JPH01260991A - Color video signal processing method - Google Patents

Color video signal processing method

Info

Publication number
JPH01260991A
JPH01260991A JP63090106A JP9010688A JPH01260991A JP H01260991 A JPH01260991 A JP H01260991A JP 63090106 A JP63090106 A JP 63090106A JP 9010688 A JP9010688 A JP 9010688A JP H01260991 A JPH01260991 A JP H01260991A
Authority
JP
Japan
Prior art keywords
block
color difference
circuit
coding
processing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63090106A
Other languages
Japanese (ja)
Other versions
JP2603290B2 (en
Inventor
Yoshisue Ishii
芳季 石井
Makoto Shimokooriyama
下郡山 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63090106A priority Critical patent/JP2603290B2/en
Priority to US07/334,196 priority patent/US5067010A/en
Publication of JPH01260991A publication Critical patent/JPH01260991A/en
Application granted granted Critical
Publication of JP2603290B2 publication Critical patent/JP2603290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)

Abstract

PURPOSE:To attain information compression with very high compression rate without deteriorating picture quality by applying coding to two kinds of digital color difference signals subjected to line sequential processing for each block of (nXm) samples (n, m are integers being 2 or over) bridged over the lines with different color difference signals arranged thereupon. CONSTITUTION:A coding circuit 12 applies block coding to data read out of a block processing circuit 10 and reduce information quantity (bit number per picture element) and outputted. The color difference signal subjected to line sequential processing is fed to a block processing circuit 23 and arranged for each block similarly to the case with the block processing circuit and the result is fed to a code processing circuit 25. The line sequential color difference signal subjected to block coding by the circuit 25 is subjected to time base multiplex with a luminance signal subjected to block coding by a multiplex circuit 30 and the result is sent to a transmission line such as communication equipment, magnetic recording and reproducing device via a terminal 32.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はカラービデオ信号処理方法に関し、特に高能率
符号化を行うカラービデオ信号処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a color video signal processing method, and more particularly to a color video signal processing method that performs high efficiency encoding.

[従来の技術] 一般に輝度信号と2種の色差信号とよりなるカラービデ
オ信号にあっては輝度信号の帯域に対して色差信号の帯
域は狭く、デジタル化する際の標本化周波数についても
輝度信号の標本化周波数の局程度に設定されることにな
る。
[Prior Art] Generally, in a color video signal consisting of a luminance signal and two types of color difference signals, the band of the color difference signal is narrower than that of the luminance signal, and the sampling frequency during digitization also differs from that of the luminance signal. The sampling frequency will be set to about the sampling frequency of the station.

更に画面上に於ける視覚特性を考慮すると、輝度信号の
情報量に対して色信号の情報量を更に圧縮しても目立た
ない。しかし、かといって単純に色差信号の標本化周波
数を更に低下させたのては水平方向の解像度の低下が目
立ってしまう結果となる。
Furthermore, considering the visual characteristics on the screen, it is not noticeable even if the amount of information of the color signal is further compressed compared to the amount of information of the luminance signal. However, simply lowering the sampling frequency of the color difference signal further will result in a noticeable decrease in resolution in the horizontal direction.

そこで、従来より2種類の色差信号(CN。Therefore, conventionally two types of color difference signals (CN.

co)を線順次化して情報量を展としたり、ライン間ま
たはフィールド間でシフトした画素を伝送し他の画素を
間引くオフセットサラサンプリンタにより情報量を局と
することか提案されている。
It has been proposed to expand the amount of information by line-sequentializing the image data (co), or to spread out the amount of information by using an offset Sarasan printer that transmits pixels shifted between lines or fields and thins out other pixels.

他方、近年ビデオ信号は更に高精細化し、走査線数か1
000本以上の所謂高品位(旧Definition)
テレビジョン信号の試験も行われている。そのためビデ
オ信号の情報量は更に増大する傾向にあり、伝送路の伝
送速度の限界を考慮した場合、更に情報量を圧縮しなけ
ればならず、様々な高能率符号化方式か提案されている
On the other hand, in recent years video signals have become even more high-definition, with the number of scanning lines decreasing to 1.
000 or more so-called high quality (formerly Definition)
Television signals are also being tested. Therefore, the amount of information in video signals tends to further increase, and when the limit of the transmission speed of the transmission path is taken into account, the amount of information must be further compressed, and various high-efficiency encoding methods have been proposed.

