JPH01260266A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01260266A
JPH01260266A JP8973588A JP8973588A JPH01260266A JP H01260266 A JPH01260266 A JP H01260266A JP 8973588 A JP8973588 A JP 8973588A JP 8973588 A JP8973588 A JP 8973588A JP H01260266 A JPH01260266 A JP H01260266A
Authority
JP
Japan
Prior art keywords
heat exchanger
pressure
refrigerant
temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8973588A
Other languages
Japanese (ja)
Inventor
Satoshi Takahashi
諭史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8973588A priority Critical patent/JPH01260266A/en
Publication of JPH01260266A publication Critical patent/JPH01260266A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lessen the fall in heating efficiency which is due to defrosting by connecting the connection between the outdoor heat exchanger and a pressure reducing device with the outlet of a compressor by means of a refrigerant circuit having a valve in a setup to open said valve when, during heating, the pressure in the refrigerant circuit on the high pressure side or the temperature of the indoor heat exchanger exceeds their respective prescribed point. CONSTITUTION:When the temperature of the indoor heat exchanger 14 rises above a prescribed point set in a setting means 18 during heating, a solenoid valve 17 opens; then, part of refrigerant which is discharged by a compressor 12, has a high temperature and high pressure, and undergoes a reduction in pressure in the passageway flows into the outdoor heat exchanger 16 after joining a flow of refrigerant which has been liquefied by a heat exchanger 14 and reduced in temperature and pressure by a pressure-reducing valve 15. The refrigerant which is supplied to the heat exchanger 16 through a solenoid valve 17 has a high enthalpy, hence the refrigerant in which the two flows are combined has a higher enthalpy than an ordinary value. Therefore, the heat required by the refrigerant, absorbed through the heat exchanger 16, is reduced and the pressure and temperature of the refrigerant in the heat exchanger 16 become higher than ordinary pressures and temperatures. As a result, the rate at which icing occurs on the surfaces of the heat exchanger 16 slows down, hence a reduction in frequency of the defrosting required.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は冷暖房兼用の空気調和機に関する。[Detailed description of the invention] (b) Industrial application field This invention relates to an air conditioner for both cooling and heating.

(ロ)従来の技術 従来のこの種の空気調和機においては、第6図に示すよ
うに一暖房運転時には、駆動装置1によって運転される
圧縮機2から吐出された高温高圧の冷媒は、四方切換弁
3の実線で示す流路を通して室内熱交換器4に流入し、
ファン4aによって供給される空気中に放熱して液化す
る。液化した冷媒は、減圧弁5で減圧され、低温低圧と
なって室外熱交換器6に供給され、ファン6aによって
送られる空気から吸熱して気化し、四方切換弁3を再び
経て圧縮1fi2へ戻るようになっている。そして、冷
房運転時には、四方切換弁3が切換えられて冷媒の流れ
が暖房運転時とは逆になり、室内熱交換器4で給熱が行
われると共に室外熱交換器6で放熱か行われる。また、
駆動装置lにはインバータ回路が備えられ、圧縮機2の
能力を制御して冷暖房の程度を調整するようにしている
(B) Prior art In this type of conventional air conditioner, as shown in FIG. Flows into the indoor heat exchanger 4 through the flow path shown by the solid line of the switching valve 3,
It radiates heat into the air supplied by the fan 4a and liquefies it. The liquefied refrigerant is depressurized by the pressure reducing valve 5, becomes low temperature and low pressure, is supplied to the outdoor heat exchanger 6, absorbs heat from the air sent by the fan 6a, vaporizes, and returns to the compression 1fi2 through the four-way switching valve 3 again. It looks like this. During cooling operation, the four-way switching valve 3 is switched to reverse the flow of refrigerant to that during heating operation, and the indoor heat exchanger 4 supplies heat while the outdoor heat exchanger 6 dissipates heat. Also,
The drive device 1 is equipped with an inverter circuit, and controls the capacity of the compressor 2 to adjust the degree of cooling and heating.

