JPH01260281A - Air liquefying machine - Google Patents

Air liquefying machine

Info

Publication number
JPH01260281A
JPH01260281A JP63085366A JP8536688A JPH01260281A JP H01260281 A JPH01260281 A JP H01260281A JP 63085366 A JP63085366 A JP 63085366A JP 8536688 A JP8536688 A JP 8536688A JP H01260281 A JPH01260281 A JP H01260281A
Authority
JP
Japan
Prior art keywords
air
pipe
cooling
cooling pipe
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63085366A
Other languages
Japanese (ja)
Inventor
Kazumasa Aiba
相葉 和征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63085366A priority Critical patent/JPH01260281A/en
Publication of JPH01260281A publication Critical patent/JPH01260281A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To prevent the freezing of saturated water vapor sent into an air liquefying unit and improve the efficiency of an air liquefying machine, by providing a dehumidifying device, condensing and removing the saturated water vapor in suction air, in an air suction system at the upstream side of the air liquefying unit. CONSTITUTION:A plurality of cooling pipes 13 is arranged in an air suction duct 12 at the upstream side of an air liquefying unit. The cooling pipe 13 is constituted of the combination of an upper cooling pipe 13a consisting of a reverse U-shape bent pipe projected from the upper part of the duct 12 and a straight pipe type lower cooling pipe 13b arranged in the duct 12 while a multitude of fins 14 is attached to the cooling pipe. The lower end opening of the upper cooling pipe 13a and the upper end opening of the lower cooling pipe 13b are connected to a slanted trough type upper pipe collecting member 15 provided on the upper inner wall of the duct 12. The lower opening of the lower cooling pipe 13b is connected to a trough type lower pipe collecting member 16. Low-boiling point cooling medium 17 is received in the pipe collecting chamber 16 and evaporation as well as condensation are repeated between the cooling pipes 13a, 13b whereby saturated water vapor in air passing through the duct 12 is condensed and removed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、外部空気を吸引して冷却液化する空気液化
機の改良に関するものである。
The present invention relates to an improvement in an air liquefier that sucks outside air and cools it to liquefy it.

【従来の技術】[Conventional technology]

