Production of ceramic scintillator - Google Patents

Production of ceramic scintillator

Info

Publication number
JPH01261258A
JPH01261258A JP63087384A JP8738488A JPH01261258A JP H01261258 A JPH01261258 A JP H01261258A JP 63087384 A JP63087384 A JP 63087384A JP 8738488 A JP8738488 A JP 8738488A JP H01261258 A JPH01261258 A JP H01261258A
Authority
JP
Japan
Prior art keywords
vacuum
sealing
metal capsule
pipe
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63087384A
Other languages
Japanese (ja)
Inventor
Masabumi Kanetomo
正文 金友
Kuninori Imai
今井 邦典
Yukio Ito
由喜男 伊藤
Hiroyuki Takeuchi
裕之 竹内
Takamichi Yamada
山田 敞馗
Akizo Toda
堯三 戸田
Yasuo Tsukuda
佃 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP63087384A priority Critical patent/JPH01261258A/en
Publication of JPH01261258A publication Critical patent/JPH01261258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a ceramic scintillator having high light-emission intensity, extremely low scattering of the intensity and excellent uniformity, by adopting a pressing mechanism with a hydrostatic press in the vacuum sealing step in the sintering of a rare-earth metal oxysulfide by HIP process. CONSTITUTION:A rare-earth metal oxysulfide 1 is vacuum-sealed in a metal capsule 2 and sintered under pressure. In the above process, the vacuum-sealing of the metal capsule is performed with a pressing mechanism without applying vibration to the metal capsule. A sealed part 9 can be formed at the tip end of a pipe 3 by using a hydraulic press 6 as a pressing means 7 and pressing the vacuum-sealing part 5 of the pipe 3 protruded from the metal capsule 2 with a cylindrical cemented carbide tip 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放射線を検出するX1iCT用シンチレータ
材料として好適なセラミックシンチレータの製法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic scintillator suitable as a scintillator material for X1iCT that detects radiation.

〔従来の技術〕[Conventional technology]

従来、XIICTなどに用いるシンチレータとしては、
キセノン(Xs)11!離箱が用いられてきた1しかし
、Xe電離箱では、装置の小型化が難しいという問題点
がある。近年、高精度かつ小型固体検出器として単結晶
のシンチレータ材や、シンチレータ材粉末を樹脂中に分
散固化したもの、あるいは希土類オキシ硫化物粉末を熱
間静水圧プレス法(HI P@)により焼結したセラミ
ックシンチレータが提案されている(特開昭6l−12
7670)。
Conventionally, scintillators used in XIICT etc.
Xenon (Xs) 11! However, the Xe ionization chamber has the problem that it is difficult to miniaturize the device. In recent years, single-crystal scintillator materials, scintillator material powder dispersed and solidified in resin, or rare earth oxysulfide powders have been sintered using the hot isostatic pressing method (HI P@) as highly accurate and compact solid-state detectors. A ceramic scintillator has been proposed (Japanese Patent Application Laid-Open No. 61-12
7670).

しかしながら、本セラミックスは、焼結ロット内および
ロット間で出力のばらつきが生じやすいという問題があ
る。特性のばらつきがあると、それらを多素子として、
検出器システムにした時、情報の正確な再現が困難とな
る。特に均一性は、高度の正確さが要求される医療用X
線CTシステムには不可欠であり、その向上が望まれる
However, this ceramic has a problem in that output tends to vary within and between sintered lots. If there are variations in characteristics, they can be treated as multiple elements,
When used as a detector system, it becomes difficult to accurately reproduce information. In particular, uniformity is important for medical applications that require a high degree of accuracy.
It is essential for line CT systems, and its improvement is desired.