(ハ)発明が解決しようとする課題 このような従来の空気調和機においては、暖房運転時に
、室外熱交換器6の表面温度が氷点下まで低下すること
がしばしばみられ、それによって室外熱交換器6の表面
に結露した水が氷結し、いわゆる着霜状態になる。室外
熱交換器6の表面が霜で覆われると熱伝達効率が著しく
低下して空気調和機の暖房能力の不足を来すため、その
都度、四方切換弁3を切換えて冷媒を逆流させ、冷房運
転を行うことにより室外熱交換器6の表面の霜を融解す
る作業が必要となる。従って、その融解作業中は空気調
和機か冷房退転となるため、室内暖房効率の低下を招く
という問題点があった。
(c) Problems to be Solved by the Invention In such conventional air conditioners, it is often seen that the surface temperature of the outdoor heat exchanger 6 drops to below freezing during heating operation, and as a result, the outdoor heat exchanger 6 The water that has condensed on the surface of 6 freezes, creating a so-called frosting state. If the surface of the outdoor heat exchanger 6 is covered with frost, the heat transfer efficiency will drop significantly and the heating capacity of the air conditioner will be insufficient. By operating the outdoor heat exchanger 6, it becomes necessary to melt the frost on the surface of the outdoor heat exchanger 6. Therefore, during the melting process, the air conditioner is turned off for cooling, which causes a problem in that room heating efficiency decreases.

この発明は、このような除霜作業による暖房効率の低下
を軽減し、快適な暖房を行うことが可能な空気調和機を
提供する乙のである。
The purpose of this invention is to provide an air conditioner that can reduce the decrease in heating efficiency caused by defrosting work and provide comfortable heating.

(ニ)課題を解決するための手段 この発明は、圧縮機、室内熱交換器、減圧装置及び室外
熱交換器を環状に接続した冷凍サイクル中に四方切換弁
を設Jす、四方切換弁を切り換えることにより冷房及び
暖房運転が可能な空気調和装置において、室外熱交換器
と減圧装置との接続部と圧縮機の吐出部とを開閉弁を有
する冷媒路で接続し、開閉弁は、暖房時の高圧側冷媒路
の圧力または室内熱交換器の温度が所定値以上になると
、開くことを特徴とする空気調和機である。
(d) Means for Solving the Problems This invention provides a four-way switching valve in which a four-way switching valve is installed in a refrigeration cycle in which a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are connected in a ring. In an air conditioner that can perform cooling and heating operations by switching, the connection part between the outdoor heat exchanger and the pressure reducing device and the discharge part of the compressor are connected by a refrigerant path having an on-off valve, and the on-off valve is used during heating. The air conditioner opens when the pressure of the high-pressure side refrigerant path or the temperature of the indoor heat exchanger exceeds a predetermined value.

(ホ)作用 開閉弁か開状態にある場合には、冷凍サイクルは従来と
同じ作用となるが、開閉弁が開状態になった場合には、
圧縮機から吐出された高温高圧の冷媒の一部が、冷媒路
で減圧されながら室外熱交換器に流入し、室内熱交換器
で液化され減圧装置で減圧されて低温低圧となった冷媒
と合流する。
(e) Operation When the on-off valve is open, the refrigeration cycle operates in the same way as before; however, when the on-off valve is open,
A portion of the high-temperature, high-pressure refrigerant discharged from the compressor is depressurized in the refrigerant path and flows into the outdoor heat exchanger, where it is liquefied in the indoor heat exchanger and depressurized in the decompression device, joining with the refrigerant that has become low-temperature and low-pressure. do.

開閉弁を経て室外熱交換器に供給される冷媒は高いエン
タルピを持つため、合流した冷媒は通常より高いエンタ
ルピを有する。従って、冷媒が室外熱交換器を通して外
気から吸収する必要熱量が低減され、室外熱交換器の冷
媒圧力及び温度は通常より高くなる。そこで暖房時の高
圧側冷媒路の圧力または室内熱交換器の温度が所定値以
上になったときに開閉弁を開いてやれば、それによって
、室外熱交換器表面への着霜の進行速度が低下して除霜
の頻度が少なくなると共に、室内熱交換器の暖房能力が
調整される。
Since the refrigerant supplied to the outdoor heat exchanger via the on-off valve has a high enthalpy, the combined refrigerant has a higher enthalpy than usual. Therefore, the amount of heat required for the refrigerant to absorb from the outside air through the outdoor heat exchanger is reduced, and the refrigerant pressure and temperature in the outdoor heat exchanger are higher than normal. Therefore, if the on-off valve is opened when the pressure of the high-pressure side refrigerant path during heating or the temperature of the indoor heat exchanger exceeds a predetermined value, the speed of frost formation on the surface of the outdoor heat exchanger will be reduced. As the frequency of defrosting decreases, the heating capacity of the indoor heat exchanger is adjusted.

