JPH01259208A - Optical surface shape measuring instrument - Google Patents

Optical surface shape measuring instrument

Info

Publication number
JPH01259208A
JPH01259208A JP8656488A JP8656488A JPH01259208A JP H01259208 A JPH01259208 A JP H01259208A JP 8656488 A JP8656488 A JP 8656488A JP 8656488 A JP8656488 A JP 8656488A JP H01259208 A JPH01259208 A JP H01259208A
Authority
JP
Japan
Prior art keywords
measured
light
detection
reflected
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8656488A
Other languages
Japanese (ja)
Inventor
Tsuguo Kono
河野 嗣男
Eiichi Sato
栄一 佐藤
Shiyouhei Kobayashi
章兵 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP8656488A priority Critical patent/JPH01259208A/en
Publication of JPH01259208A publication Critical patent/JPH01259208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To measure the fine displacement of the surface of a body to be measured at plural measurement positions at the same time by passing laser luminous flux through a unidirectional optical element and an objective, reflecting it by a body to be measured, and guiding the luminous flux to a divided photodetector through an optical means for defocusing detection. CONSTITUTION:The luminous flux emitted by a laser light source 10 is passed through the unidirectional optical element 11 and objective 12 and then converged on the surface of the body 13 to be measured. Return light which is reflected by the body 13 to be measured is passed through the optical means 14 for defocusing detection and then reaches the divided photodetector 16. Here, when the return light which is reflected at a point A is considered as to image formation 17 on the body 13 to be measured, the return light from the point A reaches a photodetection part 16A'. The fine displacement or surface roughness at the point A of the body 13 to be measured can be measured from the output signal of the detection part 16A through the operation of the optical means 14 for defocusing detection. Similarly, the surface shapes at points B, C - are measured by detection parts 16B', 16C' - corresponding to other points B, C - of the body 13 to be measured.

Description

【発明の詳細な説明】 本発明は被測定物の微少変位や表面粗さを光学的に測定
する表面形状測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface shape measuring device that optically measures minute displacements and surface roughness of an object to be measured.

〔従来の技術〕[Conventional technology]

レーザ光を用いた形式の光学式表面形状測定装置は、例
えば特開昭56−7246号公報がある。
An example of an optical surface shape measuring device using a laser beam is disclosed in Japanese Patent Application Laid-open No. 7246/1983.

第5図はこのような方式による従来の光学式表面形状測
定装置の構成を示す図で、同図中1はレーザ光源、2は
コリメータレンズ、3は偏光プリズムで、この偏光プリ
ズム3はレーザ光源1からの入射光がP偏光となるよう
な方向に配置されている。又、4は174波長板、5は
対物レンズ、6は被測定物である反射物体で、7は臨界
角プリズムである。尚、この臨界角プリズム7の反射面
7Cは反射物体6がらの反射光の光軸Cに対し、はぼ臨
界角となるように設定されている。8は分割受光センサ
で第6図で示すように分割線8Cで二分割された受光面
8A。
FIG. 5 is a diagram showing the configuration of a conventional optical surface profile measuring device using such a method. In the figure, 1 is a laser light source, 2 is a collimator lens, and 3 is a polarizing prism. It is arranged in a direction such that the incident light from 1 becomes P-polarized light. Further, 4 is a 174 wavelength plate, 5 is an objective lens, 6 is a reflective object to be measured, and 7 is a critical angle prism. Incidentally, the reflecting surface 7C of the critical angle prism 7 is set to form a nearly critical angle with respect to the optical axis C of the reflected light from the reflecting object 6. 8 is a split light receiving sensor, and as shown in FIG. 6, a light receiving surface 8A is divided into two by a dividing line 8C.

8Bからなっている。この分割線8Cは前記臨界角プリ
ズム7の反射面7Cの法線と反射光の光軸Cを含む入射
面に垂直で、且つ光軸Cと交わるようになっている。
It consists of 8B. This dividing line 8C is perpendicular to the plane of incidence including the normal to the reflecting surface 7C of the critical angle prism 7 and the optical axis C of the reflected light, and intersects with the optical axis C.

以上のような構成において、レーザ光源lより出射され
たレーザ光はコリメータレンズ2によって平行光束に変
換され、P偏光で偏光プリズム3に入射される。偏光プ
リズム3に入射したレーザ光は、偏光プリズム3を通過
して次の174波長板4に導かれる。174波長板4に
入射したレーザ光は円偏光の光束に変換された後対物レ
ンズ5を介して反射物体6の表面に集光される。反射物
体6で反射したレーザ光は反射光となり再び同一光路を
通って対物レンズ5.1/4波長板4を通り、S偏光と
なって偏光プリズム3に入射する。偏光プリズム3に入
射した反射物体6からの反射光は反射して臨界角プリズ
ム7に導かれ反射面7Cで反射して分割受光センサ8に
入射され、光量が検出される。
In the above-described configuration, the laser light emitted from the laser light source 1 is converted into a parallel light beam by the collimator lens 2, and enters the polarizing prism 3 as P-polarized light. The laser light incident on the polarizing prism 3 passes through the polarizing prism 3 and is guided to the next 174-wavelength plate 4. The laser light incident on the 174-wavelength plate 4 is converted into a circularly polarized light beam, and then focused on the surface of the reflective object 6 via the objective lens 5 . The laser beam reflected by the reflective object 6 becomes reflected light, passes through the objective lens 5 and 1/4 wavelength plate 4 again through the same optical path, becomes S-polarized light, and enters the polarizing prism 3. The reflected light from the reflective object 6 that is incident on the polarizing prism 3 is reflected and guided to the critical angle prism 7, reflected by the reflective surface 7C, and incident on the divided light receiving sensor 8, where the amount of light is detected.

次に上記装置による表面形状測定の原理について説明す
る。反射物体6の表面が対物レンズの焦点に位置してい
る場合(第5図の実線で示す)を考える。このとき被測
定物6で反則された反射光(以下反射光という)は対物
レンズ5で平行光となるので、臨界角プリズム7の反射
面7Cでの反射光の入射角は全て等しくなる。
Next, the principle of surface shape measurement using the above device will be explained. Consider the case where the surface of the reflective object 6 is located at the focal point of the objective lens (indicated by the solid line in FIG. 5). At this time, the reflected light reflected by the object to be measured 6 (hereinafter referred to as reflected light) is converted into parallel light by the objective lens 5, so that the incident angles of the reflected light at the reflective surface 7C of the critical angle prism 7 are all equal.

この結果、分割受光センサ8で受光される反射光の光量
は全面均一となる。次に反射物体6の表面が対物レンズ
5の焦点位置より矢印X方向に変位した(第5図破線6
′で示す)場合を考える。このとき反射光は対物レンズ
5を通過したのち発散光Mとなる。この結果第5図の臨
界角プリズム7の反射面7Cに入射する光束に着目する
と、第5図紙面の光軸Cに関して左側半分の光束りの光
線は平行光の時と比べて反射面7Cに対する入射角が小
さくなり反射率が低下する。一方光軸Cに関して右側半
分の光束Rに着目すると、この光束の各光線は入射角が
大きくなるので反射率が増加する。かかる作用により分
割受光センサ8に入射する反射光量が不均一となる。即
ち受光面8Aの受光量が低下する。
As a result, the amount of reflected light received by the split light receiving sensor 8 becomes uniform over the entire surface. Next, the surface of the reflective object 6 was displaced from the focal point position of the objective lens 5 in the direction of arrow X (broken line 6 in Figure 5).
Consider the case (denoted by ′). At this time, the reflected light becomes diverging light M after passing through the objective lens 5. As a result, if we focus on the light beam incident on the reflective surface 7C of the critical angle prism 7 in FIG. As the angle of incidence becomes smaller, the reflectance decreases. On the other hand, when focusing on the right half of the light beam R with respect to the optical axis C, each ray of this light beam has a large incident angle, so the reflectance increases. Due to this effect, the amount of reflected light incident on the divided light receiving sensor 8 becomes non-uniform. That is, the amount of light received by the light receiving surface 8A decreases.

次に、反則物体6の表面が矢印X方向と逆方向に変位し
た場合(第5図破線6″で示す)を考える。このとき反
射光は対物レンズ5を出射すると収束光Nとなるので、
臨界角プリズム7の反射面7Cに対する入射角の関係が
前記発散光の場合と逆になり、今度は受光面8Bの受光
量が低下する。そこで分割受光センサ8の受光面8Aと
8Bの出力差を差動増器(図示せず)で検出することに
より反射物体表面と対物レンズ焦点との相対的な位置関
係を求め被測定物表面の微少変位や表面粗さを測してい
た。
Next, consider a case where the surface of the offending object 6 is displaced in the direction opposite to the direction of the arrow X (indicated by the broken line 6'' in FIG.
The relationship of the incident angle to the reflective surface 7C of the critical angle prism 7 is opposite to that for the diverging light, and the amount of light received by the light receiving surface 8B decreases this time. Therefore, by detecting the output difference between the light-receiving surfaces 8A and 8B of the split light-receiving sensor 8 using a differential amplifier (not shown), the relative positional relationship between the reflective object surface and the objective lens focus is determined. It measured minute displacements and surface roughness.

〔発明が解決しようとする問題点] 上記の様な表面形状測定装置は物体表面を2次元的に測
定する場合以下の欠点がある。即ち上記の従来装置によ
る2次元的測定は微少な円形状スポットを物体表面上で
直線的に移動させる走査をその位置を変えながら何度も
繰り返さなければならないので測定に時間がかがり、し
かも2次元駆動のための装置が複雑となりコスト高とな
る欠点がある。
[Problems to be Solved by the Invention] The above-mentioned surface shape measuring device has the following drawbacks when two-dimensionally measuring the surface of an object. In other words, two-dimensional measurement using the above-mentioned conventional device requires repeating scanning by moving a minute circular spot linearly on the object surface many times while changing its position, which takes time. This has the drawback that the driving device is complicated and the cost is high.

本発明は上記の欠点を除去した表面形状測定装置を提供
することを目的とする。
An object of the present invention is to provide a surface profile measuring device that eliminates the above-mentioned drawbacks.

〔問題点を解決するための手段及び作用]第1図は本発
明を説明するための概念図である。第1図(a)におい
て、10は光源、11は例えば凹状円筒レンズの様な一
方向性光学素子、12は対物レンズ、13は表面形状を
測定する被測定物である。第1回部)は第1図(a)の
測面図である6第1図(C)の14は物体表面の形状変
化に応じて変化を与える焦点ずれ検出用光学手段、16
は分割光検出器である。
[Means and operations for solving the problems] FIG. 1 is a conceptual diagram for explaining the present invention. In FIG. 1(a), 10 is a light source, 11 is a unidirectional optical element such as a concave cylindrical lens, 12 is an objective lens, and 13 is an object whose surface shape is to be measured. Part 1) is a surface measurement diagram of FIG. 1(a) 6 14 in FIG. 1(C) is an optical means for detecting defocus that changes according to the change in shape of the object surface; 16
is a split photodetector.

次に作用を説明する。レーザ光′a10を出たレーザ光
束は一方向性光学素子11、対物レンズ12を通過した
後、被測定物13の表面上に集光される。ここでレーザ
光束は一方向性光学素子11の作用により非点収差を生
じ、被測定物13上で第1図(d)の様な線像17を形
成する。この線像の向きをy軸、これと直交する向きを
y軸とする。
Next, the effect will be explained. The laser beam emitted from the laser beam 'a10 passes through a unidirectional optical element 11 and an objective lens 12, and then is focused on the surface of the object to be measured 13. Here, the laser beam produces astigmatism due to the action of the unidirectional optical element 11, and forms a line image 17 on the object to be measured 13 as shown in FIG. 1(d). The direction of this line image is the y-axis, and the direction perpendicular to this is the y-axis.

被測定物13で反射された戻り光は焦点ずれ検出用光学
手段14を通過後分割光検出器16に達する。
The returned light reflected by the object to be measured 13 passes through the defocus detection optical means 14 and then reaches the split photodetector 16 .

分割光検出器16上での集光状態が第1図(e)の拡大
図で示されている。分割光検出器16はy軸方向におい
て少なく共2分割された素子の集まりを1単位とする検
出部16A’ 、16B’−を形成している。これらの
検出部16A ’ 、 16B ’ −は少なく共2個
からなり、線像17の線分方向であるX軸方向に沿って
配列されている。
The state of light condensation on the split photodetector 16 is shown in the enlarged view of FIG. 1(e). The divided photodetector 16 forms detecting sections 16A', 16B'- in which one unit is a collection of elements divided into at least two parts in the y-axis direction. These detection units 16A', 16B'- are composed of at least two pieces and are arranged along the X-axis direction which is the line segment direction of the line image 17.

ここで第1図(d)の被測定物13上の線像17のうち
、点Aの位置で反射された戻り光に着目すると、この点
Aの戻り光は第1図(e)の検出部16A′に達する。
Here, if we focus on the return light reflected at the position of point A in the line image 17 on the object to be measured 13 in FIG. 1(d), the return light at point A is The part 16A' is reached.

従って焦点ずれ検出用光学手段14の作用によって、検
出部16A′の出力信号から被測定物13上の点Aの微
少変位又は表面粗さを測定することができる。
Therefore, by the action of the defocus detection optical means 14, the minute displacement or surface roughness of the point A on the object to be measured 13 can be measured from the output signal of the detection section 16A'.

同様に被測定物の他の点B、C−・と対応する検出部1
6B ’ 、 16C’ −により点B、C−での表面
形状を測定することができる。
Similarly, the detection unit 1 corresponding to other points B, C-.
6B', 16C'- allows the surface shape at points B and C- to be measured.

以上の様に本発明は被測定物上での線像方向における複
数の位置に関する表面形状を同時に測定できるものであ
る。
As described above, the present invention is capable of simultaneously measuring the surface shape of a plurality of positions on the object to be measured in the line image direction.

本発明の表面形状測定装置は光源と、該光源からの光束
を被測定物上に集光する対物レンズと、前記光源と前記
被測定物の間に配置されるものであって前記被測定物上
に線像を形成する一方向性光学素子と、前記被測定物か
らの反射光によって前記対物レンズと前記被測定物の距
離を焦点ずれとして検出する焦点ずれ検出用光学手段と
、前−記焦点ずれ検出用光学手段を通過した光を検出す
る少なく共2つに分割された検出部を少なく共2個有す
る分割光検出手段とを備えたことを特徴とするものであ
る。
The surface profile measuring device of the present invention includes a light source, an objective lens that focuses a light beam from the light source onto the object to be measured, and an object lens disposed between the light source and the object to be measured. a unidirectional optical element that forms a line image thereon; a defocus detection optical means that detects the distance between the objective lens and the object to be measured as a defocus by light reflected from the object to be measured; The present invention is characterized by comprising a divided light detection means having at least two detection sections each of which detects the light that has passed through the defocus detection optical means.

(実施例〕 以下図面に基づき本発明の一実施例を説明する。(Example〕 An embodiment of the present invention will be described below based on the drawings.

第2図は本発明の第1実施例である。第2図(a)で2
0はレーザ光源、21はコリメータレンズ、22は一方
向性光学素子である凹状円筒レンズ、23は偏光プリズ
ム、24は174波長板、25は対物レンズ、26は被
測定物、27は臨界角プリズム、28は円筒状集光レン
ズ、29は分割光検出器である。
FIG. 2 shows a first embodiment of the present invention. 2 in Figure 2(a)
0 is a laser light source, 21 is a collimator lens, 22 is a concave cylindrical lens which is a unidirectional optical element, 23 is a polarizing prism, 24 is a 174 wavelength plate, 25 is an objective lens, 26 is an object to be measured, and 27 is a critical angle prism , 28 is a cylindrical condenser lens, and 29 is a split photodetector.

次に上記第1実施例の作用について説明する。Next, the operation of the first embodiment will be explained.

レーザ光源20より出射されたレーザ光束はコリメータ
レンズ21によって平行光束に変換され凹状の円筒レン
ズ22に入射する。円筒レンズ22では一方向のみレン
ズ作用を受は紙面に垂直な方向では発散するが、紙面と
平行な方向では平行光束のまま出射する。円筒レンズ2
2を出射した光束は偏光プリズム23にP偏光で入射し
、この偏光プリズム23を透過後、174波長板24を
通過して円偏光となり対物レンズ25により被測定物2
6上に集光される。
A laser beam emitted from a laser light source 20 is converted into a parallel beam by a collimator lens 21 and enters a concave cylindrical lens 22 . The cylindrical lens 22 has a lens effect in only one direction, and the light diverges in a direction perpendicular to the plane of the paper, but emits as a parallel beam in a direction parallel to the plane of the paper. Cylindrical lens 2
2 enters the polarizing prism 23 as P-polarized light, and after passing through the polarizing prism 23, it passes through the 174-wavelength plate 24 and becomes circularly polarized light.
The light is focused on 6.

このとき被測定物26は対物レンズ25の焦点位置の近
傍に置かれているので、円筒レンズ22によって非点収
差を生じた光束は紙面と平行な方向で被測定物26上に
結像し、紙面と垂直な面では結像しない。この結果、被
測定II!126上でレーザ光束は紙面に垂直な方向に
沿った線状状態で集光される。第2図(b)は被測定物
26上における線像30を示している。この線像30の
長手方向をX軸方向、これと直交する方向をy軸方向と
する。
At this time, the object to be measured 26 is placed near the focal position of the objective lens 25, so the light beam that has been subjected to astigmatism by the cylindrical lens 22 forms an image on the object to be measured 26 in a direction parallel to the plane of the paper. No image is formed on a plane perpendicular to the plane of the paper. As a result, measured II! The laser beam is focused on 126 in a linear state along the direction perpendicular to the plane of the paper. FIG. 2(b) shows a line image 30 on the object 26 to be measured. The longitudinal direction of this line image 30 is defined as the X-axis direction, and the direction orthogonal thereto is defined as the y-axis direction.

被測定物26上で反射された戻り光は対物レンズ25.
174波長板24を通って偏光プリズム23に入射する
。174波長板24を出射した光束はS偏光となってい
るので偏光プリズム23に入射した光束はこの偏光プリ
ズム23で反射され臨界角プリズム27に入射する。臨
界角プリズム27の反射面27Gは被測定物26で反射
された戻り光の光軸Cに対してほぼ臨界角に設定されて
いる。反射面27Cの法線と光軸Cを含む入射面は円筒
レンズ22のレンズ作用のない方向となる。臨界角プリ
ズム270反射面27Cで反射された戻り光は円筒集光
レンズ28によって円筒レンズ22のレンズ作用のある
方向と同じ方向にのみ集光されて分割光検出器29で検
出される。
The return light reflected on the object to be measured 26 is returned to the objective lens 25.
The light passes through the 174 wavelength plate 24 and enters the polarizing prism 23. Since the light beam emitted from the 174-wave plate 24 is S-polarized, the light beam incident on the polarizing prism 23 is reflected by the polarizing prism 23 and enters the critical angle prism 27. The reflective surface 27G of the critical angle prism 27 is set at approximately a critical angle with respect to the optical axis C of the return light reflected by the object to be measured 26. The plane of incidence including the normal line of the reflective surface 27C and the optical axis C is the direction in which the cylindrical lens 22 does not have any lens action. The returned light reflected by the reflective surface 27C of the critical angle prism 270 is focused by the cylindrical condenser lens 28 only in the same direction as the lens action of the cylindrical lens 22, and is detected by the split photodetector 29.

分割光検出器29は第1図(e)と同様な構成を成す。The split photodetector 29 has a configuration similar to that shown in FIG. 1(e).

第2図(C)の様にy軸方向において2つに分割された
光検出素子29AI’ 、 29At’が11Jlとな
って1単位の検出部29A′を構成している。同様に同
構成を成す検出部29B ’ 、 29C’−・・・−
が複数個y軸方向に沿って配列されている。
As shown in FIG. 2(C), the photodetecting elements 29AI' and 29At' divided into two in the y-axis direction constitute 11Jl and constitute one unit of the detecting section 29A'. Detection units 29B', 29C'-...- similarly have the same configuration.
are arranged along the y-axis direction.

ここで第2図(b)の被測定物26上の線像30のうち
点30Aで反射された反射光に着目する。この反射光は
X軸方向については円筒集光レンズ28で結像されて検
出部29A′上に集光される。
Here, attention is paid to the reflected light reflected at the point 30A of the line image 30 on the object to be measured 26 in FIG. 2(b). This reflected light is imaged by the cylindrical condensing lens 28 in the X-axis direction and condensed onto the detection section 29A'.

この円筒レンズ28は以下の機能を有する。This cylindrical lens 28 has the following functions.

仮に点30Aでの反射が乱反射であったとしても、少な
くとも−・方向に集光作用のある集光レンズ28によっ
てX軸方向については被測定物上の分割光検出器29上
に結像されているので点30Aで反射された戻り光は必
ず検出部29A′に入射する。
Even if the reflection at point 30A is diffuse reflection, at least in the X-axis direction, it is imaged onto the split photodetector 29 on the object to be measured by the condenser lens 28 which has a condensing effect in the - direction. Therefore, the return light reflected at the point 30A is always incident on the detection section 29A'.

ここで被測定物26の表面が対物レンズ25の焦平面位
置にある場合を考える。このとき被測定物26での反射
光は対物レンズ25を透過後X軸方向では平行光束とな
るがX軸方向では発散光となる。いま被測定物26上の
線像30の点30Aでの反射光について考えると点30
Aが対物レンズ25の黒子面内にあるとき対物レンズ2
5の出射光線の全てはy軸方向において平行となる。従
って第5図で説明した臨界角プリズム27の作用により
点30Aの反射光が照射される検出部29八′の光検出
素子29A+’と29A2’の出力値は等しくなり出力
信号差はゼロとなる。
Here, consider a case where the surface of the object to be measured 26 is located at the focal plane of the objective lens 25. At this time, the reflected light from the object to be measured 26 becomes a parallel beam of light in the X-axis direction after passing through the objective lens 25, but becomes diverging light in the X-axis direction. Now considering the reflected light at point 30A of line image 30 on object to be measured 26, point 30
When A is within the mole plane of the objective lens 25, the objective lens 2
All of the output rays of No. 5 are parallel in the y-axis direction. Therefore, due to the action of the critical angle prism 27 explained in FIG. 5, the output values of the photodetecting elements 29A+' and 29A2' of the detecting section 298' to which the reflected light of the point 30A is irradiated are equal, and the output signal difference becomes zero. .

次に被測定物26の表面が対物レンズ26に近づいた場
合(第2図(a)の破線26′で示す)を考える。この
とき対物レンズ25から出射する反射光はy軸方向にお
いて発散光となる。従って前述した臨界角プリズム27
の作用により光検出素子29AI’での光量が小となる
Next, consider a case where the surface of the object to be measured 26 approaches the objective lens 26 (indicated by a broken line 26' in FIG. 2(a)). At this time, the reflected light emitted from the objective lens 25 becomes diverging light in the y-axis direction. Therefore, the critical angle prism 27 mentioned above
Due to this effect, the amount of light at the photodetecting element 29AI' becomes small.

次に被測定物26の表面が対物レンズ26から遠ざかっ
た場合(第2図(a)破線26″で示す)は対物レンズ
25からの出射光はy軸方向において収束光となり、今
度は光検出素子29A2’での光量が小となる。
Next, when the surface of the object to be measured 26 moves away from the objective lens 26 (indicated by the broken line 26'' in FIG. 2(a)), the light emitted from the objective lens 25 becomes convergent light in the y-axis direction, and this time the light is detected. The amount of light at the element 29A2' becomes small.

この様に光検出素子29AI’ と29A2’の出力値
を比較することにより被測定物26上の点30Aにおけ
る微少変位や表面粗さを測定できる。
By comparing the output values of the photodetecting elements 29AI' and 29A2' in this manner, minute displacement and surface roughness at the point 30A on the object to be measured 26 can be measured.

線像30の点30A以外の点30 B 、 30 C−
に関しても同様に、それぞれ対応する検出部29B’。
Points 30B, 30C- other than point 30A of line image 30
Likewise, the corresponding detection units 29B'.

29C=−一で上記と同様な測定を行なう。The same measurements as above are carried out with 29C=-1.

上記実施例では線像30における線状方向(X軸方向)
の各点の面形状が同時に測定できる。
In the above embodiment, the linear direction (X-axis direction) in the line image 30
The surface shape of each point can be measured simultaneously.

第3図は本発明の第2実施例である。FIG. 3 shows a second embodiment of the invention.

前記第1実施例である第2図の構成と異なる点は臨界角
プリズム27に変えて遮光板41を設置した点である。
The difference from the configuration of the first embodiment shown in FIG. 2 is that a light shielding plate 41 is provided instead of the critical angle prism 27.

第2図と比較し同一符号は同一構成を示す。In comparison with FIG. 2, the same reference numerals indicate the same configurations.

被測定物26上の線像30の反射光は対物レンズ25に
より平行光束とされた後集光レンズ40によって分割光
検出器29上に結像される。この分割光検出器29の構
成は前記第1実施例の第2図(C)で説明したものとほ
ぼ同じ構成である。遮光板41は集光レンズ40と分割
光検出器29の間の光路中に遮光板の一辺を光軸Cに接
するように配置されている。
The reflected light of the line image 30 on the object to be measured 26 is made into a parallel light beam by the objective lens 25 and then focused onto the split photodetector 29 by the condenser lens 40 . The structure of this split photodetector 29 is almost the same as that explained in FIG. 2(C) of the first embodiment. The light shielding plate 41 is arranged in the optical path between the condenser lens 40 and the split photodetector 29 so that one side of the light shielding plate is in contact with the optical axis C.

次に第2実施例の作用について説明する。いま被測定物
26の上面が対物レンズ25の黒子面内にあるときを考
える。このとき被測定物26上の線像30は集光レンズ
40により第3図(C)の様に分割光検出器29上に結
像される。このとき、線像30の一点30Aは第1実施
例で説明したと同様に分割光検出器29の光検出素子2
9AI’ と29A2 ’のそれぞれに光景が均等に入
射するよう結像される。このときの光検出素子29A+
’ 、 29At’に入射する点30Aからの反射光の
入射状態を示したのが第4図(a)である。従って光検
出素子29A+’と29A2’の各出力信号の差を検出
するとゼロとなる。
Next, the operation of the second embodiment will be explained. Now, consider a case where the upper surface of the object to be measured 26 is within the mole plane of the objective lens 25. At this time, the line image 30 on the object to be measured 26 is focused by the condenser lens 40 onto the divided photodetector 29 as shown in FIG. 3(C). At this time, one point 30A of the line image 30 is connected to the photodetecting element 2 of the divided photodetector 29, as described in the first embodiment.
The image is formed so that the sight is equally incident on each of 9AI' and 29A2'. Photodetector element 29A+ at this time
FIG. 4(a) shows the incident state of the reflected light from the point 30A which is incident on ', 29At'. Therefore, when the difference between the output signals of the photodetecting elements 29A+' and 29A2' is detected, it becomes zero.

次に被測定物26の上面が焦平面位置より対物レンズ2
5に近づり26′の位置に変位した場合を考える。
Next, the upper surface of the object to be measured 26 is located at the objective lens 2 from the focal plane position.
Let us consider the case where the position approaches 5 and is displaced to the position 26'.

このとき集光レンズ40から出射する光束は第4図(a
)に比較して発散状態となる。そこで線像30の点30
Aの反射光に着目すると遮光板41の作用により第4図
(b)の様に光検出素子29A、’に入射する光量が光
検出素子29A2’に入射する光量より大となる。
At this time, the luminous flux emitted from the condenser lens 40 is shown in FIG.
) is in a divergent state compared to Therefore, point 30 of line image 30
Focusing on the reflected light A, due to the effect of the light shielding plate 41, the amount of light incident on the photodetecting elements 29A,' is larger than the amount of light incident on the photodetecting element 29A2', as shown in FIG. 4(b).

逆に被測定物26の上面が対物レンズ25から遠ざかる
位置に変位した場合(第3図(a)破線26″で示す)
を考える。上記と同様点30Aの反射光に着目すると集
光レンズ40から出射する光束は第4図(a)の場合に
比較して収束状態となる。このため遮光板41の作用に
より点30Aの反射光は第4図(C)の様に、光検出素
子29Az’に達する光−14= 量が光検出素子29AI’に達する光量より大となる。
Conversely, when the upper surface of the object to be measured 26 is displaced to a position away from the objective lens 25 (indicated by the broken line 26'' in FIG. 3(a))
think of. Similar to the above, when focusing on the reflected light from the point 30A, the light flux emitted from the condenser lens 40 is in a convergent state compared to the case shown in FIG. 4(a). Therefore, due to the action of the light shielding plate 41, the amount of reflected light at the point 30A reaches the photodetecting element 29Az', as shown in FIG. 4(C).

以上の様に光検出素子29AI’と29tt’の出力値
を比較することによって線像30の点30Aにおける微
少変位や表面粗さを検出できる。
By comparing the output values of the photodetecting elements 29AI' and 29tt' as described above, minute displacement or surface roughness at the point 30A of the line image 30 can be detected.

同様に線像30の他の点30B、30C・・・・−につ
いてもそれぞれの点の面形状が検出部(29B+’ 。
Similarly, for other points 30B, 30C, . . . - of the line image 30, the surface shape of each point is the detection portion (29B+').

2982’ )、 (29CI’ 、 29Cz’ )
−一−−−によって同時に検出される。
2982'), (29CI', 29Cz')
-1--- simultaneously detected.

以上の様に第1実施例の臨界角プリズム27のかわりに
遮光板41を配することによっても第1実施例と同様線
像30の各点の面形状が同時に測定できる。
As described above, by disposing the light shielding plate 41 in place of the critical angle prism 27 of the first embodiment, the surface shape of each point of the line image 30 can be measured simultaneously as in the first embodiment.

この第2実施例の場合、遮光板41が臨界角プリズム2
7に比較し低価格である利点を有する。
In the case of this second embodiment, the light shielding plate 41 is the critical angle prism 2.
It has the advantage of being lower in price than 7.

また、第1.2実施例では焦点ずれ検出用光学手段とし
てそれぞれ臨界角プリズム、遮光板を使用した臨界角法
、ナイフェツジ法による例を示したが、本発明はこれら
の2つに限定されるものではない。例えばフーコー法、
補助ビーム法等も利用できる。
In addition, in Embodiment 1.2, examples were shown using the critical angle method and the Naifezi method using a critical angle prism and a light shielding plate, respectively, as optical means for detecting defocus, but the present invention is limited to these two methods. It's not a thing. For example, the Foucault method
Auxiliary beam method etc. can also be used.

更に前記2つの実施例において被測定物に線像を形成さ
せるために凹状の円筒レンズを使用したが、本発明はか
かるレンズに限定されるものではなく例えば凸状の円筒
レンズを使用してもよい。
Further, in the above two embodiments, a concave cylindrical lens was used to form a line image on the object to be measured, but the present invention is not limited to such a lens; for example, a convex cylindrical lens may also be used. good.

〔発明の効果〕〔Effect of the invention〕

本発明は被測定物表面の微少変位や表面粗さを、ある任
意の方向に一次元的方向に分布した複数の測定位置で同
時に測定することができ測定時間が早いという利点があ
る。
The present invention has the advantage that minute displacements and surface roughness on the surface of an object to be measured can be simultaneously measured at a plurality of measurement positions distributed one-dimensionally in a certain arbitrary direction, and the measurement time is quick.

更に被測定物表面を2次元的に測定する場合でも、被測
定物と測定装置を相対約6こ1次元的に走査するだけで
よ〈従来の様に2次元的に走査する装置に比較し、駆動
装置が著しく簡単となるとともに低価格のものが実現で
きる利点がある。
Furthermore, even when measuring the surface of a workpiece two-dimensionally, it is only necessary to scan the workpiece and the measuring device one-dimensionally by about 6 times relative to each other (compared to conventional two-dimensional scanning systems). This has the advantage that the drive device is extremely simple and can be realized at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するための概念図、第2図は本発
明の第1実施例を示す図、第3.4図は本発明の第2実
施例を示す図、第5.6図は従来技術を示す図である。 10−−−−−一・−・−−−一−−−−−−−−・−
光源1 、20−−−−−−−−−−一・−レーザ光源
11−−−−−−−−−〜−−−・−・・・−−−−−
−−一方向性素子22−・−・−・−−−−−−−−・
・・・・凹状円筒レンズ3 、23−・−−一−−−−
・・偏光プリズム4 、24−−−−−−−−−−−・
 1/4波長板5 、12.25−  対物レンズ 6 、13.26−  被測定物 14−・−−−−−−−・・−・−・−・−焦点ずれ検
出用光学手段7 、27−−・−一−−−−−・・−・
臨界角プリズム28−−−−−−−−・・−・・−・・
−−−−−−−−・円筒状集光レンズ16、29−・・
−・−一一一−−−・分割光検出器41−・・−・−−
−−−−−一−−−−・・・−遮光板17一 ^ 2− × 洲 酊 手続補正書 昭和63年11月18日 1、事件の表示 昭和63年特許願第86564号 2、発明の名称 光学的表面形状測定装置 3、補正をする者 (自 発) 5、補正の対象 明細書の「発明の詳細な説明」の欄 幅器ツ訂正する。 (2)同第11頁第4〜5行「X軸方向については・・
・・・・結像されているので」を下記の様に訂正する。 「被測定物上の線像30はX軸方向に関して分割光検出
器2つ上に結像されるので」 (3)同第13頁第5行「平行光束」を「y軸方向に関
して平行光束」に訂正する。
Fig. 1 is a conceptual diagram for explaining the present invention, Fig. 2 is a diagram showing the first embodiment of the invention, Fig. 3.4 is a diagram showing the second embodiment of the invention, Fig. 5.6 The figure is a diagram showing a conventional technique. 10------1・--・--1------------
Light source 1, 20----------1.-Laser light source 11-----------------
--Unidirectional element 22--・--------------
...Concave cylindrical lens 3, 23----1--
・・Polarizing prism 4, 24−−−−−−−−−−・
1/4 wavelength plate 5, 12.25-Objective lens 6, 13.26-Object to be measured 14--------------Optical means for detecting defocus 7, 27 −−・−1−−−−−・・−・
Critical angle prism 28--
−−−−−−−・Cylindrical condensing lens 16, 29−・・
−・−111−−−・Divided photodetector 41−・・−・−−
−−−−−1−−−−・・・−Shading plate 171^ 2− Name of the optical surface profile measuring device 3. Person making the correction (voluntary) 5. Correct the width of the column in the "Detailed Description of the Invention" in the specification subject to amendment. (2) Page 11, lines 4-5 “Regarding the X-axis direction...
...because it is imaged" should be corrected as follows. "The line image 30 on the object to be measured is formed on two divided photodetectors in the X-axis direction." ” is corrected.

Claims (1)

【特許請求の範囲】[Claims] 光源と、該光源からの光束を被測定物上に集光する対物
レンズと、前記光源と前記被測定物の間に配置されるも
のであって前記被測定物上に線像を形成する一方向性光
学素子と、前記被測定物からの反射光によって前記対物
レンズと前記被測定物の距離を焦点ずれとして検出する
焦点ずれ検出用光学手段と、前記焦点ずれ検出用光学手
段を通過した光を検出する少なく共2つに分割された検
出部を少なく共2個有する分割光検出手段とを備えたこ
とを特徴とする光学的表面形状測定装置。
A light source, an objective lens that focuses a light beam from the light source onto the object to be measured, and an objective lens that is disposed between the light source and the object to be measured and forms a line image on the object to be measured. a directional optical element; a defocus detection optical means for detecting a distance between the objective lens and the object as a defocus using reflected light from the object; and light passing through the defocus detection optical means. 1. An optical surface shape measuring device comprising: divided light detection means having at least two divided detection sections for detecting at least two parts.
JP8656488A 1988-04-08 1988-04-08 Optical surface shape measuring instrument Pending JPH01259208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8656488A JPH01259208A (en) 1988-04-08 1988-04-08 Optical surface shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8656488A JPH01259208A (en) 1988-04-08 1988-04-08 Optical surface shape measuring instrument

Publications (1)

Publication Number Publication Date
JPH01259208A true JPH01259208A (en) 1989-10-16

Family

ID=13890510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8656488A Pending JPH01259208A (en) 1988-04-08 1988-04-08 Optical surface shape measuring instrument

Country Status (1)

Country Link
JP (1) JPH01259208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460603A (en) * 1990-06-29 1992-02-26 Canon Inc Focus detector and observation device equipped with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990007A (en) * 1982-11-16 1984-05-24 Olympus Optical Co Ltd Optical size measuring device
JPS6248163A (en) * 1985-08-27 1987-03-02 Mitsubishi Electric Corp Telephone set with noise control function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990007A (en) * 1982-11-16 1984-05-24 Olympus Optical Co Ltd Optical size measuring device
JPS6248163A (en) * 1985-08-27 1987-03-02 Mitsubishi Electric Corp Telephone set with noise control function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460603A (en) * 1990-06-29 1992-02-26 Canon Inc Focus detector and observation device equipped with the same

Similar Documents

Publication Publication Date Title
US6428171B1 (en) Height measuring apparatus
US4930896A (en) Surface structure measuring apparatus
JP2920194B2 (en) Optical scanning device
JP4888807B2 (en) Scanning shape measuring machine
KR840001719A (en) Off-axis Optical Beam Defect Detector
JP4652745B2 (en) Optical displacement measuring instrument
JPH01259208A (en) Optical surface shape measuring instrument
JPH07182666A (en) Light pickup system
JPS61242779A (en) Method of detecting inclination and focus of laser beam in laser beam machining device
JPH0766548B2 (en) Focus detection device
JPS6331858B2 (en)
US6750436B2 (en) Focus error detection apparatus and method having dual focus error detection path
JPH01303632A (en) Optical disk device
JPH0648399Y2 (en) Non-contact micro surface abnormality detector
JP2526794B2 (en) Tilt detection device
JP2564799Y2 (en) 3D shape measuring device
KR880004297Y1 (en) Optical sensor for focusing control
JPS62218802A (en) Optical type distance and inclination measuring apparatus
JP3578602B2 (en) Document detection device
JPH0843717A (en) Focus detector
JP2636639B2 (en) Sample angle and position measurement device
JP2636017B2 (en) Tilt detection head
JPH0275906A (en) Image formation type displacement gauge
JPH0558483B2 (en)
JPH01241033A (en) Optical waveguide device