この高能率符号化方式の1つの例として1画面を(n×
m)個の標本点からなる符号化ブロックに分割し、各ブ
ロック内の各画素の相関を用いて画質劣化を伴わずに情
報の圧縮を行うブロック符号化かある。このブロック符
号化は最も相関の高い画素を用いて符号化を行えるのて
画質の劣化も小さく、かつ符号誤りの伝搬か各クロック
内のみに抑えられるという点て有利である。
As an example of this high-efficiency encoding method, one screen is (n×
There is block encoding in which information is divided into encoding blocks each consisting of m) sample points and the correlation between each pixel in each block is used to compress information without deteriorating image quality. This block encoding is advantageous in that the deterioration in image quality is small because encoding can be performed using pixels with the highest correlation, and the propagation of code errors can be suppressed only within each clock.

[発明か解決しようとする問題点] そこで1本発明は2種の色差信号と輝度信号とよりなる
コンポーネントビデオ信号を伝送または記録再生する場
合に、2種の色差信号についても効率よくブロック符号
化を行い得る新規なカラービデオ信号処理方法を提示せ
んとするものである。
[Problems to be solved by the invention] Therefore, the present invention provides efficient block encoding for the two types of color difference signals when transmitting or recording/reproducing a component video signal consisting of two types of color difference signals and a luminance signal. This paper aims to present a novel color video signal processing method that can perform the following steps.

[問題点を解決するための手段] かかる目的下に於て、本発明のカラービデオ信号処理方
法にあっては、線順次化された2種類のデジタル色差信
号を、互いに異なる色差信号か配されたラインに跨がる
(n×m)サンプル(n、mは夫々2以上の整数)のブ
ロック毎に符号化を行う。
[Means for Solving the Problems] With this objective in mind, in the color video signal processing method of the present invention, two types of line-sequential digital color difference signals are arranged into different color difference signals. Encoding is performed for each block of (n×m) samples (n and m are each an integer of 2 or more) spanning the line.

[作用コ 上述の如くすることで、線順次化によって情報圧縮され
た色差信号について、ブロック符号化を施すため、圧縮
率か極めて高く、かつ画素数に対して符号化ブロックを
小さく設定てきるので大きな画質劣化を伴なうことなく
色差信号を符号化することか可能である。
[Operations] By doing the above, the color difference signal whose information has been compressed by line sequentialization is subjected to block encoding, so the compression rate is extremely high and the encoding block can be set small relative to the number of pixels. It is possible to encode color difference signals without significant deterioration in image quality.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

第1図は本発明の方法の一実施例としてのカラービデオ
信号の伝送システムの概略構成を示す図である。図中2
は輝度信号(Y)の入力端子、4.6は夫々色差信号(
c、、CW >の入力端子である。入力された輝度信号
ci A / D変換器8て標本化され、ブロック化回
路lOに入力される。ブロック化回路10はラスター走
査順のデジタル輝度信号を(4x4)画素のフロック毎
に読み出す回路である。
FIG. 1 is a diagram showing a schematic configuration of a color video signal transmission system as an embodiment of the method of the present invention. 2 in the diagram
4.6 is the input terminal for the luminance signal (Y), and 4.6 is the input terminal for the color difference signal (Y), respectively.
c,, CW> input terminal. The input luminance signal ci is sampled by the A/D converter 8 and input to the blocking circuit IO. The blocking circuit 10 is a circuit that reads out a digital luminance signal in raster scanning order for each block of (4×4) pixels.

第2図はブロック化回路の動作を説明するための図で1
図中実線は第1フイールドの走査線、破線は第2フイー
ルドの走査線を夫々示し、−点鎖線はクロックの境界を
示す。即ちブロック化回路10は○内に示す画素番号て
l→2→3→4→17→18→19→20→・・・→9
→lO→11→12→25→26→27→28→・・・
の順で入力されたデータをl→2→3→4→5→6→7
→8→9→・・・の順で出力する。
Figure 2 is a diagram for explaining the operation of the blocking circuit.
In the figure, the solid lines indicate the scanning lines of the first field, the broken lines indicate the scanning lines of the second field, and the dashed-dotted lines indicate clock boundaries. That is, the blocking circuit 10 has the pixel numbers shown in circles: l→2→3→4→17→18→19→20→...→9
→lO→11→12→25→26→27→28→・・・
The data input in the order of l → 2 → 3 → 4 → 5 → 6 → 7
Output in the order of →8→9→...

符号化回路12てはブロック化回路10から読み出され
たデータをブロック符号化して、情報量(1画素当りの
ビット数)を削減した後、出力する。
The encoding circuit 12 performs block encoding on the data read out from the blocking circuit 10 to reduce the amount of information (the number of bits per pixel) and then outputs the data.