(へ)実施例 以下、図面に示す実施例に基づいて、この発明を詳述す
る。これによって、この発明が限定されるものではない
(f) Examples The present invention will now be described in detail based on examples shown in the drawings. This invention is not limited by this.

第1図はこの発明の一実施例を示す構成説明図であり、
11は圧縮機12の駆動装置、13は四方切換弁、14
は室内熱交換器、!5は減圧弁、16は室外熱交換器、
14aは室内熱交換器用の送風ファン、16aは室外熱
交換器用の送風ファン、17は電磁弁(常閉)、TSは
室内熱交換器14の温度を検出する温度センサ、18は
所定温度を設定する設定器、19は室内熱交換器14の
温度と所定値を比較し室内熱交換器14の温度が所定値
以上に上昇すると74@弁17を開状態にする比較器で
ある。
FIG. 1 is a configuration explanatory diagram showing one embodiment of the present invention,
11 is a drive device for the compressor 12, 13 is a four-way switching valve, 14
is an indoor heat exchanger,! 5 is a pressure reducing valve, 16 is an outdoor heat exchanger,
14a is a blower fan for the indoor heat exchanger, 16a is a blower fan for the outdoor heat exchanger, 17 is a solenoid valve (normally closed), TS is a temperature sensor that detects the temperature of the indoor heat exchanger 14, and 18 is a temperature sensor that sets a predetermined temperature. The setting device 19 is a comparator that compares the temperature of the indoor heat exchanger 14 with a predetermined value and opens the valve 17 when the temperature of the indoor heat exchanger 14 rises above the predetermined value.

このような構成において、暖房運転時には、圧縮機12
から吐出された高温高圧の冷媒は、四方切換弁13の実
線で示す流路を通り、室内熱交換器14に流入し、ファ
ン14aによって供給される空気に放熱して液化した後
、減圧弁15で減圧され、低温低圧となって室外熱交換
器16に供給される。冷媒は、室外熱交換器16におい
て外気から吸熱することによって気化し、四方切換弁1
3を経て圧縮機12に戻る。この時、温度センサTSに
よって検出される室内熱交換器14の温度が設定器18
に設定されている所定値以上になると、比較器19が電
磁弁I7を作動させて開状態にする。電磁弁17が開状
態になると、圧縮機12から吐出された高温高圧の冷媒
の一部が、冷媒路で減圧されながら室外熱交換516に
流入し、室内熱交換器14で液化され、減圧弁15で減
圧されて低温低圧となった冷媒と合流する。
In such a configuration, during heating operation, the compressor 12
The high-temperature, high-pressure refrigerant discharged from the four-way switching valve 13 passes through the flow path shown by the solid line, flows into the indoor heat exchanger 14, radiates heat to the air supplied by the fan 14a and liquefies, and then passes through the pressure reducing valve 15. The pressure is reduced at a low temperature and low pressure, and the temperature is supplied to the outdoor heat exchanger 16. The refrigerant is vaporized by absorbing heat from the outside air in the outdoor heat exchanger 16, and the four-way switching valve 1
3 and returns to the compressor 12. At this time, the temperature of the indoor heat exchanger 14 detected by the temperature sensor TS is set by the setting device 18.
When the predetermined value is exceeded, the comparator 19 operates the solenoid valve I7 to open it. When the solenoid valve 17 is opened, a part of the high temperature and high pressure refrigerant discharged from the compressor 12 flows into the outdoor heat exchanger 516 while being depressurized in the refrigerant path, is liquefied in the indoor heat exchanger 14, and is liquefied by the pressure reducing valve. It joins with the refrigerant that has been depressurized at step 15 and has a low temperature and low pressure.

第2図は圧力(P)−エンタルピ(i)線図であり、実
線は電磁弁17が閉状態にある通常の冷凍サイクルにお
けるP−i線図を示し、破線は電磁弁+7が開状態にあ
る場合の冷凍サイクルにおけろP−i線図を示す。破線
のうち(a)で示す流れが電磁弁I7を通って分流され
る冷媒であり、(b)が室内熱交換器14て液化さイ′
、減圧弁15を経て室外熱交換器16へ流入する冷媒で
ある。電磁弁17を経て分流された冷媒は高いエンタル
ピを持つため、合流した冷媒は、通常の場合より高いエ
ンタルピを持つことになる。このため、冷媒が室外熱交
換器16を介して外気から吸熱すべき必要熱量は少なく
て済むことになり、室外熱交換器16内の冷媒圧力及び
温度は通常の場合に比べて高くなる。この結果、室外熱
交換器16表面への着霜の進行速度は遅くなり、除霜の
頻度が少なくなる。
Fig. 2 is a pressure (P)-enthalpy (i) diagram, where the solid line shows the P-i diagram in a normal refrigeration cycle when solenoid valve 17 is in the closed state, and the broken line shows the P-i diagram in the normal refrigeration cycle when solenoid valve +7 is in the open state. A Pi diagram in a certain case of a refrigeration cycle is shown. Among the broken lines, the flow indicated by (a) is the refrigerant that is divided through the solenoid valve I7, and the flow (b) is the refrigerant that is not liquefied by the indoor heat exchanger 14.
, the refrigerant flowing into the outdoor heat exchanger 16 via the pressure reducing valve 15. Since the refrigerant separated through the electromagnetic valve 17 has a high enthalpy, the combined refrigerant has a higher enthalpy than usual. Therefore, the amount of heat required for the refrigerant to absorb from the outside air via the outdoor heat exchanger 16 is small, and the refrigerant pressure and temperature inside the outdoor heat exchanger 16 are higher than in the normal case. As a result, the speed of frost formation on the surface of the outdoor heat exchanger 16 slows down, and the frequency of defrosting becomes less frequent.

このようにして室内熱交換器14の温度が設定温度以上
になると、電磁弁17が冷媒の一部をバイパスさけて室
外熱交換器16へ供給するので、室外熱交換器の除霜頻
度が低下すると共に、室内熱交換器の温度が制御される
。従って、駆動装置11にインバータ回路を設けて圧縮
機の能力を制御する必要がなくなり、空気調整装置の構
成か単純化される。
In this way, when the temperature of the indoor heat exchanger 14 exceeds the set temperature, the solenoid valve 17 bypasses a portion of the refrigerant and supplies it to the outdoor heat exchanger 16, reducing the frequency of defrosting of the outdoor heat exchanger. At the same time, the temperature of the indoor heat exchanger is controlled. Therefore, there is no need to provide an inverter circuit in the drive device 11 to control the capacity of the compressor, and the configuration of the air conditioning device is simplified.

第3図はこの発明の池の実施例を示す構成説明図であり
、PSは室内熱交換器14と減圧弁15の間の冷媒路に
設けた圧力スイッチ、18aは所定圧力を設定する設定
器、19aは室内熱交換器142Lの吐出部の圧力が所
定値以上になると電磁弁17を作動させて開状態にする
比較器であり、その他の構成は第1図と同等である。
FIG. 3 is a configuration explanatory diagram showing an embodiment of the pond of the present invention, where PS is a pressure switch provided in the refrigerant path between the indoor heat exchanger 14 and the pressure reducing valve 15, and 18a is a setting device for setting a predetermined pressure. , 19a is a comparator that operates the electromagnetic valve 17 to open it when the pressure at the discharge portion of the indoor heat exchanger 142L exceeds a predetermined value, and the other configurations are the same as in FIG.