第3図は従来の空気液化機を示す断面図であって、図に
おいて、1は空気液化機の本体となって空気吸引路を形
成するカバー、2はこのカバー1の空気吸入口(空気吸
引系統)、3は上記カバー1内に配置され、空気液化機
の外部より空気を矢印方向に蛇行させて空気液化機の内
部に導くための内筒、4は上記カバー1に装備されたシ
リンダ、5はこのシリンダ4の上端に一体形成された液
化空気貯溜用の受皿、6はこの受皿5内の中央部で上記
シリンダ4の上端閉塞位置に設けられたシリンダヘッド
、このシリンダヘッド6°の部分は一195°C程度に
まで冷却される超低温の空気液化部となっている。7は
上記シリンダヘッド6で液化されて上記受皿5内に貯溜
された液化空気、8はこの液化空気7を外部に導き出す
ための導管、9は上記シリンダ4内を往復運動して該シ
リンダ4内に予め充填された冷媒ガスを上記シリンダヘ
ッド6との間で断熱圧縮膨脹させることにより、上記シ
リンダヘッド6を一195°C程度にまで冷却させるた
めのピストン、10はこのピストン9に連結されている
ピストンロンドである。 次に動作について説明する。ピストン9の往復運動でシ
リンダ4内の冷媒ガスが断熱圧縮膨脹され、これにより
シリンダヘッド6が一195°C程度の超低温まで冷却
されると、このシリンダヘッド6に接触していた空気が
液化し、この部分の圧力が低下することにより、空気液
化機内の空気液化部であるシリンダヘッド6の近傍と空
気吸入口2との間に圧力差が生じる。この圧力差によっ
て、空気液化機の外部空気が空気吸入口2からカバー1
と内筒3との間の蛇行通路を矢印方向に導かれ、上述の
ように一195°C程度まで冷却されたシリンダヘッド
6に到達することにより、該シリンダヘッド6の表面で
上記外部空気は液化し、その液化空気7は受皿5内に流
入して溜まる。そして、上記受皿5内に成る程度の液化
空気7が溜まると、この液化空気7は導管8から外部へ
連続的に流出する。
Fig. 3 is a cross-sectional view showing a conventional air liquefier. system), 3 is an inner cylinder arranged inside the cover 1, for meandering air from the outside of the air liquefier in the direction of the arrow and guiding it into the inside of the air liquefier; 4 is a cylinder equipped on the cover 1; 5 is a saucer for liquefied air storage integrally formed at the upper end of the cylinder 4; 6 is a cylinder head provided at the center of the saucer 5 at the upper end closed position of the cylinder 4; a 6° portion of the cylinder head; is an ultra-low temperature air liquefaction section that is cooled to about -195°C. 7 is liquefied air that has been liquefied by the cylinder head 6 and stored in the saucer 5; 8 is a conduit for guiding the liquefied air 7 to the outside; 9 is a conduit that reciprocates within the cylinder 4 to A piston 10 is connected to the piston 9 for cooling the cylinder head 6 to about -195° C. by adiabatically compressing and expanding refrigerant gas previously filled in the cylinder head 6. It is a piston rondo. Next, the operation will be explained. The refrigerant gas in the cylinder 4 is adiabatically compressed and expanded by the reciprocating motion of the piston 9, and when the cylinder head 6 is cooled to an extremely low temperature of about 1195°C, the air that was in contact with the cylinder head 6 is liquefied. As the pressure in this area decreases, a pressure difference is generated between the air suction port 2 and the vicinity of the cylinder head 6, which is the air liquefaction section in the air liquefaction machine. This pressure difference causes the external air of the air liquefier to flow from the air intake port 2 to the cover 1.
The external air is guided in the direction of the arrow through the meandering passage between the inner cylinder 3 and the inner cylinder 3, and reaches the cylinder head 6, which has been cooled to about -195°C as described above. The liquefied air 7 flows into the saucer 5 and accumulates therein. When the liquefied air 7 accumulates in the saucer 5, the liquefied air 7 continuously flows out from the conduit 8.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の空気液化機を以上のように構成されているので、
吸入される外部空気が乾燥していれば、その乾燥空気の
みをシリンダヘッド6で液化させ、その液化空気7を外
部に流出させることができるが、吸入空気が湿気(水蒸
気)を含んでいる場合には、空気が液化する前に水蒸気
が液化し、それがシリンダヘッド6の廻りに氷結するこ
とにより、該シリンダヘッド6の熱伝導特性が阻害され
、液化空気7が出来難くなるという問題点があった。 この発明は上記のような問題点を解消するためになされ
たもので、吸入空気に含まれた飽和水蒸気を、空気液化
部の前段で予め除去することによって、外部空気を効率
よく液化することができる空気液化機を得ることを目的
とする。
Since the conventional air liquefaction machine is configured as above,
If the external air being sucked in is dry, only that dry air can be liquefied in the cylinder head 6, and the liquefied air 7 can be flowed out to the outside. However, if the sucked air contains moisture (water vapor) However, there is a problem in that the water vapor liquefies before the air liquefies, and the water vapor freezes around the cylinder head 6, impeding the heat conduction properties of the cylinder head 6 and making it difficult to form liquefied air 7. there were. This invention was made to solve the above-mentioned problems, and by removing the saturated water vapor contained in the intake air before the air liquefaction section, it is possible to efficiently liquefy the external air. The purpose is to obtain an air liquefaction machine that can.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る空気液化機は、外部空気を吸引して冷却
液化する超低温の空気液化部の上流側における空気吸引
系統に、吸入空気中に含まれた飽和水蒸気を凝縮除去す
るための除湿装置を接続したものである。
The air liquefier according to the present invention includes a dehumidifier for condensing and removing saturated water vapor contained in the intake air in an air suction system upstream of an ultra-low temperature air liquefaction section that sucks outside air and cools it to liquefy it. It is connected.

【作 用】[For use]

この発明における空気液化機は、吸引される外部空気中
の飽和水蒸気が空気液化部の前段で除湿装置により凝縮
除去されるので、上記空気液化部に上記飽和水蒸気が氷
結するようなことがなく、上記空気液化部には常に乾燥
した空気を供給することができ、このため、液化空気を
連続的に効率よく安定して得ることができる。
In the air liquefier of the present invention, the saturated water vapor in the external air that is drawn in is condensed and removed by the dehumidifier before the air liquefaction section, so that the saturated water vapor does not freeze in the air liquefaction section. Dry air can always be supplied to the air liquefaction section, and therefore liquefied air can be obtained continuously, efficiently and stably.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による空気液化機の除湿装置を
示す断面図、第2図は第1図の■−■線に沿う断面図で
ある。 図において、11は空気液化機の空気吸引系統に接続さ
れる除湿装置、12はこの除湿装置11の本体を構成す
るダクトであり、このダクト12は第3図に示す空気液
化機の空気吸入口2に接続されている。13は上記ダク
ト12に配列された複数の冷却管であり、これらの冷却
管13は、上記ダクト12の上部に取り付けて上方に突
出させた逆U字状屈曲管よりなる複数の上部冷却管13
aと、上記ダクト12内に配列した直管状の複数の下部
冷却管13bとの組合せからなっている。14は上記各
冷却管13(上部冷却管13aおよび下部冷却管13b
)に取り付けられた多数の冷却フィン、15は上記ダク
ト12の上部内壁に設けられた傾斜樋状の上部管寄せ部
材で、この上部管寄せ部材15は前記上部冷却管13a
の各下端開口部と前記下部冷却管13bの上端開口部を
それぞれ所定の間隔で束ねて接続している。16は上記
ダクト12の内底部に設けられた中空樋状の下部管寄せ
部材で、前記下部冷却管13bの下端開口部を所定の間
隔で束ねて接続している。17は上記下部管寄せ部材1
6内に収容されたエーテルやフロン;:等から成る低沸
点の冷却媒体であり、この冷却媒体17は前記下部冷却
管13b内で蒸発して上昇移流し、かつ前記上部冷却管
13a内での移流過程で凝縮して前記上部管寄せ部材1
5内に流下するようになっている。18は前記上部管寄
せ部材15の近傍に配置され、該上部管寄せ部材15内
を蒸発移流する低沸点の上記冷却媒体17を再度液化さ
せるための冷却ファン、19は前記上部管寄せ部材15
の傾斜下降端側内部と前記下部管寄せ部材16内とを接
続し、前記上部管寄せ部材15内に溜まった上記冷却媒
体17を前記下部管寄せ部材16内に移流させるための
トラップ付パイプである。 次に動作について説明する。除湿装置11の下部管寄せ
部材16内に収容された低沸点の冷却媒体17は蒸発し
て下部冷却管13b内を上昇移流し、かつ該下部冷却管
13bから上部管寄せ部材15内を介して上部冷却管1
3a内に蒸発移流する。このような冷却媒体17の移流
過程において、下部冷却管13bはその内部を蒸発して
上昇移流する冷却媒体17の気化熱により冷却される。 これにより、上記下部冷却管13bとその冷却フィン1
4の表面温度は低下する。この状態において、空気液化
機で吸引され、その超低温の空気液化部(第3図のシリ
ンダヘッド6)に向う途中の外部空気が上記除湿装置1
1のダクト12内を通過することにより、該通過時にそ
の外部空気が上記下部冷却管13bおよびその冷却フィ
ン14の表面に接触する。このとき、それらの下部冷却
管13bおよび冷却フィン14の表面温度と、上記外部
空気に含まれた飽和水蒸気との温度差により、その過飽
和分の水蒸気が上記下部冷却管13bおよび冷却フィン
エ4のそれぞれの表面に結露する。この結露によって、
上記外部空気中の水蒸気が凝縮除去されるので、上記除
湿装置11を通過した空気は乾燥空気となる。そして、
この乾燥空気が上記超低温の空気液化部に送られるので
、この空気液化部による空気液化が円滑に効率よく行わ
れる。 一方、上記上部冷却管13aおよびその冷却フィン14
は冷却ファン18で冷却されていることにより、上記上
部冷却管13a内を蒸発移流する低沸点の冷却媒体17
は凝縮する。そして、凝縮した冷却媒体17は上記上部
冷却管13a内を流下して上部管寄せ部材15内に溜ま
り、この上部管寄せ部材15内からトラップ付バイブ1
9内を通って下部管寄せ部材16内に移動し、この下部
管寄せ部材16内で再び蒸発して上記上部冷却管13a
内を上昇するというサイクルを繰り返す。 なお、上記実施例では、上部管寄せ部材15と下部管寄
せ部材16との間に冷却管13を一列に配置したが、こ
の冷却管13は千鳥状に配置したり、複数列配置しても
よい。また、冷却ファン18で上部冷却管13aおよび
冷却フィン14を空冷して上部冷却管13a内を移流す
るの蒸発冷却媒体17を液化したが、この蒸発冷却媒体
17の液化は水冷により行ってもよい。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional view showing a dehumidifying device for an air liquefier according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. In the figure, 11 is a dehumidifier connected to the air suction system of the air liquefier, 12 is a duct that constitutes the main body of the dehumidifier 11, and this duct 12 is the air intake port of the air liquefier shown in FIG. Connected to 2. Reference numeral 13 denotes a plurality of cooling pipes arranged in the duct 12, and these cooling pipes 13 are a plurality of upper cooling pipes 13 formed of inverted U-shaped bent pipes attached to the upper part of the duct 12 and projecting upward.
a, and a plurality of straight lower cooling pipes 13b arranged in the duct 12. 14 indicates each of the cooling pipes 13 (upper cooling pipe 13a and lower cooling pipe 13b).
) attached to the upper cooling pipe 13a, the upper header member 15 is an inclined gutter-shaped upper header member provided on the upper inner wall of the duct 12.
The lower end openings of the lower cooling pipes 13b and the upper end openings of the lower cooling pipes 13b are bundled and connected at predetermined intervals, respectively. Reference numeral 16 denotes a hollow gutter-shaped lower header member provided at the inner bottom of the duct 12, which connects the lower end openings of the lower cooling pipes 13b in bundles at predetermined intervals. 17 is the lower header member 1
This cooling medium 17 is a low boiling point cooling medium made of ether, chlorofluorocarbon, etc. contained in the lower cooling pipe 13b, and is advected upward by evaporation in the lower cooling pipe 13b. The upper header member 1 is condensed during the advection process.
It is designed to flow down to within 5. 18 is a cooling fan disposed near the upper header member 15 for reliquefying the low boiling point cooling medium 17 that evaporates and advects within the upper header member 15; 19 is a cooling fan disposed near the upper header member 15;
A pipe with a trap connects the inside of the inclined descending end side and the inside of the lower header member 16 and advects the cooling medium 17 accumulated in the upper header member 15 into the lower header member 16. be. Next, the operation will be explained. The low boiling point cooling medium 17 accommodated in the lower header member 16 of the dehumidifier 11 evaporates and advects upward in the lower cooling pipe 13b, and flows from the lower cooling pipe 13b through the upper header member 15. Upper cooling pipe 1
Evaporation advection occurs within 3a. In such an advection process of the cooling medium 17, the lower cooling pipe 13b is cooled by the heat of vaporization of the cooling medium 17 that evaporates inside and advects upward. As a result, the lower cooling pipe 13b and its cooling fins 1
4's surface temperature decreases. In this state, external air that is sucked in by the air liquefier and is on its way to the ultra-low temperature air liquefaction section (cylinder head 6 in FIG. 3) is transferred to the dehumidifier 1.
By passing through the inside of the duct 12, the external air comes into contact with the lower cooling pipe 13b and the surfaces of the cooling fins 14 thereof. At this time, due to the temperature difference between the surface temperature of the lower cooling pipe 13b and the cooling fins 14 and the saturated water vapor contained in the external air, the supersaturated water vapor is transferred to the lower cooling pipe 13b and the cooling fin 4, respectively. Condensation forms on the surface. Due to this condensation,
Since the water vapor in the external air is condensed and removed, the air that has passed through the dehumidifier 11 becomes dry air. and,
Since this dry air is sent to the ultra-low temperature air liquefaction section, air liquefaction by this air liquefaction section is performed smoothly and efficiently. On the other hand, the upper cooling pipe 13a and its cooling fins 14
is cooled by the cooling fan 18, so that the low boiling point cooling medium 17 evaporates and advects inside the upper cooling pipe 13a.
is condensed. The condensed cooling medium 17 flows down inside the upper cooling pipe 13a and accumulates in the upper header member 15.
9 and moves into the lower header member 16, evaporates again within this lower header member 16, and becomes the upper cooling pipe 13a.
The cycle of rising within is repeated. In the above embodiment, the cooling pipes 13 are arranged in a line between the upper header member 15 and the lower header member 16, but the cooling pipes 13 may be arranged in a staggered manner or in multiple rows. good. Although the evaporative cooling medium 17 advected in the upper cooling pipe 13a was liquefied by air-cooling the upper cooling pipe 13a and the cooling fins 14 with the cooling fan 18, the liquefaction of the evaporative cooling medium 17 may also be performed by water cooling. .

【発明の効果】【Effect of the invention】

以上のように、この発明によれば、外部空気を吸引して
冷却液化する超低温空気液化部の上流側で、上記外部空
気に含まれた飽和水蒸気を除湿装置により凝縮除去する
構成としたので、空気液化機で吸引される外部空気を乾
燥空気に変換して上記超低温空気液化部に送り込むこと
ができ、もって、外部空気に含まれた水蒸気による上記
超低温空気液化部での氷結を可及的に少なくでき、この
氷結による超低温空気液化部の熱伝導特性が阻害される
ようなことがなくなって空気の液化を連続して効率よく
行うことができ、空気液化機の運転効率を大幅に向上で
きるという効果がある。
As described above, according to the present invention, the saturated water vapor contained in the external air is condensed and removed by the dehumidifier on the upstream side of the ultra-low temperature air liquefaction section that sucks outside air and cools it to liquefy it. External air drawn in by the air liquefaction machine can be converted into dry air and sent to the ultra-low temperature air liquefaction section, thereby minimizing freezing in the ultra-low temperature air liquefaction section due to water vapor contained in the external air. It is said that this can reduce the amount of air liquefied, and that the heat conduction characteristics of the ultra-low temperature air liquefaction section will not be inhibited by this freezing, making it possible to liquefy air continuously and efficiently, greatly improving the operating efficiency of the air liquefaction machine. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による空気液化機の除湿装
置を示す断面図、第2図は第1図の■−■線に沿う断面
図、第3図は従来の空気液化機を示す断面図である。 図において、2は空気吸入口(空気吸引系統)、6はシ
リンダヘッド(空気液化部)、11は除湿装置である。 なお、図中、同一符号は同一または相当部分を示す。 特 許 出 願 人  三菱電機株式会社第1図 11−味)i褪! ヒJ7
Fig. 1 is a sectional view showing a dehumidifying device for an air liquefier according to an embodiment of the present invention, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 shows a conventional air liquefier. FIG. In the figure, 2 is an air intake port (air suction system), 6 is a cylinder head (air liquefier), and 11 is a dehumidifier. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Patent applicant Mitsubishi Electric Co., Ltd. Figure 1 11-Taste) i Fading! Hi J7

Claims (1)

【特許請求の範囲】[Claims] 外部空気を吸引して冷却液化する超低温の空気液化部を
備えた空気液化機において、上記空気液化部の上流側の
空気吸引系統に接続され、吸引空気中に含まれた飽和水
蒸気を上記空気液化部の前段で凝縮除去する除湿装置を
有する空気液化機。
In an air liquefaction machine equipped with an ultra-low-temperature air liquefaction section that sucks in outside air and cools it to liquefy it, the air liquefaction machine is connected to an air suction system upstream of the air liquefaction section and converts the saturated water vapor contained in the drawn air into the air liquefaction machine. An air liquefaction machine with a dehumidifier that removes condensation at the front stage of the air liquefaction machine.
JP63085366A 1988-04-08 1988-04-08 Air liquefying machine Pending JPH01260281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63085366A JPH01260281A (en) 1988-04-08 1988-04-08 Air liquefying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63085366A JPH01260281A (en) 1988-04-08 1988-04-08 Air liquefying machine

Publications (1)

Publication Number Publication Date
JPH01260281A true JPH01260281A (en) 1989-10-17

Family

ID=13856719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63085366A Pending JPH01260281A (en) 1988-04-08 1988-04-08 Air liquefying machine

Country Status (1)

Country Link
JP (1) JPH01260281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104885A1 (en) * 2012-01-12 2013-07-18 Econotherm Uk Limited Heat transfer unit and a heat exchanger
CN105352350A (en) * 2015-12-15 2016-02-24 中铁西北科学研究院有限公司 Multi-section heat pile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104885A1 (en) * 2012-01-12 2013-07-18 Econotherm Uk Limited Heat transfer unit and a heat exchanger
CN105352350A (en) * 2015-12-15 2016-02-24 中铁西北科学研究院有限公司 Multi-section heat pile

Similar Documents

Publication Publication Date Title
US20190323714A1 (en) Dehumidifier
US3759050A (en) Method of cooling a gas and removing moisture therefrom
US11639800B2 (en) Dehumidification drainage system with mist eliminator
JP2014224633A (en) Dehumidifier
JPH01260281A (en) Air liquefying machine
JP2015013253A (en) Dehumidifier
US3935715A (en) Vapor condenser for a refrigeration system
JP4428498B2 (en) Evaporative exhaust structure of defrost water in storage
JP2014223577A (en) Dehumidifier
KR100252821B1 (en) Drain structure of an air conditioner
KR100609169B1 (en) Cascade refrigerating cycle
KR100522201B1 (en) structure of eliminator in absorption chiller
KR100829185B1 (en) Air conditioner
KR20050083417A (en) Case of dehumidifier having bucket
JPS64990Y2 (en)
JPH01222193A (en) Refrigerating machine
CN2397423Y (en) Radiating device of condenser tube by using air conditioning condensate drain
KR100436935B1 (en) One Body Type Evaporator Havng The Sub-Cooling Condensor
KR100539812B1 (en) Drain scattering device for window type air conditioner
JPS5912528Y2 (en) Refrigerator with wet air-cooled condenser
JPS5835343A (en) Spot cooler
JPH05164433A (en) Freezing cycle accumulator
KR20040039766A (en) Window type air-conditioner
JPH08105699A (en) Heat transfer tube with inside grooves
KR0176887B1 (en) Evaporating apparatus of refrigeration cycle