他方、入力端子4,6から入力された色差信号Cs、C
wは夫々A/D変換器14.16で輝度信号の烏の周波
数のサンプリングクロックでデジタル信号に変換される
。デジタル化された色差信号C,,C,は次段の前置き
フィルタ15.17に供給され、垂直方向の周波数か制
限される。前置きフィルタ15.17から出力される色
差信号C,,C,はスイッチング制御回路19からの1
水平走査期間毎に反転する矩形波に応じてスイッチ21
で線順次化される。
On the other hand, the color difference signals Cs and C input from the input terminals 4 and 6
Each of w is converted into a digital signal by A/D converters 14 and 16 using a sampling clock of the frequency of the luminance signal. The digitized color difference signals C,,C, are supplied to the next stage prefilter 15.17, where the vertical frequency is limited. The color difference signals C,,C, output from the prefilter 15.17 are output from the switching control circuit 19.
Switch 21 according to the rectangular wave that is inverted every horizontal scanning period.
is line sequentialized.

この線順次化された信号に於ける画面上の色差信号CN
、C,の配置を第3図にて示す。図中実線は第1フイー
ルド、破線は第2フイールドの走査線を示し、図示の如
く各フレームに於て2ライン単位でC,、Cwか配置さ
れることになる。
The color difference signal CN on the screen in this line-sequential signal
, C, is shown in FIG. In the figure, the solid lines indicate the scanning lines of the first field, and the broken lines indicate the scanning lines of the second field, and as shown in the figure, C, . . . Cw are arranged in units of two lines in each frame.

線順次化された色差信号C,,C,はブロック化回路2
3に供給され、ブロック化回路の場合と同様にクロック
毎に配列変換されて符号化回路25に供給される。この
符号化回路25に於ても水平方向の画素間隔か輝度信号
の場合とは異なっているか(4X4)画素の符号化ブロ
ック内ての相関を利用した符号化が行なわれる。この時
第2図の如きブロックのとり方をすると画素1,5を含
むラインの各画素が00てあれば画素9,13を含むラ
インの各画素がC2となる。
The line sequential color difference signals C,,C, are sent to the blocking circuit 2.
3, the arrangement is converted every clock as in the case of the blocking circuit, and the signal is supplied to the encoding circuit 25. This encoding circuit 25 also performs encoding using the horizontal pixel spacing or the correlation within the encoding block of (4×4) pixels, which is different from that of the luminance signal. At this time, if blocks are taken as shown in FIG. 2, if each pixel in the line including pixels 1 and 5 is 00, each pixel in the line including pixels 9 and 13 becomes C2.

符号化回路25てフロック符号化された線順次色差信号
はブロック符号化された輝度信号と多重化回路30て時
間軸多重され端子32を介して通信機、磁気録再機等の
伝送路34へ送出される。
The line-sequential color difference signal that has been block-coded by the encoding circuit 25 is time-axis multiplexed by the multiplexing circuit 30 with the block-coded luminance signal, and is sent to a transmission line 34 of a communication device, magnetic recording/reproducing device, etc. via a terminal 32. Sent out.

上記システムに於ける前置フィルタの構成例を第4図に
示す。図中101は入力端子。
An example of the configuration of the prefilter in the above system is shown in FIG. In the figure, 101 is an input terminal.

102.103は1水平走査期間(IH)遅延回路、1
04,105,107は局係数器、106は加算器、1
08は出力端子である。この前置フィルタにより垂直方
向の最高周波数か繕程度に制限される。
102.103 is 1 horizontal scanning period (IH) delay circuit, 1
04, 105, 107 are station coefficient units, 106 is an adder, 1
08 is an output terminal. This pre-filter limits the maximum frequency in the vertical direction to just a few.

尚、ブロック符号化の方式としては、例えば直交変換符
号化、ベクトル量子化、及びブロック内の最大値及び最
小値と各画素毎これらの間を線形量子化した量子化イン
デックスを伝送する符号化等、ブロック内の相関を利用
した符号化方式を適用てきる。
Note that block encoding methods include, for example, orthogonal transform encoding, vector quantization, and encoding that transmits a quantization index obtained by linearly quantizing the maximum value and minimum value within a block and each pixel between them. , an encoding method using correlation within a block can be applied.

上述の如き構成によれば、線順次化した色差信号をブロ
ック符号化したのて、高い圧縮率の情報圧縮が可能であ
る。また、一般に2種類の色差信号C,,c、間には高
い相関かあることか知られており、符号化ブロックの大
きさか小さく抑えられることによって高能率の符号化か
可能である。更に1つの符号化フロックを再生すること
かてきれば2種の色差信号C,,C。
According to the above-described configuration, information can be compressed at a high compression rate by block encoding a line-sequential color difference signal. Furthermore, it is generally known that there is a high correlation between two types of color difference signals C, , c, and highly efficient encoding is possible by keeping the size of the encoding block small. Furthermore, if one coded block is to be reproduced, two types of color difference signals C, , C are used.

