JPH01260A - Steel materials for chemical conversion treatment and their manufacturing method - Google Patents

Steel materials for chemical conversion treatment and their manufacturing method

Info

Publication number
JPH01260A
JPH01260A JP62-289083A JP28908387A JPH01260A JP H01260 A JPH01260 A JP H01260A JP 28908387 A JP28908387 A JP 28908387A JP H01260 A JPH01260 A JP H01260A
Authority
JP
Japan
Prior art keywords
chemical conversion
steel
conversion treatment
steel material
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-289083A
Other languages
Japanese (ja)
Other versions
JPS64260A (en
Inventor
章人 迫田
薄木 智亮
若野 茂
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP62-289083A priority Critical patent/JPH01260A/en
Publication of JPS64260A publication Critical patent/JPS64260A/en
Publication of JPH01260A publication Critical patent/JPH01260A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化成処理、特にりん酸亜鉛処理に供すること
を目的とした鋼材とその製造方法に関し、化成処理に先
立って鋼材表面に鉄系窒化物層を形成する技術に係るも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a steel material intended for chemical conversion treatment, particularly zinc phosphate treatment, and a method for producing the same. This relates to a technique for forming a nitride layer.

〔従来の技術〕[Conventional technology]

りん酸塩(亜鉛)被膜は、鋼材の塗装下地として、ある
いは塑性加工用潤滑被膜として重要な役割を担うもので
、その生成反応は、次記(1)弐のよる鉄の溶解反応と
、(2)式のりん酸塩被膜析出反応との過程を経るもの
である。
Phosphate (zinc) coatings play an important role as a coating base for steel materials or as lubricating coatings for plastic working, and the formation reaction is the dissolution reaction of iron as described in (1) 2 below, and ( 2) It goes through the process of phosphate film precipitation reaction of formula.

Fe+ToPOa=Fe(HzPO4)z+Ht↑  
 ・(11近年、自動車用冷延鋼板などの塗装を前提と
した冷延鋼板は、超深絞り性をもたせるために微量のT
iを鋼中に添加することがあるが、この場合化成処理中
に鋼中に固溶したTiがTiO□になる反応を起し、こ
の反応過程で界面のpHを下げることにより化成反応を
阻害するため、リン酸塩化成処理性が劣るという問題が
ある。
Fe+ToPOa=Fe(HzPO4)z+Ht↑
・(11) In recent years, cold-rolled steel sheets intended for painting, such as cold-rolled steel sheets for automobiles, have been treated with a trace amount of T in order to provide ultra-deep drawability.
In some cases, i is added to steel, but in this case, Ti dissolved in steel during chemical conversion treatment causes a reaction to become TiO□, and during this reaction process, the pH of the interface is lowered, thereby inhibiting the chemical conversion reaction. Therefore, there is a problem that the phosphate chemical conversion treatment properties are poor.

また、高耐食性を得る目的でCrを添加する場合も、鋼
板表面にCrの酸化物が形成されFeの溶解を阻害し、
化成処理性が劣るため、限られた用途にしか使用されて
いない。
Also, when adding Cr for the purpose of obtaining high corrosion resistance, Cr oxides are formed on the steel sheet surface and inhibit the dissolution of Fe.
Due to its poor chemical conversion properties, it is only used for limited purposes.

さらに、普通鋼の冷延鋼板でも再結晶焼きなましを施さ
ないフルハード板や熱延酸洗板などもその材料の機械的
特性を生かして、塗装し、使用する価値のあるものであ
るが、塗装下地処理としてのリン酸塩下地処理を施す場
合、鋼板表面に存在するFeの水酸化被膜のために化成
反応が著しく劣るため、用途拡大ができない現状にある
Furthermore, cold-rolled ordinary steel sheets such as fully hardened sheets that are not subjected to recrystallization annealing and hot-rolled pickled sheets are worth painting and using to take advantage of the mechanical properties of the material. When a phosphate base treatment is applied as a base treatment, the chemical conversion reaction is extremely poor due to the Fe hydroxide film present on the surface of the steel sheet, so the current situation is that it is not possible to expand the use of the steel sheet.

また、°低合金冷延鋼板では、その製造工程において、
還元性雰囲気で再結晶焼きなましを施すことが多いが、
この工程によって鋼板表面には選択酸化されたMn酸化
物の濃化層が生じ、この濃化層が化成処理液によく溶解
するため化成反応を促進し、これが化成処理性を良好に
する。しかし、TiやCrが添加された冷延鋼板では、
表面にMn酸化物濃化層が生じるにもかかわらず、これ
ら元素の添加量が増加するに従い、前述した理由と同様
の理由により化成処理性が劣化する傾向がある。
In addition, in the manufacturing process of low-alloy cold-rolled steel sheets,
Recrystallization annealing is often performed in a reducing atmosphere,
This process produces a concentrated layer of selectively oxidized Mn oxide on the surface of the steel sheet, and since this concentrated layer dissolves well in the chemical conversion treatment solution, it promotes the chemical conversion reaction, which improves the chemical conversion treatment properties. However, in cold-rolled steel sheets to which Ti and Cr are added,
Despite the formation of a Mn oxide-concentrated layer on the surface, as the amount of these elements added increases, chemical conversion treatment properties tend to deteriorate for the same reasons as described above.

ところで、Cr含有鋼材は、高い耐食性を示すことはよ
く知られている。しかし、Cr含有鋼材は、Crを含有
しない普通鋼材に対してりん酸塩被膜を形成できる処理
条件下でも、りん酸塩処理液に対して不活性(溶解しに
(い)であり、まして高Cr含有鋼の場合には、りん酸
塩被膜を全く形成できない。
By the way, it is well known that Cr-containing steel materials exhibit high corrosion resistance. However, Cr-containing steel materials are inert (hard to dissolve) in the phosphate treatment solution even under treatment conditions that can form a phosphate film on ordinary steel materials that do not contain Cr, and are even more difficult to dissolve. In the case of Cr-containing steels, no phosphate coating can be formed.

このため、Cr含有鋼材に対しては、−船釣に、やむな
くりん酸マンガン処理やシュウ酸塩処理を行っていた。
For this reason, Cr-containing steel materials have been unavoidably subjected to manganese phosphate treatment or oxalate treatment.

この場合、エツジング力を高めるために、フッ素系添加
剤を用いることもある。
In this case, fluorine additives may be used to increase the cutting power.

他方、上記化成処理性の改善の試みがいくつかなされて
おり、たとえば、Ti添加鋼においては、その連続焼鈍
時の冷却過程で表面層に固溶Cや固溶Nを存在せしめる
方法(特開昭60−149729号公報)が提案されて
いる。
On the other hand, several attempts have been made to improve the chemical conversion treatability. For example, in the case of Ti-added steel, a method in which solid solution C and solid N are present in the surface layer during the cooling process during continuous annealing (Japanese Patent Application Laid-open No. 1986-149729) has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この公報方法は連続焼鈍をするものにの
み有効であり、また比較的多量(数%)にCrを含んだ
ような冷延鋼板では、表面にCr窒化物が多量に形成し
、却って反応性を損う。
However, this published method is effective only for continuous annealing, and in cold-rolled steel sheets that contain a relatively large amount (several percent) of Cr, a large amount of Cr nitrides are formed on the surface, which causes a reaction. spoil one's sexuality.

他方、焼きなましを必要としないフルハード板や熱延酸
洗板については、上記方法では、化成処理性の改善をは
かることはできない。
On the other hand, for fully hard plates and hot-rolled pickled plates that do not require annealing, the above method cannot improve the chemical conversion properties.

さらに、焼鈍後の冷延鋼板でも、その後の使用法によっ
ては、表面が研削されてしまうことがあり、折角、焼鈍
により化成処理性が改善されても無効となってしまう。
Furthermore, even after annealing, the surface of a cold-rolled steel sheet may be ground depending on how it is used after that, and even if the chemical conversion treatment property is improved by annealing, it becomes ineffective.

ところで、Cr含有鋼材は、りん酸塩処理性が悪いこと
は先に述べた。低Cr含有鋼材(Cr55%)の場合、
強酸度、高温、鋼エンジングなどの特殊な処理条件では
、りん酸塩被膜の形成が不可能ではない、低Cr含有鋼
材は、近年、自動車用途への適用が検討されているが、
自動車用の場合、普通鋼材とともに車体に組み込んだ状
態でりん酸塩処理することとなると、上記の特殊な処理
条件を採用することはできない、したがって、低Cr1
jl材を自動車用に仕向ける場合、普通鋼材と同様に、
予めりん酸塩処理を施すことが望まれている。
By the way, as mentioned above, Cr-containing steel materials have poor phosphate treatment properties. In the case of low Cr content steel (Cr55%),
It is not impossible to form a phosphate film under special processing conditions such as strong acidity, high temperature, and steel engine processing.In recent years, low Cr content steel materials have been considered for application in automobile applications.
In the case of automobiles, if the phosphate treatment is applied to the car body together with ordinary steel, the special treatment conditions mentioned above cannot be applied. Therefore, low Cr1
When JL material is used for automobiles, like ordinary steel material,
It is desirable to perform phosphate treatment in advance.

また、鋼Cr含有鋼材、たとえばステンレスの冷間鍛造
の際の潤滑被膜として、シュウ酸塩被膜が用いられてい
るが、これに代ってりん酸塩被膜の生成が可能となれば
、(i)普通鋼材と同じ潤滑処理が可能となる、(ii
 )シュウ酸塩被膜に比して良好な潤滑特性が得られる
など、大きなメリットが期待できる。
In addition, an oxalate film is used as a lubricating film during cold forging of steel containing Cr, such as stainless steel, but if it were possible to generate a phosphate film instead of this, it would be possible to ) The same lubrication treatment as ordinary steel is possible, (ii
) It can be expected to have significant benefits, such as better lubrication properties than oxalate coatings.

そこで、本発明の主たる目的は、Cr含有鋼材等の化成
処理性の劣る鋼材を、その機械的性質を損なうことな(
化成処理性を向上させることにある。
Therefore, the main purpose of the present invention is to treat steel materials with poor chemical conversion properties, such as Cr-containing steel materials, without impairing their mechanical properties.
The purpose is to improve chemical conversion treatment properties.

〔問題点を解決するための手段〕 前記問題点を解決するための本第1発明の要旨は、鋼材
表面に鉄系窒化物層を有することを特徴とするものであ
る。
[Means for Solving the Problems] The gist of the first invention for solving the above problems is characterized in that the steel material has an iron-based nitride layer on its surface.

また、本第2発明の製造方法は、鋼材表面を室温〜70
0℃の鋼材温度でイオン窒化することにより、その表面
に厚さ100Å以上の鉄系窒化物層を形成させることを
特徴とするものである。
In addition, the manufacturing method of the second invention can prepare the surface of the steel material from room temperature to 70°C.
It is characterized in that an iron-based nitride layer with a thickness of 100 Å or more is formed on the surface by ion nitriding the steel material at a temperature of 0°C.

〔作 用〕[For production]

本発明に従って、鋼材表面に鉄系窒化物層を形成すると
、りん酸塩化成処理性がきわめて良好となる。しかも、
Cr含有鋼材であっても鉄系窒化物層を形成すると、化
成処理性に優れる。
According to the present invention, when an iron-based nitride layer is formed on the surface of a steel material, phosphate chemical conversion treatment property becomes extremely good. Moreover,
Even with Cr-containing steel, forming an iron-based nitride layer provides excellent chemical conversion treatment properties.

また、本発明法は、鋼材温度700℃以下で、イオン窒
化法により、鋼材表面を窒化するものであるから、鋼材
の機械的性質を損なわずに化成処理性を向上させること
ができる。さらに、イオン窒化法によると、アンモニア
ガスを用いるガス窒化法に比較して、鉄系窒化物層の生
成速度が速く、生産性が高まる。しかも、窒系浸入量が
同一であっても、イオン窒化法によると、表面活性特性
がより優れる。
Furthermore, in the method of the present invention, the surface of the steel material is nitrided by the ion nitriding method at a steel material temperature of 700° C. or lower, so that the chemical conversion treatment property can be improved without impairing the mechanical properties of the steel material. Furthermore, according to the ion nitriding method, compared to the gas nitriding method using ammonia gas, the production rate of the iron-based nitride layer is faster and the productivity is improved. Moreover, even if the amount of nitrogen infiltration is the same, the ion nitriding method provides better surface activity characteristics.

〔発明の具体的構成〕[Specific structure of the invention]

以下本発明をさらに実験例を挙げながらさらに詳説する
The present invention will be explained in more detail below by giving further experimental examples.

本発明は、鋼材表面に鉄系窒化物層を形成するもので、
Crを実質的に含有しない鋼材の場合、その形成に際し
ては、好ましくは、室温〜700℃の比較的低温鋼材温
度範囲内でのイオン窒化法が採用される。
The present invention forms an iron-based nitride layer on the surface of steel,
In the case of a steel material that does not substantially contain Cr, an ion nitriding method within a relatively low temperature steel material temperature range of room temperature to 700[deg.] C. is preferably employed when forming the steel material.

当該鋼材がCr含有鋼材の場合、その表面に生成される
鉄系窒化物層としては、Fe、 Crを主体とする窒化
物層となる。本発明によると、低Cr含有鋼材のみなら
ず、30%Cr鋼材までならず十分にりん酸塩化成処理
被膜を形成できる。Crが0.5〜5%のCr含有鋼材
において、りん酸塩化成処理被膜を形成できることは、
先に述べたように、自動車用鋼材として用途が開けるこ
とになる。また、低Crである高Crであり、Cr含有
鋼材に対しても、普通鋼材と同様に、特殊な処理条件に
よらずりん酸塩化成処理を行うことができることは、製
造コストの大巾な低減をもたらす。尚、Cr含有鋼材の
場合には、350〜600℃の比較的鋼材温度の高い条
件でのイオン窒化が好ましい。
When the steel material is a Cr-containing steel material, the iron-based nitride layer generated on the surface thereof is a nitride layer mainly composed of Fe and Cr. According to the present invention, a phosphate chemical conversion coating can be formed not only on low Cr-containing steel materials but also on steel materials with a 30% Cr content. The ability to form a phosphate chemical conversion coating on Cr-containing steel materials with a Cr content of 0.5 to 5% means that
As mentioned earlier, this will open up applications as a steel material for automobiles. In addition, the fact that phosphate conversion treatment can be applied to low Cr, high Cr containing steel in the same way as ordinary steel does not require special treatment conditions, which greatly reduces manufacturing costs. resulting in a reduction. In the case of Cr-containing steel, ion nitriding is preferably performed at a relatively high steel temperature of 350 to 600°C.

具体的にイオン窒化条件や鉄窒化物層厚さと化成処理性
の関係を調査するため次の実験を行った。
Specifically, the following experiment was conducted to investigate the relationship between ion nitriding conditions, iron nitride layer thickness, and chemical conversion treatment properties.

供試鋼材としては第1表に示す化学成分をもつ真空溶製
材の冷延鋼板フルハード材(真空溶製後、熱延し、3.
0III11厚とし、酸洗後0.8mmtまで冷間圧延
したもの)を用いた。
The test steel material was a fully hardened cold-rolled steel sheet made of vacuum-melted material having the chemical composition shown in Table 1 (vacuum-melted, hot-rolled, 3.
0III11 thickness, pickled and cold rolled to 0.8 mmt) was used.

このフルハード材に対し、イオン窒化を行い、その窒化
度を変化させて、表面に鉄窒化物層を形成させ、化成処
理性を調査した。なお、鉄窒化物層の厚さの分析法とし
ては、非常に薄い場合と比較的厚い場合とで異なる方法
を採った。非常に薄い窒化物層厚さは、光電子分光分析
装置(一般にESC^またはxPSと呼ばれる)で分析
し、その窒素濃度がlat%となるまでの表面からの深
さで表わした。他方、厚い窒化物層厚さは、X線回折法
で鋼板表面の生成物を同定し、化学分析値のN量の値か
ら算出した。また、化成処理は、市販のリン酸亜鉛系化
成処理液を用いて浸漬法で行い、その評価は走査型電子
顕微鏡を用いて、化成結晶の緻密性、太き・さ等を観察
して行った。結果を第2表に示す。
This full hard material was subjected to ion nitriding, and the degree of nitriding was varied to form an iron nitride layer on the surface, and chemical conversion treatment properties were investigated. Note that different methods were used to analyze the thickness of the iron nitride layer depending on whether it was very thin or relatively thick. The very thin nitride layer thickness was analyzed using a photoelectron spectrometer (generally called ESC^ or xPS) and expressed as the depth from the surface until the nitrogen concentration reached lat%. On the other hand, the thickness of the thick nitride layer was calculated from the chemical analysis value of the N amount after identifying the products on the surface of the steel plate using an X-ray diffraction method. In addition, the chemical conversion treatment is performed by dipping using a commercially available zinc phosphate-based chemical treatment solution, and the evaluation is performed by observing the density, thickness, size, etc. of the chemical crystals using a scanning electron microscope. Ta. The results are shown in Table 2.

第2表から、イオン窒化して形成される鉄窒化物層厚さ
が100Å以上で化成処理性が著しく改善されることが
わかった。例えば、試MN13では鉄窒化物層厚さ=8
0人であり、化成処理性は普通(△)、すなわち従来通
りのレベルであるが、同ぬ4のように、鉄窒化物層厚さ
が100人となると、化成処理性は、著しく優れたもの
(◎)となる。
From Table 2, it was found that when the thickness of the iron nitride layer formed by ion nitriding was 100 Å or more, the chemical conversion processability was significantly improved. For example, in sample MN13, the iron nitride layer thickness = 8
0, and the chemical conversion treatability is normal (△), that is, at the same level as before. However, when the iron nitride layer thickness is 100 people, as in 4, the chemical conversion treatment properties are significantly superior. It becomes a thing (◎).

本実験で表面に形成され、化成処理性向上の原因となる
化合物は、主にγ’−Fe、Nであり、この化合物が1
00Å以上の厚さで存在すると、化成処理性が著しく改
善される。
In this experiment, the compounds formed on the surface and responsible for improving chemical conversion treatment properties were mainly γ'-Fe and N.
When present in a thickness of 00 Å or more, chemical conversion treatment properties are significantly improved.

また、第2表には、比較のため、高温でガス窒化した場
合も併記(Nll 2. 13) してあるが、光電子
分光分析装置で試験した結果では表面にNは全く検出さ
れなかった、この試料で化成処理性が良好なのは、先に
述べたように、Mnの選択酸化層がその効果をもたらし
ているものと考えられる。
For comparison, Table 2 also includes the case of gas nitriding at high temperature (Nll 2.13), but as a result of testing with a photoelectron spectrometer, no N was detected on the surface. The reason why this sample has good chemical conversion treatment properties is thought to be due to the selective oxidation layer of Mn, as described above.

ところで、鋼材表面にγ’ −F、eaNを主とする厚
さ100人程度のごく薄い層の存在が化成処理性を良好
にする理由については、現在、推定の域に出ないが、−
心火のように考えることができる。
By the way, the reason why the presence of a very thin layer of about 100 layers mainly composed of γ' -F and eaN on the surface of the steel material improves chemical conversion treatability is currently beyond the realm of speculation, but -
You can think like a fiery person.

一般に化成処理反応は、先の(1)、 (2)の反応式
のように、アノード部での鉄の溶解と、カソード部での
水素発生に伴う界面pHの上昇によるリン酸塩結晶の析
出に分けて考えることができる。そして化成処理性の不
良は、鉄の溶解反応がすみやかにおこらないことに起因
することが多い。一方、γ’−Fe4.Nなどの鉄の窒
化物は、化成処理浴中のpH2〜5の酸性領域では活性
溶解を示し、水素発生を伴なう。このことから、表面に
存在する鉄窒化物が化成処理反応のアノード反応を促進
するものと考えられる。
In general, chemical conversion reactions involve the dissolution of iron at the anode and the precipitation of phosphate crystals due to the increase in interfacial pH associated with hydrogen generation at the cathode, as shown in reaction equations (1) and (2) above. It can be considered separately. In many cases, poor chemical conversion treatment properties are caused by the iron dissolution reaction not occurring promptly. On the other hand, γ'-Fe4. Iron nitrides such as N exhibit active dissolution in the acidic range of pH 2 to 5 in the chemical conversion bath, accompanied by hydrogen generation. From this, it is considered that iron nitrides present on the surface promote the anodic reaction of the chemical conversion reaction.

次に、本発明での好適な数値範囲について説明する。Next, a preferred numerical range in the present invention will be explained.

鋼材表面の鉄系窒化物層厚は、前述したように厚さ10
0Å以上が好ましい。一方、上限は限定されないが、窒
化物生成量の増大は、(:)処理時間が長(なる、  
(ii )表面硬化により鋼材の伸び、曲げ等の加工特
性を劣化させる、(iii )コスト高となる、ことを
勘案して決定する。
The thickness of the iron-based nitride layer on the surface of the steel material is 10 mm as described above.
It is preferably 0 Å or more. On the other hand, although the upper limit is not limited, an increase in the amount of nitrides produced (:) increases the processing time (results in
It is determined by taking into account that (ii) surface hardening deteriorates processing characteristics such as elongation and bending of the steel material, and (iii) increases cost.

また、イオン窒化処理で鋼材温度を700℃以下とした
のは、700℃を超えると鋼材本来の機械的性質が大き
く変化してしまうばかりでなく、窒化速度が必要以上に
早くなり不必要な厚さの窒化物層が形成されてしまうか
らである。Crを実質的に含有しない鋼材では150〜
400℃の鋼材温度でイオン窒化処理を行うのが望まし
い。一方、Cr含有鋼材の場合、350〜600℃の温
度範囲が好適である。
Furthermore, the reason why the temperature of the steel material is kept below 700°C during the ion nitriding process is that if the temperature exceeds 700°C, not only will the original mechanical properties of the steel material change significantly, but the nitriding rate will be faster than necessary, resulting in unnecessary thickening. This is because a thin nitride layer will be formed. 150~ for steel materials that do not substantially contain Cr
It is desirable to perform the ion nitriding treatment at a steel material temperature of 400°C. On the other hand, in the case of Cr-containing steel materials, a temperature range of 350 to 600°C is suitable.

〔実施例〕〔Example〕

次に実施例を説明する。 Next, an example will be described.

(実施例1) 第3表に示すような、TiやCrが添加された冷延鋼板
のフルハード板および還元性雰囲気燃焼板(780℃×
30秒、7%H2−NzlD−P <  30℃)を室
温で短時間のイオン窒化をおこない、その化成処理性を
評価した。
(Example 1) As shown in Table 3, a full hard cold-rolled steel plate to which Ti and Cr are added and a reducing atmosphere combustion plate (780°C
Short-time ion nitriding of 7% H2-NzlD-P (<30°C) was performed at room temperature for 30 seconds, and the chemical conversion treatment property was evaluated.

第4表を見てわかるように、TiやCrが添加されたフ
ルハード板や焼鈍板の化成処理性は、それら添加元素量
が増加するに従って化成処理性が劣化するが、鉄窒化物
層を100Å以上形成させることによって、添加元素量
にかかわりなく化成処理性は良好となった。例えば、第
3表に示すように、Al−A2−A3となるに従ってT
i含量が増加し、又、B1→B2→B3となるに従って
、Cr含量が増加するが、これに伴ない、化成処理性(
1)も劣化しているが、イオン窒化後の化成処理性(2
)は厚さ100Å以上ではいずれも良好となった。
As can be seen from Table 4, the chemical conversion treatability of full hard plates and annealed plates to which Ti and Cr are added deteriorates as the amount of these added elements increases, but the iron nitride layer By forming a layer with a thickness of 100 Å or more, chemical conversion treatment properties became good regardless of the amount of added elements. For example, as shown in Table 3, as Al-A2-A3 becomes T
As the i content increases and as B1 → B2 → B3, the Cr content increases, but along with this, the chemical conversion treatment property (
1) has also deteriorated, but the chemical conversion treatment properties after ion nitriding (2) have also deteriorated.
) were all good when the thickness was 100 Å or more.

(実施例2) 第5表に示す化学組成を持つ熱延鋼板を、10%HCI
で脱スケールした後、イオン窒化し、化成処理性を評価
した。
(Example 2) A hot rolled steel plate having the chemical composition shown in Table 5 was heated with 10% HCI.
After descaling, ion nitriding was performed and chemical conversion treatment properties were evaluated.

第6表より、前実施例(第4表)に比べると、同条件で
のイオン窒化でも鉄窒化物層の形成量は少なかったが、
100Å以上の厚さの鉄窒化物層が形成されると、化成
処理性は良好となった。
From Table 6, compared to the previous example (Table 4), the amount of iron nitride layer formed was smaller even with ion nitriding under the same conditions;
When an iron nitride layer with a thickness of 100 Å or more was formed, chemical conversion treatment properties became good.

(実施例3) 特にCr含有鋼板について、その化成処理性および塗装
性について調べた。供試材の組成およびイオン窒化条件
、ならびに結果は、第7表の通りであった。
(Example 3) In particular, a Cr-containing steel plate was investigated for its chemical conversion properties and paintability. The composition of the sample material, the ion nitriding conditions, and the results are as shown in Table 7.

〈考 察〉 比較例として、Cr含有鋼板を窒化せずにりん酸塩処理
に供した場合の結果をllh C8,C9,C10に併
記した。
<Discussion> As a comparative example, the results when a Cr-containing steel plate was subjected to phosphate treatment without being nitrided are also shown in llh C8, C9, and C10.

Cr<3%の場合に、りん酸塩結晶で被覆されない部分
(“スケ”)が多く見られ、塗膜密着性試験で塗膜剥離
を生じた。Cr上3%の場合にはもはやりん酸塩結晶ま
ったく生成せず、塗膜密着性も極めて劣悪であった。
In the case of Cr<3%, many areas not covered with phosphate crystals ("sketches") were observed, and the coating film peeled off in the coating film adhesion test. When the content of Cr was 3%, no phosphate crystals were formed at all, and the adhesion of the coating film was extremely poor.

本発明例(IlilC1〜C7)では、いずれも、りん
酸塩処理性の劇的な改善に基づく塗膜密着性の大幅な向
上が図られた。イオン窒化処理を施した鋼板表面には、
ステンレンでさえも微細なりん酸塩結晶が全面に緻密に
形成された。
In all of the invention examples (Ilil C1 to C7), a significant improvement in coating film adhesion was achieved based on a dramatic improvement in phosphate treatment properties. The surface of the steel plate subjected to ion nitriding treatment has
Even in stainless steel, fine phosphate crystals were densely formed over the entire surface.

また、塗装後耐食性もイオン窒化処理により大幅に改善
された。比較例のようにりん酸塩被膜が形成されない場
合には、塗膜損傷から極めてブリスターが生成・成長す
るが、イオン窒化処理を施すことにより、りん酸塩被膜
が成形されるとブリスターの生成・成長は厳しく抑制さ
れた。
In addition, post-painting corrosion resistance was significantly improved by ion nitriding. When a phosphate film is not formed as in the comparative example, blisters are extremely likely to form and grow due to damage to the paint film, but by applying ion nitriding treatment, when a phosphate film is formed, blisters do not form or grow. Growth was severely restrained.

(実施例4) 次に、ステンレン線材の冷間鍛造試験を行った。(Example 4) Next, a cold forging test of the stainless steel wire was conducted.

冷間鍛造試験条件は次の通りであった。The cold forging test conditions were as follows.

・供試材:材質5US304 次のような処理工程により23φ伸線 材を作製、冷間鍛造試験に供した。・Test material: Material 5US304 23φ wire drawing through the following processing steps A material was prepared and subjected to a cold forging test.

■ 酸洗(硝弗酸、Rol、10分) →イオン窒化(50%NdHt* 5 Torr650
℃、5s) −りん酸亜鉛処理(全酸度″q120ポイント、70℃
、10分 一乾式粉末潤滑剤塗布一伸線 ・鍛造:前方多段押出し試験を行った。
■ Pickling (Nitrofluoric acid, Rol, 10 minutes) → Ionic nitriding (50% NdHt* 5 Torr650
°C, 5s) - Zinc phosphate treatment (total acidity "q120 points, 70 °C
, 10 minutes dry powder lubricant application, wire drawing/forging: forward multi-stage extrusion test was conducted.

(パススケジュール:23φ→21.26φ→19.9
φ→18.35φ→16.92φ→15.6φ→14.
35φ→13.26φ) ・評価:焼付きの有無で判定する。
(Pass schedule: 23φ→21.26φ→19.9
φ→18.35φ→16.92φ→15.6φ→14.
35φ→13.26φ) ・Evaluation: Judging by the presence or absence of burn-in.

○・・・焼付きなし、×・・・焼付き発生結果は第8表
の通りである。
○: No burn-in, ×: Burn-in occurrence results are shown in Table 8.

く考 察〉 減面率が増大するに伴ない、従来のしゅう酸第1鉄処理
では焼付きが生じた。一方、本試験の減面率66.8%
までの範囲においては、イオン窒化−りん酸亜鉛処理し
たものに焼付きは生じなかった。
Discussion As the area reduction rate increased, seizure occurred in the conventional ferrous oxalate treatment. On the other hand, the area reduction rate in this test was 66.8%.
In the above range, no seizure occurred in the ion nitride-zinc phosphate treated products.

本発明に基づき表層にFe、 Cr系窒化物を形成され
たステンレン線材はりん酸亜鉛処理による潤滑処理によ
り良好な冷間鍛造性を有することが判明した。
It has been found that the stainless steel wire having Fe and Cr-based nitrides formed on the surface layer according to the present invention has good cold forgeability when subjected to lubrication treatment using zinc phosphate treatment.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、化成処理性の劣る鋼材、
例えば、冷延鋼板のフルハード材、TiやCrの添加さ
れた化成処理性不良材、熱延酸洗板などを、その機械的
性質を損なうことなく、化成処理性を格段に向上させる
ことができる。
As described above, according to the present invention, steel materials with poor chemical conversion treatment properties,
For example, it is possible to significantly improve the chemical conversion treatability of fully hardened cold-rolled steel sheets, poorly chemically treated materials with addition of Ti and Cr, hot-rolled pickled plates, etc., without impairing their mechanical properties. can.

また、鋼材の製造時には化成処理性が良好であったよう
な低合金冷延鋼板の焼鈍材でも、プレス成形時に表面皮
膜が削り落とされ、化成処理劣化に至る場合があるが、
このような場合でも、プレス成形後の形状を維持したま
まイオン窒化をほとこすことで化成処理性を改善するこ
とができる。
In addition, even for annealed low-alloy cold-rolled steel sheets that had good chemical conversion treatment properties when the steel was manufactured, the surface coating may be scraped off during press forming, leading to deterioration in chemical conversion treatment.
Even in such a case, chemical conversion treatment properties can be improved by performing ion nitriding while maintaining the shape after press molding.

特許出願人 住友金属工業株式会社Patent applicant: Sumitomo Metal Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)鋼材表面に鉄系窒化物層を有することを特徴とす
る化成処理用鋼材。
(1) A steel material for chemical conversion treatment characterized by having an iron-based nitride layer on the surface of the steel material.
(2)鉄系窒化物層が100Å以上の厚さで形成された
ことを特徴とする特許請求の範囲第1項記載の化成処理
用鋼材。
(2) The steel material for chemical conversion treatment according to claim 1, wherein the iron-based nitride layer is formed with a thickness of 100 Å or more.
(3)鋼材がCrを0.5〜30重量%含有し、鉄系窒
化物層がFeおよびCrを主体とする窒化物層であるこ
とを特徴とする特許請求の範囲第1項記載の化成処理用
鋼材。
(3) The chemical compound according to claim 1, wherein the steel material contains 0.5 to 30% by weight of Cr, and the iron-based nitride layer is a nitride layer mainly composed of Fe and Cr. Steel materials for processing.
(4)鋼材表面を室温〜700℃の鋼材温度でイオン窒
化処理することにより、その表面に厚さ100Å以上の
鉄系窒化物層を形成させることを特徴とする化成処理用
鋼材の製造方法。
(4) A method for producing a steel material for chemical conversion treatment, which comprises forming an iron-based nitride layer with a thickness of 100 Å or more on the surface of the steel material by subjecting the surface of the steel material to ion nitriding treatment at a steel material temperature of room temperature to 700°C.
JP62-289083A 1987-03-02 1987-11-16 Steel materials for chemical conversion treatment and their manufacturing method Pending JPH01260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62-289083A JPH01260A (en) 1987-03-02 1987-11-16 Steel materials for chemical conversion treatment and their manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-47068 1987-03-02
JP4706887 1987-03-02
JP62-289083A JPH01260A (en) 1987-03-02 1987-11-16 Steel materials for chemical conversion treatment and their manufacturing method

Publications (2)

Publication Number Publication Date
JPS64260A JPS64260A (en) 1989-01-05
JPH01260A true JPH01260A (en) 1989-01-05

Family

ID=

Similar Documents

Publication Publication Date Title
JP5650222B2 (en) Method of manufacturing a steel member with a metal coating that provides protection against corrosion, and steel member
EP1439240B2 (en) Method for hot-press forming a plated steel product
JP3825456B2 (en) A method for producing molded parts with extremely high mechanical property values by stamping from strips of coated rolled steel sheets, especially coated hot rolled steel sheets
JP4782056B2 (en) High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
US20100294400A1 (en) Method for producing a steel component by hot forming and steel component produced by hot forming
US10927441B2 (en) High-strength galvanized hot-rolled steel sheet and method for manufacturing same
JP2810245B2 (en) Cold rolled steel sheet excellent in press formability and phosphatability and method for producing the same
JP4238153B2 (en) High-strength electrogalvanized steel sheet excellent in uniform appearance and method for producing the same
JP3318385B2 (en) Alloyed hot-dip galvanized steel sheet with excellent press workability and plating resistance
JP6699633B2 (en) High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same
JP3631710B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same
EP0900857B1 (en) Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same
JPH01260A (en) Steel materials for chemical conversion treatment and their manufacturing method
JP3307326B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2007291445A (en) Method for producing high tension hot-dip galvanized hot-rolled steel sheet excellent in wettability and bulging property
EP3115482A1 (en) Cold-rolled steel sheet, manufacturing method therefor, and car part
JP5625442B2 (en) High-strength steel sheet with a tensile strength of 1180 MPa or more with excellent delayed fracture resistance
US6030714A (en) Zinc and zinc-alloy hot-dip-coated steel sheet having decreased bare spots and excellent coating adhesion and a method for manufacturing the same
JP3240987B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2002167657A (en) HOT DIP Zn-Al BASED ALLOY PLATED STEEL SHEET AND ITS PRODUCTION METHOD
US20200232057A1 (en) Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom
US12031215B2 (en) Zinc alloy coating layer of press-hardenable steel
JPH0774384B2 (en) Manufacturing method of stainless steel sheet with excellent corrosion resistance and workability
US11913118B2 (en) Zinc alloy coated press-hardenable steels and method of manufacturing the same
US20240344190A1 (en) Zinc alloy coated press-hardenable steels and method of manufacturing the same