このような構成において、暖房時に、圧縮機12から吐
出された高温高圧の冷媒は、室内熱交換器14へ流入し
放熱して液化した後、減圧弁で減圧され、室外熱交換器
16へ供給される。圧縮機12の能力が高い程、圧力セ
ンサPSに検出される圧力は高くなるので、その圧力が
所定値以上になると、電磁弁17が開状態となり、室内
熱交換器14に供給される冷媒の一部が電磁弁17によ
ってバイパスされ、室外熱交換器16へ供給される。従
って、前述の実施例と同様に、室外熱交換器16表面へ
の着霜の進行速度は遅くなり、除霜の頻度が少なくなる
。また、この場合、圧力スイッチPSに検出される圧力
は、室内熱交換器14の温度と比例関係にあるので、圧
力センサPSが所定値に制御されることにより、室内熱
交換器14の温度も一定に保たれる。従って、従来のよ
うに圧縮a12の能力を調整して室内熱交換器14の温
度制御を行う必要がない。
In such a configuration, during heating, the high-temperature, high-pressure refrigerant discharged from the compressor 12 flows into the indoor heat exchanger 14, radiates heat and liquefies, and then is depressurized by the pressure reducing valve and supplied to the outdoor heat exchanger 16. be done. The higher the capacity of the compressor 12, the higher the pressure detected by the pressure sensor PS, so when the pressure exceeds a predetermined value, the solenoid valve 17 is opened and the refrigerant supplied to the indoor heat exchanger 14 is A portion is bypassed by the solenoid valve 17 and supplied to the outdoor heat exchanger 16 . Therefore, similarly to the above-described embodiment, the speed of frost formation on the surface of the outdoor heat exchanger 16 is slowed down, and the frequency of defrosting is reduced. Furthermore, in this case, the pressure detected by the pressure switch PS is in a proportional relationship with the temperature of the indoor heat exchanger 14, so by controlling the pressure sensor PS to a predetermined value, the temperature of the indoor heat exchanger 14 is also controlled. remains constant. Therefore, there is no need to control the temperature of the indoor heat exchanger 14 by adjusting the capacity of the compression a12 as in the conventional case.

第4図はこの発明の更に他の実施例に適用する流量制御
弁を示す断面図であり、20はテーパ状の弁座を有する
流量制御弁本体、21は球状の弁体、22は弁体21を
弁座に押圧するスプリングであり、流路23から流路2
4へ流体が矢印へ方向に流れる時、第5図に示すように
、その圧力差ΔPが所定値ΔPs以上になると弁体21
が矢印へ方向に移動し、圧力差ΔPが大きくなるにつれ
て流路23から24へ流れろ流体の流fi19は増大す
る。また、流路24から23方向へは流体が流れろこと
がない。このような流量制御弁を第1図または第3図に
示す実施例の電磁弁I7の代わりに使用すると、減圧弁
I5と室外熱交換器16との接続部に対する圧縮機12
の吐出部の圧力ΔPが所定値ΔPs以上になると、圧縮
機12から吐出される冷媒の一部が直接室外熱交換器!
6に供給されるようになり、その圧力差ΔPが大きい程
その冷媒流量も増大する。それによって、室外熱交換6
16の表面温度が上昇して着霜の進行速度が低下するの
で、除霜作業の頻度が少なくなる。
FIG. 4 is a sectional view showing a flow control valve applied to still another embodiment of the present invention, in which 20 is a flow control valve body having a tapered valve seat, 21 is a spherical valve body, and 22 is a valve body. 21 is a spring that presses the valve seat, and it is a spring that presses the valve seat 21 from the flow path 23 to the flow path 2.
4, when the fluid flows in the direction of the arrow, when the pressure difference ΔP exceeds the predetermined value ΔPs, the valve body 21
moves in the direction of the arrow, and as the pressure difference ΔP increases, the flow fi19 of the fluid flowing from the flow path 23 to the flow path 24 increases. Further, the fluid cannot flow from the flow path 24 to the direction 23. When such a flow control valve is used in place of the solenoid valve I7 of the embodiment shown in FIG.
When the pressure ΔP at the discharge part of the compressor 12 exceeds a predetermined value ΔPs, a portion of the refrigerant discharged from the compressor 12 is directly transferred to the outdoor heat exchanger!
6, and the larger the pressure difference ΔP, the greater the flow rate of the refrigerant. Thereby, outdoor heat exchange 6
Since the surface temperature of 16 rises and the speed of frost formation decreases, the frequency of defrosting work becomes less frequent.

(ト)発明の効果 この発明によれば、圧縮機の能力を制御することなく室
内熱交換器の温度を設定することが可能であり、更に室
外熱交換器表面の着霜の進行速度が低下して除霜作業の
頻度が少なくなり暖房時における暖房効率を向上させる
(g) Effects of the invention According to this invention, it is possible to set the temperature of the indoor heat exchanger without controlling the capacity of the compressor, and furthermore, the speed of frost formation on the surface of the outdoor heat exchanger is reduced. This reduces the frequency of defrosting work and improves heating efficiency during heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成説明図、第2図
は第1図に示す実施例の動作を説明する圧力−エンタル
ピ線図、第3図はこの発明の池の実施例を示す第1図対
応図、第4図はこの発明の更に他の実施例を構成する流
量制御弁を示す断面図、第5図は第4図に示す流量制御
弁の動作を説明するグラフ、第6図は従来例の第1図対
応図である。 It・・・・・・駆動装置、12・・・・・・圧縮機、
13・・・・・・四方切換弁、14・・・・・・室内熱
交換器、15・・・・・・減圧弁、16・・・・・室外
熱交換器、I7・・・・・・7[磁弁、TS・・・・・
・温度センサ、18・・・・・・設定器、I9・・・・
・・比較器。 代理人  弁理士  野 河 信太=F、、m%F第4
 口         !f、52;HヒA 第 6 図
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention, FIG. 2 is a pressure-enthalpy diagram explaining the operation of the embodiment shown in FIG. 1, and FIG. 3 is a diagram showing an embodiment of the pond of this invention. 1 is a diagram corresponding to FIG. 1, FIG. 4 is a sectional view showing a flow control valve constituting another embodiment of the present invention, and FIG. 5 is a graph explaining the operation of the flow control valve shown in FIG. FIG. 6 is a diagram corresponding to FIG. 1 of the conventional example. It... Drive device, 12... Compressor,
13... Four-way switching valve, 14... Indoor heat exchanger, 15... Pressure reducing valve, 16... Outdoor heat exchanger, I7...・7 [Magnetic valve, TS...
・Temperature sensor, 18... Setting device, I9...
...Comparator. Agent Patent Attorney Shinta Nogawa = F,, m%F No. 4
Mouth! f, 52;HhiA Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機、室内熱交換器、減圧装置及び室外熱交換器
を環状に接続した冷凍サイクル中に四方切換弁を設け、
四方切換弁を切り換えることにより冷房及び暖房運転が
可能な空気調和装置において、室外熱交換器と減圧装置
との接続部と圧縮機の吐出部とを開閉弁を有する冷媒路
で接続し、開閉弁は、暖房時の高圧側冷媒路の圧力また
は室内熱交換器の温度が所定値以上になると、開くこと
を特徴とする空気調和機。
1. A four-way switching valve is installed in the refrigeration cycle in which the compressor, indoor heat exchanger, pressure reducing device, and outdoor heat exchanger are connected in a ring.
In an air conditioner that can perform cooling and heating operations by switching a four-way switching valve, the connecting part between the outdoor heat exchanger and the pressure reducing device and the discharge part of the compressor are connected by a refrigerant path having an on-off valve. An air conditioner that opens when the pressure of a high-pressure side refrigerant path or the temperature of an indoor heat exchanger exceeds a predetermined value during heating.
JP8973588A 1988-04-11 1988-04-11 Air conditioner Pending JPH01260266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8973588A JPH01260266A (en) 1988-04-11 1988-04-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8973588A JPH01260266A (en) 1988-04-11 1988-04-11 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01260266A true JPH01260266A (en) 1989-10-17

Family

ID=13979022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8973588A Pending JPH01260266A (en) 1988-04-11 1988-04-11 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01260266A (en)

Similar Documents

Publication Publication Date Title
US20180156505A1 (en) Methods and systems for controlling integrated air conditioning systems
US20060117770A1 (en) Multi-air condition system and method for controlling the same
JPH04161763A (en) Air conditioner
JPH05256525A (en) Air-conditioner
JP3147588B2 (en) Refrigeration equipment
JPH04366341A (en) Air conditioner
JP2007107853A (en) Air conditioner
JPH07120085A (en) Air conditioner
JPH08159621A (en) Air conditioner
JPH109644A (en) Air conditioner
JPH01260266A (en) Air conditioner
JPH10185343A (en) Refrigerating equipment
JPH0320571A (en) Air conditioner
JP2889762B2 (en) Air conditioner
JP2000088361A (en) Air conditioner
JPS6136659A (en) Heat pump type air conditioner
JPH0611204A (en) Heat pump type air conditioner
JPS608661A (en) Refrigerator
JP2503701B2 (en) Air conditioner
JP3870302B2 (en) Defrosting control method for air conditioner
KR100438272B1 (en) Control system of Air conditioner
JPH04136669A (en) Multi-room air conditioner
JPH03113249A (en) Air-conditioning snow melting device
JP3310712B2 (en) Water-cooled air conditioner
JPH08136067A (en) Air conditioner