のいずれも復元てきるので、この符号化処理をディジタ
ルVTRに適用した場合、所謂高速サーチを行なった場
合ても色復元か可能であるのてこの様なディジタルVT
Rに非常に適した処理であるといえる。
Therefore, if this encoding process is applied to a digital VTR, it is possible to restore color even when performing a so-called high-speed search.
It can be said that this process is very suitable for R.

次に復号系について説明する。Next, the decoding system will be explained.

伝送路34を介したカラービデオ信号は端子36を介し
て分離化回路38に供給され輝度信号と、線順次色差信
号に分離される。これらは夫々フロック復号化回路40
.43に供給され、符号化回路12,25.と逆の処理
により復号され、情報量を元に戻す。復号された輝度信
号、線順次色差信号は夫々ラスター化回路てブロック順
から走査線順へと配列変換される。
The color video signal via the transmission path 34 is supplied to a separation circuit 38 via a terminal 36 and is separated into a luminance signal and a line-sequential color difference signal. These are respectively flock decoding circuits 40
.. 43 and encoder circuits 12, 25 . It is decoded by the reverse process to restore the original amount of information. The decoded luminance signal and line-sequential color difference signal are each converted into a rasterization circuit from block order to scanning line order.

ラスター化された線順次色差信号はスイッチ53のB入
力、スイッチ55のA入力に供給される。スイッチング
制御回路50はl水平走査期間毎に反転する矩形波をス
イッチ53゜55に供給し、ラスター化回路49から出
力される線順次色差信号のCNを補間フィルタ57に、
Cwを補間フィルタ59に供給される。この時、補間フ
ィルタ57にはCNが存在しない水平走査期間に0レベ
ルに対応するオール“0”のデータか供給され、補間フ
ィルタ59にはCwか存在しない水平走査期間にOレベ
ルに対応するオール“0″のデータか供給されている。
The rasterized line-sequential color difference signal is supplied to the B input of the switch 53 and the A input of the switch 55. The switching control circuit 50 supplies a rectangular wave that is inverted every l horizontal scanning period to the switches 53 and 55, and supplies the CN of the line-sequential color difference signal output from the rasterization circuit 49 to the interpolation filter 57.
Cw is supplied to an interpolation filter 59. At this time, the interpolation filter 57 is supplied with all "0" data corresponding to the 0 level during the horizontal scanning period in which CN does not exist, and the interpolation filter 59 is supplied with all "0" data corresponding to the O level in the horizontal scanning period in which Cw does not exist. Data of “0” is supplied.

補間フィルタ57.59の構成は第4図のフィルタと同
様であるが、2ライン中1ラインのデータかOレベルに
対応するデータと首換されているのでこの時点て平均レ
ベルか局に減衰していることになり、係数器107が不
要となる。該補間フィルタ57.59により線順次化信
号か2種の色差信号C,,Cwとされる。これらは夫々
D/A変換器58.60に入力され、輝度信号について
はラスター化回路46の出力かそのままD/A変換器5
6に供給される。この時、D/A変換器56の動作周波
数はD/A変換器58.60の4倍であり、これらのD
/A変換器56.58.60でアナログ化された輝度信
号、色差信号C,4,Cwはコンポーネントカラービデ
オ信号として端子62゜64.66から出力される。
The configuration of the interpolation filters 57 and 59 is the same as that of the filter shown in Fig. 4, but since the data of one of the two lines or the data corresponding to the O level is substituted, at this point, the average level or the data attenuated to the station. Therefore, the coefficient unit 107 becomes unnecessary. The interpolation filters 57 and 59 convert the line sequential signals into two types of color difference signals C, , Cw. These are input to D/A converters 58 and 60, respectively, and the luminance signal is output from the rasterization circuit 46 or sent directly to the D/A converter 58.
6. At this time, the operating frequency of the D/A converter 56 is four times that of the D/A converter 58.60, and these
The luminance signals and color difference signals C, 4, and Cw converted into analog signals by the /A converters 56, 58, and 60 are outputted from terminals 62.about.64.66 as component color video signals.

