JPH01259238A - Oil content measuring instrument for refrigerating cycle - Google Patents

Oil content measuring instrument for refrigerating cycle

Info

Publication number
JPH01259238A
JPH01259238A JP8752588A JP8752588A JPH01259238A JP H01259238 A JPH01259238 A JP H01259238A JP 8752588 A JP8752588 A JP 8752588A JP 8752588 A JP8752588 A JP 8752588A JP H01259238 A JPH01259238 A JP H01259238A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
liquid refrigerant
collection container
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8752588A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshimura
吉村 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP8752588A priority Critical patent/JPH01259238A/en
Publication of JPH01259238A publication Critical patent/JPH01259238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To easily measure the content of oil in a refrigerant by interposing a sampling container in a line which makes a bypass connection between a condenser downstream side and a compressor low-pressure side. CONSTITUTION:When the oil content is measured, an opening/closing valve 22a is opened in stationary operation to put a liquid refrigerant in the sampling container 20 by a prescribed amount, and its volume is read. Then when an opening/closing valve 22 is opened, the liquid refrigerant in the sampling container 20 boils and vaporizes at a constant speed with the suctional force of the low pressure side of a compressor 12, so that only the gaseous refrigerant is sucked to the compressor 12 through a constant-flow-rate valve 23. When the temperature of the liquid refrigerant in the sampling container 20 drops, a temperature sensor 28 detects that and turns on a temperature controller 27 to accelerate the vaporization of the liquid refrigerant. When the vaporization is finished, the opening/closing valve 22b is closed, the level of the oil remaining in the sampling container 20 is read on a scale, and the volumetric circulation rate of the oil to the refrigerant is found from the volume of the oil and the volume of the liquid refrigerant which flows in the container first.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍ザイクルを循環する冷媒中のオイル含有
率を計測する冷凍サイクルのオイル含有率計測装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a refrigeration cycle oil content measurement device that measures the oil content in a refrigerant circulating in a refrigeration cycle.

[従来の技術] 従来、冷凍機、ヒートポンプなどの冷凍1ナイクル中の
冷媒漏れ、冷媒不足を検出する手段としては、例えば、
特開昭60−17672号公報に開示されているように
、コンプレッサに吸入されるガス冷媒の過熱度を検出し
、その値が所定値以」−を示した場合、警報などを発し
て、冷媒不足を知らせるようにしたものがある。
[Prior Art] Conventionally, as means for detecting refrigerant leakage or refrigerant shortage during 1 day of refrigeration in refrigerators, heat pumps, etc., there are, for example,
As disclosed in Japanese Unexamined Patent Publication No. 60-17672, the degree of superheat of the gas refrigerant sucked into the compressor is detected, and if the value is higher than a predetermined value, an alarm is issued and the refrigerant is stopped. There is something that lets you know when something is missing.

ところで、冷凍サイクル中の冷媒が漏洩ににり不足した
場合、不足分の冷媒を補給するだけでなく、オイルも補
給して冷媒に対するオイル含有率を適切に調整する必要
がある。
By the way, when there is a shortage of refrigerant in the refrigeration cycle due to leakage, it is necessary not only to replenish the refrigerant for the shortage, but also to replenish oil to appropriately adjust the oil content of the refrigerant.

冷媒に含まれているオイルは、コンプレッサの焼付き防
止を目的とするものであり、コンデンサなどの熱交換器
に対する性能低下を考慮して必要量低減のfit (オ
イル含有率)を有していなければならない。
The purpose of the oil contained in the refrigerant is to prevent seizure of the compressor, and it must have a fit (oil content) that reduces the required amount, taking into account the performance deterioration of heat exchangers such as condensers. Must be.

従来、冷媒中のオイル含有率を求める手段としては、第
4図に示すように、コンデンサ1とエバポレータ2とを
コンプレッサ3を介して連通ずるライン4の液冷媒側に
採取容器5をバイパス接続して、液冷媒を所定量採取し
、これを外部に取出して液冷媒の総重量を計測し、次い
で、この液冷媒を沸騰させて、残存オイルを計量し、上
記冷媒の総重量と一ト記オイルの残存量から、冷媒中の
オイルの含有率を計算するものがある。
Conventionally, as a means for determining the oil content in the refrigerant, as shown in FIG. Then, take a predetermined amount of liquid refrigerant, take it outside, measure the total weight of the liquid refrigerant, boil the liquid refrigerant, measure the remaining oil, and record it with the total weight of the refrigerant. There is a method that calculates the oil content in the refrigerant from the remaining amount of oil.

[発明が解決しようとする課題] しかし、上記従来の冷凍サイクルのオイル含有率泪測に
は、以下に列記する問題がある。
[Problems to be Solved by the Invention] However, the conventional oil content measurement of the refrigeration cycle described above has the following problems.

(1)液冷媒を外部に採取して計測するために、計測に
時間がかかり、且つ、相応の計測設備が必要でコスト的
に問題がある。
(1) Since the liquid refrigerant is sampled externally and measured, it takes time to measure the liquid refrigerant, and requires appropriate measurement equipment, which poses a problem in terms of cost.

(2)信頼性の高い計測結果を得るためには熟練を要し
、計測結果には作業者によって個人差がでる。
(2) Obtaining highly reliable measurement results requires skill, and measurement results vary from worker to worker.

(3)液冷媒採取後は、冷媒とオイルとの補給が必要で
あり、次の冷凍ザイクル運転へスムーズに移行覆ること
が困難である。
(3) After collecting the liquid refrigerant, it is necessary to replenish the refrigerant and oil, making it difficult to smoothly transition to the next freezing cycle operation.

(4)サイクル中に脱着自在の採取容器を数句りた場合
、サイクル内容積がその力増大してしまい、正確なオイ
ル含有率を計測できない問題がある。
(4) If several removable sampling containers are used during a cycle, the internal volume of the cycle increases and there is a problem that accurate oil content cannot be measured.

(5)また、第5図に示すように、密度泪5のセン→ノ
一部5aをライン4の液冷媒側に臨まぜ(オイルの含有
率を冷媒密度から割出すものもあるが、冷媒とオイルの
混合割合が不明な場合、オイル性状の不明、あるいは不
安定な混合冷媒(冷媒中にオイルが混じった状態のもの
)が用いられている場合、オイルの含有率を重置割合か
ら求めることは困難である1゜ し発明の目的] 本発明は、上記事情に鑑みてなされたもので、簡単な設
備で、混合冷媒の混合割合およびオイルの性状に無関係
に冷媒中のオイル含有率を容易にn1測することができ
、しかも、誰ひも簡単に信頼性の高い語測結宋を得るこ
とができるどともに、冷凍サイクルを運転しながらa1
測Jることができ、しかも、採取した冷媒分を補給Jる
必要がなく経済性に優れた冷凍サイクルのオイル含有率
計測装置を提供づることを目的としている。
(5) Also, as shown in Fig. 5, mix the part 5a of the density layer 5 on the liquid refrigerant side of the line 4 (some methods calculate the oil content from the refrigerant density, If the mixing ratio of oil and oil is unknown, the oil properties are unknown, or an unstable mixed refrigerant (oil mixed in the refrigerant) is used, calculate the oil content from the superposition ratio. [Object of the Invention] The present invention was made in view of the above circumstances, and it is possible to control the oil content in a refrigerant using simple equipment, regardless of the mixing ratio of the mixed refrigerant and the properties of the oil. It is easy to measure n1, and anyone can easily obtain a highly reliable word measurement.
It is an object of the present invention to provide an oil content measuring device for a refrigeration cycle which is capable of measuring oil content in a refrigeration cycle and is economical since there is no need to replenish the collected refrigerant.

[課題を解決するための手段および作用]本発明による
冷凍サイクルのオイル含有率計11111装置は、二1
ンデンザ下流側と=1ンブレツ→ノ低圧側とをバイパス
接続するラインに採取容器が介装されてd3す、旧つ上
記ラインの」−記採取容器を挟む上流側と下流側に開閉
弁が介装されているもので、まず、冷媒サイクル運転中
に上記採取容器の上流側の開閉弁を聞け【液冷媒を取入
れ、液冷媒が所定量採取された後、この採取容器の上流
側の開閉弁を閉じ、この採取容器に貯留された液冷媒の
体積量を算出する。
[Means and effects for solving the problem] The refrigeration cycle oil content meter 11111 device according to the present invention has the following features:
A sampling container is installed in the line that bypasses the downstream side of the Ndenza and the low pressure side of the Ndenza. First, during refrigerant cycle operation, turn on the on-off valve on the upstream side of the collection container. is closed, and the volume of liquid refrigerant stored in this collection container is calculated.

次いで、上記開閉弁を閉じ、一方、上記採取容器の下流
側の開閉弁を開くと、この採取容器が負圧になり、液冷
媒が沸騰気化しながら、上記開閉弁を経て」ンプレツザ
の低圧側へ吸引される。そして、上記液冷媒が全て気化
した後、上記開閉弁を閉じ、上記採取容器に残存するオ
イルの体積量を計測する。
Next, when the on-off valve is closed and the on-off valve on the downstream side of the collection container is opened, this collection container becomes under negative pressure, and the liquid refrigerant boils and vaporizes while flowing through the on-off valve and into the low-pressure side of the compressor. is attracted to. After the liquid refrigerant is completely vaporized, the on-off valve is closed, and the volume of oil remaining in the collection container is measured.

その後、最初に計測した液冷媒の体積と、上記オイルの
体積どから冷媒に対するオイルの含有率を求める。
Thereafter, the content of oil in the refrigerant is determined from the volume of the liquid refrigerant measured first and the volume of the oil.

[発明の実施例1 以下、図面を参照して本発明の詳細な説明する。[Embodiment 1 of the invention Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図〜第3図は本考案の一実施例を示し、第1図は冷
凍サイクルの外略図、第2図は温度調整装置の回路図、
第3図は温度レンサの特性図である。
Figures 1 to 3 show an embodiment of the present invention, Figure 1 is a schematic diagram of a refrigeration cycle, Figure 2 is a circuit diagram of a temperature adjustment device,
FIG. 3 is a characteristic diagram of the temperature sensor.

(構 成) 図中の荀号11は冷凍リーイクルであり、この冷凍サイ
クル11に介装された=1ンプレッザ12がエンジン1
3に電磁クラッチ(図示せず〉を介して接離自在に連設
されでいる。
(Configuration) The number 11 in the figure is a refrigerating tank, and the =1 compressor 12 installed in this refrigerating cycle 11 is connected to the engine 1.
3 via an electromagnetic clutch (not shown) so as to be able to freely approach and separate.

さらに、上記冷凍サイクル11には、上記]ンブレッザ
12の高圧側から低圧側へコンデンサ14、受液器15
、開閉弁16、膨服弁17、■バボレータ18がライン
19を介して順に循環接続されている。
Further, in the refrigeration cycle 11, a condenser 14 and a liquid receiver 15 are connected from the high pressure side to the low pressure side of the brezzar 12.
, an on-off valve 16, an inflation valve 17, and a vaporizer 18 are connected in order through a line 19.

また、符号20は採取容器で、この採取容器20の上部
が、上記受液器15の下流側の液ライン19aと、上記
コンプレツリー12の低圧側のガスライン19bとをバ
イパス接続するバイパスライン21に接続されている。
Reference numeral 20 denotes a collection container, and the upper part of the collection container 20 is connected to a bypass line 21 that connects the liquid line 19a on the downstream side of the liquid receiver 15 and the gas line 19b on the low pressure side of the complete tree 12 by bypass. It is connected to the.

また、このバイパスライン21の上記採取容器20を挟
む両側に開閉弁22a、22bが介装されている。
Furthermore, on-off valves 22a and 22b are interposed on both sides of the bypass line 21, sandwiching the collection container 20 therebetween.

さらに、上記バイパスライン21の上記開閉弁22bの
下流側に電液量弁23が介装されている。
Further, an electrolytic liquid amount valve 23 is interposed in the bypass line 21 on the downstream side of the on-off valve 22b.

この電液量弁23は上記採取容器20内での沸騰−〇 
− 時に、混合冷媒のフォーミング(泡立ら)の程度を防止
して、該電液量弁23を介してのオイル流出を防ぐため
のものである。
This electrolytic liquid amount valve 23 controls the boiling temperature within the collection container 20.
- At times, this is to prevent the degree of foaming of the mixed refrigerant and to prevent oil from flowing out through the electro-hydraulic quantity valve 23.

また、上記採取容器20の上部に、この採取容器20の
内圧を計測づる圧力訓24が設【プられ【いる。
Further, a pressure gauge 24 for measuring the internal pressure of the collection container 20 is provided on the top of the collection container 20.

さらに、上記採取容器20の底部20aが漏()状に形
成され、その尖端が上記ガスライン19bに連通づる側
の上記バイパスライン21に、開閉弁25を介して接続
されている。
Further, the bottom portion 20a of the collection container 20 is formed in a hollow shape, and its tip is connected via an on-off valve 25 to the bypass line 21 on the side communicating with the gas line 19b.

なお、図にJ3りる上記採取容器20は透明容器で、上
記底部20aには、例えば1/10cc単位でh1量す
ることのできる目盛りが刻まれ、そこから上部方向へは
、1cc単位の目盛りが刻まれている。
The collection container 20 shown in J3 in the figure is a transparent container, and the bottom part 20a is engraved with a scale that can measure the amount of h1 in units of 1/10 cc, for example, and from there upward there are scales in 1 cc units. is engraved.

また、この採取容器20は真空乾燥された状態で組イ」
りられている。
In addition, this collection container 20 must be assembled in a vacuum-dried state.
It is being taken.

さらに、上記採取容器20の底部20aにヒータ26が
装着されており、このヒータ26が温度調整装置27に
接続されている。さらに、上記採取容器20の底部20
aに、この採取容器20に貯留する液冷媒の温度を検出
する温度センサ28が併設されでおり、この調度ヒンー
リ−28が上記温度調整装置27に接続されている。
Furthermore, a heater 26 is attached to the bottom 20a of the collection container 20, and this heater 26 is connected to a temperature adjustment device 27. Furthermore, the bottom portion 20 of the collection container 20
A temperature sensor 28 for detecting the temperature of the liquid refrigerant stored in the collection container 20 is attached to the temperature sensor 28, and the temperature sensor 28 is connected to the temperature adjustment device 27.

上記湿度センサ28は、第3図に示すにに温度下ににっ
て抵抗値Rが変化するザーミスタを使用しでおり、上記
温度調整装置27では基準湿度TO以下の場合、上記ヒ
ータ26をONさせる。
The humidity sensor 28 uses a thermistor whose resistance value R changes as the temperature decreases, as shown in FIG. let

J、た、第2図は上記温度調整装置27の具体的回路図
であり、比較器OP1の非反転入力端子に抵抗R1、R
2を介して定電圧子Vが接続されており、この抵抗R1
、R2間に、上記温度センサ28が接続されている。
FIG. 2 is a specific circuit diagram of the temperature adjustment device 27, in which resistors R1 and R are connected to the non-inverting input terminal of the comparator OP1.
2 is connected to a constant voltage element V, and this resistor R1
, R2, the temperature sensor 28 is connected between them.

また、上記比較器OPIの反転入力端子が、定電圧子V
に接続する抵抗R3と可変抵抗R4との間に分圧接続さ
れている。
Further, the inverting input terminal of the comparator OPI is connected to the constant voltage voltage V
A voltage dividing connection is made between a resistor R3 connected to the resistor R3 and a variable resistor R4.

ざらに、この比較器OP1の出力端子がトランジスタQ
1のベースに接続されている。この1〜ランジスタQ1
のコレクタ側が定電圧子■に接続され、エミッタ側がリ
レー29の励磁コイル29aに接続されている。
Roughly speaking, the output terminal of this comparator OP1 is the transistor Q.
It is connected to the base of 1. This 1~ransistor Q1
The collector side of is connected to the constant voltage element (2), and the emitter side is connected to the excitation coil 29a of the relay 29.

さらに、このリレー2つのリレー接点29bの一方が、
電源スィッチSW1を介して電源VCCに接続され、他
方が上記ヒータ26に接続されている。
Furthermore, one of the two relay contacts 29b of this relay is
It is connected to the power supply VCC via the power switch SW1, and the other end is connected to the heater 26.

(作 用) 次に、上記構成による実施例の作用について説明する。(for production) Next, the operation of the embodiment with the above configuration will be explained.

(定常運転時) エンジン13を稼働させると、図示しない電磁クラッチ
を介してコンプレッサ12が駆動し、冷凍サイクル11
中を冷媒が循環する。
(During steady operation) When the engine 13 is operated, the compressor 12 is driven via an electromagnetic clutch (not shown), and the refrigeration cycle 11 is driven.
Refrigerant circulates inside.

その間、上記コンプレッサ12で圧縮された高温高圧の
ガス冷媒はコンデンサ14にて放熱後、液化して、受液
器15に蓄留される。
During this time, the high temperature and high pressure gas refrigerant compressed by the compressor 12 releases heat in the condenser 14, is liquefied, and is stored in the liquid receiver 15.

その後、上記液冷媒は、液ライン19aに配設された開
閉弁16を経て膨脂弁17からエバポレータ18に流入
され、■バポレータ18にて吸熱、気化して低温、低圧
のガス冷媒となりガスライン19bを通り上記コンプレ
ツナ12の低圧側へ吸引される。
Thereafter, the liquid refrigerant flows into the evaporator 18 from the fat expansion valve 17 via the on-off valve 16 disposed in the liquid line 19a, and absorbs heat and vaporizes in the evaporator 18, becoming a low-temperature, low-pressure gas refrigerant and forming a gas line. It passes through 19b and is sucked into the low pressure side of the compressor 12.

なお、上記冷媒中には所定量のオイルが含有されτおり
、冷媒と共に冷凍力イクル11中を循環し、上記二1ン
プレッサ12を潤滑づる。また、通富蓮転簡、バイパス
ライン21の開閉弁22a。
Note that the refrigerant contains a predetermined amount of oil, which circulates in the refrigeration power cycle 11 together with the refrigerant to lubricate the compressor 12. Also, the opening/closing valve 22a of the bypass line 21.

22b、25はいずれも閉弁状態にある。Both valves 22b and 25 are in a closed state.

(オイル含有率片l測峙) 一方、オイル含有率を計測する場合、上記定常運転のま
まで、まず、開閉弁22aを開く。すると、採取容器2
0内に液冷媒が流入され、この採取容器20内に流入さ
れる液冷媒を予め体積量を校正した目盛りで読み取る。
(Measurement of oil content rate) On the other hand, when measuring the oil content rate, first open the on-off valve 22a while maintaining the steady operation. Then, collection container 2
A liquid refrigerant flows into the sampling container 20, and the liquid refrigerant flowing into the collection container 20 is read on a scale whose volume is calibrated in advance.

そして、上記採取容器20内に所定量の液冷媒が貯留さ
れたら上記開閉弁22aを閉じ、その体積量を読む。
When a predetermined amount of liquid refrigerant is stored in the collection container 20, the on-off valve 22a is closed and its volume is read.

次いで、開閉弁22bを開くど、コンプレッサ12の低
圧側の吸引力により、上記採取容器20内が減圧され、
この採取容器20内に貯留されている液冷媒が一定の速
度で・沸騰気化して、上記定流量弁23(こにリガス冷
媒のみが該電液量弁23を通りガスライン19bへ導か
れ、上記コンプレツリー12に吸引される。
Next, when the on-off valve 22b is opened, the pressure inside the collection container 20 is reduced by the suction force on the low pressure side of the compressor 12.
The liquid refrigerant stored in this collection container 20 is boiled and vaporized at a constant rate, and only the refrigerant is guided to the gas line 19b through the constant flow valve 23 (the liquid refrigerant passes through the electrostatic liquid flow valve 23). It is attracted to the above-mentioned complete tree 12.

一方、上記採取容器20内の液冷媒の湿度が気化時の潜
熱で設定温度(第3図の温度To)以下に低下すると、
温度センサ28の出力信号で温度調整装置27がONし
、ヒータ26が通電され、上記採取容器20内の液冷媒
を加熱する。づると、上記採取容器20内の液冷媒の気
化がふたたび促進される。
On the other hand, when the humidity of the liquid refrigerant in the collection container 20 drops below the set temperature (temperature To in FIG. 3) due to latent heat during vaporization,
The temperature adjustment device 27 is turned on by the output signal of the temperature sensor 28, the heater 26 is energized, and the liquid refrigerant in the collection container 20 is heated. As a result, the vaporization of the liquid refrigerant in the collection container 20 is promoted again.

そして、上記採取容器20内の液冷媒が上記設定温度T
O以上になると、これを上記温度センサ28の出ノj信
号により検知した上記温度調整装置27は、上記ヒータ
26に対する通電を遮断覆る。
Then, the liquid refrigerant in the collection container 20 is at the set temperature T.
When the temperature exceeds 0, the temperature adjusting device 27 detects this based on the output j signal of the temperature sensor 28, and cuts off the power supply to the heater 26.

なお、この温度調整装置27の制御動性は後述する。Note that the control dynamics of this temperature adjustment device 27 will be described later.

ところで、上記電液量弁23は、上記採取容器20内の
オイルが完全に残留するにうに、上記液冷媒の沸騰速度
を調整するものである。
By the way, the electric liquid amount valve 23 is for adjusting the boiling speed of the liquid refrigerant so that the oil in the collection container 20 completely remains.

そして、上記採取容器20内の沸騰現象が終期に近づい
たら、液ワイン19aに介装されている開閉弁16を閉
じ、エバポレータ18と、ガスライン19b内、および
、採取容器20内、バイパスライン21内のガス冷媒を
すべてコンブレラ」プ12にて吸込ませて、]ンデンザ
14、および、受液器15に蓄留する。
When the boiling phenomenon in the collection container 20 approaches the end, the on-off valve 16 installed in the liquid wine 19a is closed, and the evaporator 18, the gas line 19b, the collection container 20, and the bypass line 21 are closed. All of the gas refrigerant in the refrigerant is sucked in by the combrella pump 12 and stored in the refrigerant 14 and receiver 15.

ぞしで、上記採取容器20の液冷媒がJべて気化された
後、開閉弁2′2bを閉じる。
Then, after all of the liquid refrigerant in the collection container 20 has been vaporized, the on-off valve 2'2b is closed.

次いで、−ト記採取容器20内に残存するオイルのレベ
ルを上記目盛りから読み取り、このオイルの体積量と、
最初に流入した液冷媒(オイルが含有された状態)の体
積量とから、オイルの冷媒に対する体積循環率を算出す
る。
Next, the level of oil remaining in the collection container 20 is read from the scale, and the volume of this oil is determined.
The volumetric circulation rate of the oil to the refrigerant is calculated from the volume of the liquid refrigerant (containing oil) that first flows in.

この体積循環率は、上記採取容器20に設りた温度計(
図示せず)、あるいは、上記温度センサ28の出力信号
から、液冷媒貯留時の温度と残存オイルの温度を討測し
、それぞれを比重表を用いて換算して求める。
This volumetric circulation rate is determined by the thermometer installed in the collection container 20 (
Alternatively, the temperature at the time the liquid refrigerant is stored and the temperature of the remaining oil are measured from the output signal of the temperature sensor 28, and each is calculated by converting them using a specific gravity table.

そして、体積循環率を所定に求めた後、上記開閉弁22
a、25を間ぎ、液ライン19aから流入される液冷媒
で、上記採取容器20丙を洗浄し、且つ、上記残存オイ
ルをこの液冷媒に溶解させて、採取容器20の底部20
aの尖端から上記開閉弁25を経て上記ガスライン19
b側へ流出ざぜる。
After determining the volume circulation rate to a predetermined value, the on-off valve 22
a, 25, the collection container 20C is washed with the liquid refrigerant flowing in from the liquid line 19a, and the residual oil is dissolved in this liquid refrigerant, and the bottom part 20 of the collection container 20 is cleaned.
The gas line 19 is connected from the tip of a through the on-off valve 25.
It flows out to the b side.

なお、この開閉弁25の下流側には、コンプレッサ12
の液圧縮を避りるために、キャピラリーヂコーブなどの
図示しない絞り機構が組みイζ」【プられている。
Note that a compressor 12 is installed downstream of this on-off valve 25.
In order to avoid liquid compression, an unillustrated throttling mechanism such as a capillary cove is installed.

そして、上記採取容器20の洗浄が完了した後、開閉弁
22aを閉じ、圧力計24の指示値を見ながら上記採取
容器20内がガスライン19bの圧力になったところで
、上記開閉弁25を閉じ、次の測定セットに備える。
After the cleaning of the collection container 20 is completed, the on-off valve 22a is closed, and when the inside of the collection container 20 reaches the pressure of the gas line 19b while checking the indicated value of the pressure gauge 24, the on-off valve 25 is closed. , prepare for the next set of measurements.

なお、開閉弁22a、22b、25.16を電磁弁にし
て自動制御できるようにしてもよい。
Note that the on-off valves 22a, 22b, and 25.16 may be solenoid valves so that they can be automatically controlled.

また、光センサ等を用い、採取容器20の貯留量を、遠
隔から読み取ることができるようにしてもよい。
Further, the amount stored in the collection container 20 may be read remotely using an optical sensor or the like.

(温度調整装置27の動作) また、上記温度調整装置27は以下のごとく動作する。(Operation of temperature adjustment device 27) Further, the temperature adjustment device 27 operates as follows.

まず、電源スイッチ舖1をONする。First, turn on the power switch 1.

また、温度センサ28が上記採取容器20内に貯留され
ている液冷媒の温度を検出する。この温度調整装置27
には、第3図に示すように、温度に応じて抵抗値変化づ
るサーミスタが採用されている。
Further, a temperature sensor 28 detects the temperature of the liquid refrigerant stored in the collection container 20. This temperature adjustment device 27
As shown in FIG. 3, a thermistor whose resistance value changes depending on the temperature is used.

上記採取容器20に貯留されている液冷媒の温度が設定
温度TO以下の場合、渇疫セン4ノ(サーミスタ)28
の抵抗値Rが設定値R’0より大きくなり、可変抵抗R
4によって設定された比較器OP1の反転入力端子に入
力される基準電圧J:りも高い電圧が、上記比較器OP
1の非反転入力端子に入力される。
When the temperature of the liquid refrigerant stored in the collection container 20 is below the set temperature TO, the drought sensor 4 (thermistor) 28
The resistance value R becomes larger than the set value R'0, and the variable resistance R
Reference voltage J input to the inverting input terminal of comparator OP1 set by
It is input to the non-inverting input terminal of 1.

すると、この比較器OP1の出力端子からトランジスタ
Q1のベースに11信号か出力され、このトランジスタ
Q1がONL、リレー29の励磁コイル29aが励磁さ
れる。
Then, 11 signals are output from the output terminal of the comparator OP1 to the base of the transistor Q1, turning the transistor Q1 ON and exciting the excitation coil 29a of the relay 29.

その結果、このリレー29のリレー接点29bがONI
、、ヒータ26に電源Vccから電流が通電され、上記
採取容器20内の液冷媒が加熱される。
As a result, the relay contact 29b of this relay 29 becomes ONI.
A current is applied to the heater 26 from the power supply Vcc, and the liquid refrigerant in the collection container 20 is heated.

そして、上記採取容器20内の液冷媒の温度が次第に上
背り−ると、上記温亀しンサ28の抵抗値が次第に小さ
くなり、上記液冷媒の温度が設定伯TO以上になると、
上記比較器OP1の非反転入力端子に入力される電圧よ
り、反転入力端子に入ツノされる基準電圧が高くなり、
出力端子からはL信号が出力され、上記トランジスタQ
1は0FFL、上記リレー29が0FFL、上記ヒータ
26に対する電源VCCからの通電が遮断する。
Then, as the temperature of the liquid refrigerant in the collection container 20 gradually rises, the resistance value of the temperature sensor 28 gradually decreases, and when the temperature of the liquid refrigerant exceeds the set value TO,
The reference voltage input to the inverting input terminal is higher than the voltage input to the non-inverting input terminal of the comparator OP1,
An L signal is output from the output terminal, and the transistor Q
1 is 0FFL, the relay 29 is 0FFL, and the power supply to the heater 26 from the power supply VCC is cut off.

このにうにして、上記採取容器20内におりる沸騰気化
中の液冷媒をほぼ一定温度に保持し、この液冷媒の気化
により奪われた潜熱弁を補償する。
In this way, the liquid refrigerant that is being boiled and vaporized in the collection container 20 is maintained at a substantially constant temperature, and the latent heat taken away by the vaporization of the liquid refrigerant is compensated for.

なお、この温度調整装置27は比例式温度制御であって
もJ:い。
Note that this temperature adjustment device 27 may be a proportional temperature control method.

[発明の効果] 以上説明したように本発明によれば、コンデンリー下流
側とコンプレッサ低圧側どをバイパス接続するラインに
採取容器が介装されて−3つ、旧つ一ト記ラインの上記
採取容器を挟む上流側と下流側に開閉弁が介装されてい
るので1上流側の開閉弁を開くことにj;リオイルの含
有されている液冷媒を上記採取容器に所定量採取するこ
とができ、また、この上流側の開閉弁をIIIじ、且つ
、下流側の開閉弁を開くことにより、上記採取容器に貯
留されている液冷媒を沸騰気化さけて、容器内部にオイ
ルのみを残存ざぽることができる。
[Effects of the Invention] As explained above, according to the present invention, collection containers are interposed in the line that bypass connects the downstream side of the condenser and the low pressure side of the compressor. Since on-off valves are installed on the upstream and downstream sides of the container, opening the on-off valve on the upstream side allows a predetermined amount of liquid refrigerant containing reoil to be collected into the collection container. Also, by opening the on-off valve on the upstream side and the on-off valve on the downstream side, the liquid refrigerant stored in the collection container is prevented from boiling and vaporized, and only the oil remains inside the container. can be done.

その結果、簡単な設備で、混合冷媒の混合比率おJ:び
オイルの性状に無関係に冷媒中のオイル含有率を容易に
計測することができ、しかも、誰でも簡単に信頼性の高
いH1測結果を得ることができるばかりでなく、冷凍サ
イクルを運転しながらオイル含有率を計測することがで
き、その上、採取した冷媒は冷凍サイクル中へ還元され
るので、従来のごとく、その採取弁を新たに補給づる必
要がなく経済的であるなど優れた効果が奏される。
As a result, the oil content in the refrigerant can be easily measured with simple equipment, regardless of the mixture ratio of the refrigerant and the properties of the oil. Moreover, anyone can easily measure H1 with high reliability. Not only can you get results, you can also measure the oil content while the refrigeration cycle is running, and what's more, the sampled refrigerant is returned to the refrigeration cycle, so you don't have to close the sampling valve as before. It has excellent effects such as being economical and not requiring new supplies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本考案の一実施例を示し、第1図は冷
凍1ナイクルの外路図、第2図は温度調整装置の回路図
、第3図は湿度セン勺の特性図、第4図、第5図は従来
のオイル含有率計測手段を示す概略図である。 12・・・コンプレッサ、14・・・コンデンサ、20
・・・採取容器、21・・・ライン、22a、22b・
・・開= 16− 閉弁。 第4図 第5図
Figures 1 to 3 show an embodiment of the present invention. Figure 1 is an external circuit diagram of a refrigeration unit, Figure 2 is a circuit diagram of a temperature adjustment device, and Figure 3 is a characteristic diagram of a humidity sensor. , FIG. 4, and FIG. 5 are schematic diagrams showing conventional oil content measuring means. 12... Compressor, 14... Capacitor, 20
... Collection container, 21 ... Line, 22a, 22b.
...Open = 16- Valve closed. Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] コンデンサ下流側とコンプレッサ低圧側とをバイパス接
続するラインに採取容器が介装されており、且つ上記ラ
インの上記採取容器を挟む上流側と下流側に開閉弁が介
装されていることを特徴とする冷凍サイクルのオイル含
有率計測装置。
A sampling container is interposed in a line that bypass-connects the downstream side of the condenser and the low pressure side of the compressor, and on-off valves are interposed on the upstream and downstream sides of the line that sandwich the sampling container. A device for measuring oil content in refrigeration cycles.
JP8752588A 1988-04-08 1988-04-08 Oil content measuring instrument for refrigerating cycle Pending JPH01259238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8752588A JPH01259238A (en) 1988-04-08 1988-04-08 Oil content measuring instrument for refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8752588A JPH01259238A (en) 1988-04-08 1988-04-08 Oil content measuring instrument for refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH01259238A true JPH01259238A (en) 1989-10-16

Family

ID=13917412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8752588A Pending JPH01259238A (en) 1988-04-08 1988-04-08 Oil content measuring instrument for refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH01259238A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866388A (en) * 2016-04-11 2016-08-17 广东美芝制冷设备有限公司 Measurement apparatus used for researching characteristic of oil-containing refrigerant, and measurement method thereof
CN110987712A (en) * 2019-12-06 2020-04-10 合肥通用机械研究院有限公司 Device and method for sampling and measuring oil content of refrigerant
CN111122249A (en) * 2019-12-06 2020-05-08 合肥通用机械研究院有限公司 High-precision full-automatic sampling device and method for measuring oil content of refrigerant
CN114396382A (en) * 2021-12-28 2022-04-26 瑞智(青岛)精密机电有限公司 Device and method for testing oil circulation rate of compressor of air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866388A (en) * 2016-04-11 2016-08-17 广东美芝制冷设备有限公司 Measurement apparatus used for researching characteristic of oil-containing refrigerant, and measurement method thereof
CN110987712A (en) * 2019-12-06 2020-04-10 合肥通用机械研究院有限公司 Device and method for sampling and measuring oil content of refrigerant
CN111122249A (en) * 2019-12-06 2020-05-08 合肥通用机械研究院有限公司 High-precision full-automatic sampling device and method for measuring oil content of refrigerant
CN114396382A (en) * 2021-12-28 2022-04-26 瑞智(青岛)精密机电有限公司 Device and method for testing oil circulation rate of compressor of air conditioning system

Similar Documents

Publication Publication Date Title
US8775123B2 (en) Method for determination of the coefficient of performanace of a refrigerating machine
JPH03186170A (en) Refrigerating machine and refrigerant amount indicating method in refrigerating machine
JP2503152B2 (en) Device to identify and identify different coolants
EP1184616A2 (en) Accurate cryogenic liquid dispenser
Mills et al. Anomalous melting properties of He3
US20070151350A1 (en) Measuring fluid volumes in a container using pressure
US5293750A (en) Control system for liquefied gas container
CN101498298A (en) Apparatus and method for measuring small-sized cold compressor oil circulation amount
US6058719A (en) Heat pump apparatus having refrigerant level indication and associated methods
CN110988025A (en) Intelligent testing system for performance of refrigerant
US3875755A (en) Method of charging a refrigeration system and apparatus therefor
JPH01259238A (en) Oil content measuring instrument for refrigerating cycle
US3903709A (en) Refrigerant charging apparatus
Bayani et al. Online measurement of oil concentrations of R-134a/oil mixtures with a density flowmeter
CN108700352A (en) Refrigeration equipment
CN109781445A (en) A kind of method of determining heating power expansion valve circulation area
CN114658644A (en) Two-stage compression two-stage throttling volumetric refrigerant compressor performance test system and test method
KR100315958B1 (en) Performance tester of compressor
IL44785A (en) A refrigeration system provided with variable length capillary tube
CN110411904A (en) The measuring device of refrigerant working medium contact angle
JPH10259963A (en) Refrigerating cycle device
JP2000321103A (en) Tester for refrigerating compressor
CN112584785A (en) Cryosurgical system
CN218496292U (en) Low heat leakage calorimeter for performance test of displacement type refrigerant compressor
CN219415329U (en) Carbon dioxide filling device