従来、希土類オキシ硫化物をHIP法を用いて焼結する
際、原料粉末を金属カプセルに充填真空封入し、HIP
する方法がとられている。IM料を充填した金属カプセ
ルを真空対じする時、外部から振動が加わると、充填密
度のむら、ばらつきが・  生じやすく、これが最終焼
結体における出力のばらつきの−因となっている。特開
昭61−127670ではこの真空封じ方法については
、特にふれられていない。
Conventionally, when rare earth oxysulfides are sintered using the HIP method, the raw material powder is filled into a metal capsule and sealed in vacuum.
A method is being adopted to do so. When a metal capsule filled with an IM material is vacuum-paired, if vibrations are applied from the outside, unevenness and variation in packing density tends to occur, which is a cause of variation in output in the final sintered body. JP-A-61-127670 does not particularly mention this vacuum sealing method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、前記の実情に鑑み、高い発光出力を有
し、かつ出力ばらつきの極めて小さい、均一性に優れた
セラミックシンチレータの製法を提供することにある。
In view of the above-mentioned circumstances, an object of the present invention is to provide a method for manufacturing a ceramic scintillator that has high luminous output, extremely small variation in output, and excellent uniformity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、希土類オキシ硫化物をHIP法で焼結する
にあたり、その真空封入時、油圧プレスを用いた加圧機
構で当作業を行うことで達成される。この作業時、排気
用金属パイプの封止部は、加圧によって金属パイプが潰
れ、その内面が十分密着可能となるような温度に加熱し
ておく。また、封止に必要な圧力は、金属パイプの径や
肉厚、材質などにも依存するが、例えば鋼製の直径12
1mのパイプを用いるとき、3〜5ton  (パイプ
素材が10〜20%程度変形する条件)を使用する。
The above object is achieved by sintering the rare earth oxysulfide by the HIP method and performing this operation with a pressure mechanism using a hydraulic press when the rare earth oxysulfide is sealed in vacuum. During this work, the sealed portion of the exhaust metal pipe is heated to a temperature at which the metal pipe is crushed by pressurization and its inner surface can be brought into close contact with the metal pipe. The pressure required for sealing also depends on the diameter, wall thickness, material, etc. of the metal pipe, but for example, the pressure required for sealing depends on the diameter, wall thickness, material, etc.
When using a 1 m pipe, 3 to 5 tons (conditions under which the pipe material deforms by about 10 to 20%) is used.

〔作用〕[Effect]

希土類オキシ硫化物を金属カプセルに充填し、この後に
真空封入し、HIPを行う。この真空封入時、金属カプ
セルから突出したパイプ部を加圧機構を用いてつぶすこ
とで、金属パイプに振動を加えない状態で本作業を行う
ことが可能である。
A metal capsule is filled with rare earth oxysulfide, and then vacuum sealed and HIP is performed. During this vacuum sealing, by crushing the pipe portion protruding from the metal capsule using a pressure mechanism, it is possible to perform this work without applying vibration to the metal pipe.

金属カプセルを振動させて、この真空封止を行った場合
、均一にカプセル内で分散している希土類オキシ硫化物
が偏在しやすい。これをHIPすると焼結体に、密度む
らやマイクロクラックが発生しやすい欠点がある。
When vacuum sealing is performed by vibrating the metal capsule, the rare earth oxysulfide, which is uniformly dispersed within the capsule, tends to become unevenly distributed. When this is subjected to HIP, the sintered body has the disadvantage that density unevenness and microcracks are likely to occur.

上記の方法で、真空封止を行えば、カプセル内の希土類
オキシ硫化物は均一に分布したまま焼結が可能であるた
め、このような欠陥がなくなり、出力ばらつきが非常に
小さくかつ再現性の良いセラミックスの焼結が可能とな
る。
If vacuum sealing is performed using the above method, the rare earth oxysulfide inside the capsule can be sintered while being uniformly distributed, eliminating such defects, resulting in very small output variations and high reproducibility. It becomes possible to sinter good ceramics.

〔実施例〕〔Example〕

以下本発明を実施例を用いて詳細に説明する。 The present invention will be explained in detail below using examples.

第1図に本発明による実施例を示す。希土類オキシ硫化
物1を金属カプセル2内に均一に分散しパイプ3が突出
しており、この一部を封じる。封じ方法は、パイプ3の
他端を真空ポンプ4で10一番〜10−5Torr程度
の圧力に真空引きしながら、パイプ3の真空封じ部を8
00℃に加熱しておき、油圧プレス6を用いた加圧機構
7で外力を加え、この部分を押しつぶす。加圧機構7は
、その封じ切り部に円筒形状の超硬チップ8が配置され
ておりこれが、油圧プレス6で互いに押しつけられ、パ
イプ3の真空封じ部5を加圧する。この加圧力は、直径
12mmのパイプを用いる時、3〜5 ton程度が適
当な値である。この作業終了後の金属カプセルは、第2
図で示す様に、パイプ3の先端に封じ部9が位置する構
造となっている。
FIG. 1 shows an embodiment according to the present invention. A rare earth oxysulfide 1 is uniformly dispersed in a metal capsule 2, and a pipe 3 protrudes from the metal capsule 2, which is partially sealed. The sealing method is to vacuum the other end of the pipe 3 with a vacuum pump 4 to a pressure of about 10 Torr to 10-5 Torr, and then open the vacuum sealing part of the pipe 3 to a pressure of about 8 Torr.
It is heated to 00° C., and an external force is applied by a pressure mechanism 7 using a hydraulic press 6 to crush this portion. The pressurizing mechanism 7 has a cylindrical carbide tip 8 arranged in its sealing section, which is pressed against each other by a hydraulic press 6 to pressurize the vacuum sealing section 5 of the pipe 3. An appropriate value for this pressing force is about 3 to 5 tons when a pipe with a diameter of 12 mm is used. After this work is completed, the metal capsule is transferred to the second
As shown in the figure, the structure is such that a sealing part 9 is located at the tip of the pipe 3.

第3図に本発明による別の実施例を示す。図1で示した
実施例と同様に希土類オキシ硫化物1が入った金属カプ
セル2のパイプ部3で真空封じする。この真空封じを行
う時、第4図に示す様に、封じ部10のパイプ3の接合
部を長くし、HIP時、金属カプセル2に外圧が加わっ
た時、この部分からの破損を防止する構造となっている
。このために図3で示す様に平面形状の超硬アップ11
を油圧シリンダー6で加圧する構造となっている。
FIG. 3 shows another embodiment according to the invention. Similar to the embodiment shown in FIG. 1, the metal capsule 2 containing the rare earth oxysulfide 1 is vacuum-sealed with the pipe portion 3. When performing this vacuum sealing, as shown in Fig. 4, the joint part of the pipe 3 of the sealing part 10 is lengthened to prevent damage from this part when external pressure is applied to the metal capsule 2 during HIP. It becomes. For this purpose, as shown in Fig. 3, a planar carbide up 11
It has a structure in which it is pressurized by a hydraulic cylinder 6.

この装置で、真空封じ切り部12の接合を行った後に図
1に示す装置で再度封じ切りを行い、第4図に示す形状
の金属カプセルを得る。
After the vacuum sealing section 12 is bonded using this device, sealing is performed again using the device shown in FIG. 1 to obtain a metal capsule having the shape shown in FIG. 4.

第5図に本発明による真空封じ切り装置を示す。FIG. 5 shows a vacuum sealing device according to the present invention.

移動台13上に金属カプセル2が乗っており、このパイ
プ部が加熱バーナで、加熱される。次に移動台13が、
加圧機構15位置に移動し、ここで、平面形状の超硬チ
ップ11でパイプ3が押しつぶされる。続いて移動台が
移動し、再度封じ切り部の加熱を行い、封じ切り機構1
6位置に移動し、円筒形状の超硬チップで封じ切りが完
了する。この工程を経て、図4で示す金属カプセルを得
ることができる。
A metal capsule 2 is placed on a moving table 13, and this pipe section is heated by a heating burner. Next, the moving table 13
The pipe 3 is moved to the pressure mechanism 15 position, where the pipe 3 is crushed by the planar carbide tip 11. Next, the moving table moves, heats the sealing section again, and seals the sealing mechanism 1.
Move to position 6 and complete sealing with the cylindrical carbide tip. Through this process, the metal capsule shown in FIG. 4 can be obtained.

なお、上記封止切り作業を行う前に、カプセル素材には
水素焼鈍、または封止切り部内面にワイヤブラッシング
処理等を旋しておくことが、封止切りの信頼性(真空洩
れ防止性)を向上するのに好適であ“る。また、更に信
頼性を向上するには、封止切り作業を2〜3箇所に軽く
旋したのち、最後の位置で通常の切断・分離させる作業
を行うことも極めて効果が大きい。
In addition, before carrying out the above-mentioned sealing cutting operation, it is recommended that the capsule material be subjected to hydrogen annealing or a wire brushing treatment to the inner surface of the sealing cut part to improve the reliability of sealing cutting (vacuum leakage prevention). In addition, to further improve reliability, the seal cutting operation is performed by lightly turning the seal in 2 to 3 locations, and then the normal cutting/separation operation is performed at the final location. This is also extremely effective.

なお、上記実施例では加熱温度を800℃としたが、こ
れ以下の温度でも封止切りは可能であり、550〜60
0℃以上で十分に真空封止できる。
In the above example, the heating temperature was 800°C, but it is possible to cut the seal even at a temperature lower than this, and the heating temperature is 550 to 60°C.
Sufficient vacuum sealing is possible at temperatures above 0°C.

(室温でも変形率を80%程度にすれば真空封止が可能
であるが、実用的ではない。550〜600℃程度であ
れば、加圧力は20〜30%増すが、変形率は800℃
と同等の10〜20%で十分である。) 第6図及び第7図に、希土類オキシ硫化物を加圧しなが
ら焼結したブロックからシンチレータ材料となるウェー
ハを切り出し順次その密度を計測したものを示す。第6
図には、振動を加えて真空封止を行った以前の方法によ
る測定データを示す。
(Vacuum sealing is possible even at room temperature if the deformation rate is about 80%, but it is not practical. If it is about 550 to 600°C, the pressurizing force will increase by 20 to 30%, but the deformation rate will be 800°C.
10 to 20% is sufficient. ) Figures 6 and 7 show the densities of wafers cut out as scintillator material from a block of rare earth oxysulfide sintered under pressure, and their densities successively measured. 6th
The figure shows measurement data from a previous method in which vacuum sealing was performed by applying vibration.

また、第7図には、本発明による方法によって得られた
結果を示す0本発明による結果が以前の方法に比べてデ
ータのばらつきが約3倍良くなっていることが判かる。
Further, FIG. 7 shows the results obtained by the method according to the present invention. It can be seen that the results according to the present invention have data dispersion about three times better than the previous method.

これにより1画像むらが少なく、高性能なシンチレータ
を安価に製造することが可能になったものであり、本発
明の効果は極めて大きい。
This makes it possible to inexpensively manufacture a high-performance scintillator with less unevenness in one image, and the effects of the present invention are extremely significant.

したがって、本発明により、作製されたセラミックシン
チレータはX線CT用などの放射線検出素子材料として
好適であり、医療分野は熱論のこと、その工業上の効果
は大である。
Therefore, the ceramic scintillator produced according to the present invention is suitable as a radiation detection element material for X-ray CT and the like, and is of great interest in the medical field and has great industrial effects.

〔発明の効果〕〔Effect of the invention〕

以上述べてきた様に希土類オキシ硫化物を加圧しながら
、焼結するにあたり、加圧機構を用いて、金属カプセル
を固定した状態で行う真空封じによる方法は、高出力で
かつ出力のばらつきが極めて小さい均一性に優れた希土
類オキシ硫化物セラミックシンチレータを実現すること
□ができる。特に。
As mentioned above, when rare earth oxysulfide is sintered under pressure, the vacuum sealing method, which uses a pressurizing mechanism and fixes the metal capsule, has a high output and extremely variable output. It is possible to realize a rare earth oxysulfide ceramic scintillator that is small and has excellent uniformity. especially.

充填したままの状態で振動を加えたりすることなく真空
封止ができることから、成分の偏在を十分に防止するこ
とができ、従来になく均質な結晶を得ることができると
いう効果がある。
Since vacuum sealing can be performed without applying vibrations in the filled state, uneven distribution of components can be sufficiently prevented and crystals that are more homogeneous than ever before can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及θ第3図は、本発明を実施するために使用され
る真空封じ切り装置の例を示す断面図、第2図及び第4
図は、本発明により得られる金属カプセルの例を示す断
面図、第5図は本発明を実施するために使用される真空
封じ切り装置の一例の斜視図、第6図は振動を加えて真
空封止を行った従来の方法によるウェハ間の密度のばら
つきの一例を示すグラフ、第7図は本発明を適用して真
空封止をおこなった場合のウェハー間の密度のばらつき
の一例を示すグラフである。 1・・・希土類オキシ硫化物、2・・・金属カプセル、
3・・・パイプ、6・・・油圧プレス、′7・・・加圧
機構、8・・・円筒形状超硬チップ、11・・・平面形
状超硬チップ。 等 〕 図 耳り囚 猜 、5区 ノ/  ネi肖デ”ンイ丸Q、cf−−チック。
FIGS. 1 and 3 are cross-sectional views showing examples of vacuum sealing devices used to carry out the present invention, and FIGS.
The figure is a sectional view showing an example of a metal capsule obtained by the present invention, FIG. 5 is a perspective view of an example of a vacuum sealing device used to carry out the present invention, and FIG. A graph showing an example of variation in density between wafers when the conventional method of sealing is performed, and FIG. 7 is a graph showing an example of variation in density between wafers when vacuum sealing is performed using the present invention. It is. 1... Rare earth oxysulfide, 2... Metal capsule,
3... Pipe, 6... Hydraulic press, '7... Pressure mechanism, 8... Cylindrical carbide tip, 11... Planar carbide tip. [etc.] Figure ear prisoner, 5th ward / nei sho de"n i maru Q, cf--tic.

Claims (2)

【特許請求の範囲】[Claims] 1.希土類オキシ硫化物を金属カプセル内に真空封入し
、加圧しながら、焼結するにあたり、該金属カプセルを
加圧機構を用いて、金属カプセルに振動を加えることな
しに真空封入することを特徴とするセラミックシンチレ
ータの製法。
1. A rare earth oxysulfide is vacuum-sealed in a metal capsule and sintered while pressurized, and the metal capsule is vacuum-sealed using a pressurizing mechanism without applying vibration to the metal capsule. Manufacturing method of ceramic scintillator.
2.特許請求の範囲第1項記載のものにおいて、上記加
圧機構として静圧プレスを用いることを特徴とするセラ
ミックシンチレータの製法。
2. A method for manufacturing a ceramic scintillator according to claim 1, characterized in that a static pressure press is used as the pressurizing mechanism.
JP63087384A 1988-04-11 1988-04-11 Production of ceramic scintillator Pending JPH01261258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087384A JPH01261258A (en) 1988-04-11 1988-04-11 Production of ceramic scintillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087384A JPH01261258A (en) 1988-04-11 1988-04-11 Production of ceramic scintillator

Publications (1)

Publication Number Publication Date
JPH01261258A true JPH01261258A (en) 1989-10-18

Family

ID=13913400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087384A Pending JPH01261258A (en) 1988-04-11 1988-04-11 Production of ceramic scintillator

Country Status (1)

Country Link
JP (1) JPH01261258A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877502A (en) * 1981-08-20 1983-05-10 Kobe Steel Ltd Sealing device for capsule packed with metallic powder
JPS61127670A (en) * 1984-11-22 1986-06-14 日立金属株式会社 Manufacture of sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877502A (en) * 1981-08-20 1983-05-10 Kobe Steel Ltd Sealing device for capsule packed with metallic powder
JPS61127670A (en) * 1984-11-22 1986-06-14 日立金属株式会社 Manufacture of sintered body

Similar Documents

Publication Publication Date Title
CA1123125A (en) Ceramic-like scintillators
US6365885B1 (en) Microwave processing in pure H fields and pure E fields
JP2009525359A5 (en)
JPH03150270A (en) Ceramic body and manufacture thereof
US4339271A (en) Method of manufacturing a sintered powder body
EP1351060A3 (en) Method of manufacturing a test probe for semiconductor devices
JPS641283B2 (en)
US5676891A (en) Method for manufacturing a phosphor ceramic by hot-pressing
US7303699B2 (en) Method for producing a scintillator ceramic
JPH01261258A (en) Production of ceramic scintillator
JPS648676B2 (en)
US2506327A (en) Article of tungsten and wrought copper joined by sintered copper
JPH09303557A (en) Sealing device for high-pressure vessel
EP2094621B1 (en) Hot axial pressing method
NO850394L (en) IMPROVED PROCEDURE FOR COMPRESSING POROZE CERAMIC BUILDING PARTS FOR A HOT ISOSTATIC PRESSURE
US3113846A (en) Titanium ceramic composite bodies
JPH0273902A (en) Method for making porous material dense
Roach et al. Platinum black powder as a heat exchanger material at low temperatures
US3793014A (en) Process for fabricating porous beryllium billets
US5603788A (en) Method of manufacturing a ceramics-type vacuum vessel
GB1268459A (en) Improvements in and relating to apparatus for manufacturing sintered substances
KR102215427B1 (en) MANUFACTURING METHOD OF A ZnS SINTERED MEMBER FOR INFRARED TRANSMITTANCE AND THE ZnS SINTERED MEMBER
JPH0542338Y2 (en)
Zheng et al. X‐ray Tomography Study on Green State Joining of Silicon Carbide Using Polymer Precursors
JPS62142703A (en) Hot hydrostatic pressing method