尚、上述実施例に於ける符号化ブロックのサイズは(4
X4)画素の場合を説明したか、−般に(n×m)画素
(n≧2.m≧2)であれば同様の効果か得られ、これ
らn、mの値は符号化方式、データ圧縮率の要求等によ
って任意に決定できるものである。
In addition, the size of the encoded block in the above embodiment is (4
X4) Did you explain the case of pixels? - In general, the same effect can be obtained with (n×m) pixels (n≧2.m≧2), and the values of these n and m depend on the encoding method and data. This can be arbitrarily determined depending on the compression ratio requirements and the like.

[発明の効果コ 以上、説明した様に本発明によれば、色差信号について
画質を劣化させず極めて高い圧縮率ての情報圧縮か可能
なカラービデオ信号処理方法か得られる。
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a color video signal processing method capable of compressing information at an extremely high compression ratio without deteriorating the image quality of color difference signals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例としてのカラービデオ
信号伝送システムの概略構成を示す図、 第2図は第1図中のブロック化回路の動作を説明するた
めの図、 第3図は線順次された信号の画面上の各色差信号の配置
を示す図、 第4図は第1図中の前芒フィルタの構成を示す図である
。 図中 4.6・・・色差信号入力端子 21・・・スイッチ 23・・・ブロック化回路 25・・・ブロック符号化回路
FIG. 1 is a diagram showing a schematic configuration of a color video signal transmission system as an embodiment of the method of the present invention, FIG. 2 is a diagram for explaining the operation of the blocking circuit in FIG. 1, and FIG. 4 is a diagram showing the arrangement of each color difference signal on the screen of line-sequential signals, and FIG. 4 is a diagram showing the configuration of the front filter in FIG. 1. In the figure 4.6...Color difference signal input terminal 21...Switch 23...Blocking circuit 25...Block encoding circuit

Claims (1)

【特許請求の範囲】[Claims] 線順次化された2種類のディジタル色差信号を、互いに
異なる色差信号が配されたラインに跨がる(n×m)サ
ンプル(n、mは夫々2以上の整数)のブロック毎に符
号化を行うカラービデオ信号処理方法。
Two types of line-sequential digital color difference signals are encoded for each block of (n×m) samples (n and m are integers of 2 or more) spanning lines with different color difference signals. Color video signal processing method.
JP63090106A 1988-04-11 1988-04-11 Color video signal processing method Expired - Fee Related JP2603290B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63090106A JP2603290B2 (en) 1988-04-11 1988-04-11 Color video signal processing method
US07/334,196 US5067010A (en) 1988-04-11 1989-04-06 Color video signal processing device with encoding and compression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090106A JP2603290B2 (en) 1988-04-11 1988-04-11 Color video signal processing method

Publications (2)

Publication Number Publication Date
JPH01260991A true JPH01260991A (en) 1989-10-18
JP2603290B2 JP2603290B2 (en) 1997-04-23

Family

ID=13989268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090106A Expired - Fee Related JP2603290B2 (en) 1988-04-11 1988-04-11 Color video signal processing method

Country Status (1)

Country Link
JP (1) JP2603290B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269894A (en) * 1987-04-28 1988-11-08 Sony Corp Highly efficient encoder for color television signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269894A (en) * 1987-04-28 1988-11-08 Sony Corp Highly efficient encoder for color television signal

Also Published As

Publication number Publication date
JP2603290B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
US5164819A (en) Method and system for coding and compressing color video signals
CN1124045C (en) Runlength coding method for use in video signal encoding system
US5067010A (en) Color video signal processing device with encoding and compression
US5136379A (en) Video signal processing device capable of vertical blocking
JPH0522715A (en) Picture encoder
KR100359671B1 (en) Encoder and decoder
JP3880088B2 (en) Encoding device and decoding device
EP0920212B1 (en) Video signal coding apparatus
JPH04229382A (en) Method and device for resolution conversion of digital image data
JP2901656B2 (en) Image coding device
JPH06292184A (en) Coding system
JP2603290B2 (en) Color video signal processing method
JPH01261989A (en) Method for processing color video signal
JPH04312089A (en) Data compressor and its expander device
JPH0549021A (en) High efficient coder
JPH0818957A (en) Automatic threshold setting method for conditional filter and its decoding method
JP2001078187A (en) Image decoder
JPH01260992A (en) Color video signal processing method
JPH01260990A (en) Color video signal processing method
JPS6146684A (en) System and device for inter-frame encoding/decoding
JPH01261096A (en) Color video signal processing method
JPH01260986A (en) Color video signal processing method
KR0160621B1 (en) Method and device for image compression and decompression
JPH05227547A (en) Method and system for coding and compressing video signal
KR950008640B1 (en) Image compression coding method and decoding method for bit fixation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees