JPH01259152A - Manufacture of tough metallic material for structural use - Google Patents

Manufacture of tough metallic material for structural use

Info

Publication number
JPH01259152A
JPH01259152A JP8724288A JP8724288A JPH01259152A JP H01259152 A JPH01259152 A JP H01259152A JP 8724288 A JP8724288 A JP 8724288A JP 8724288 A JP8724288 A JP 8724288A JP H01259152 A JPH01259152 A JP H01259152A
Authority
JP
Japan
Prior art keywords
ingot
metal
metallic material
solidified ingot
unidirectionally solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8724288A
Other languages
Japanese (ja)
Inventor
Atsumi Ono
大野 篤美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
O C C CO Ltd
Original Assignee
O C C CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O C C CO Ltd filed Critical O C C CO Ltd
Priority to JP8724288A priority Critical patent/JPH01259152A/en
Publication of JPH01259152A publication Critical patent/JPH01259152A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a metallic material excellent in metal fatigue resistance and having high hardness and high strength by repeatedly carrying out cold forging from lateral side while inhibiting deformation in the direction of crystal growth and changing the direction of pressurization at the time of applying plastic working to a unidirectionally solidified ingot of single-crystal metal, single-solid solution metal, etc. CONSTITUTION:A unidirectionally solidified ingot consisting of single crystals or a unidirectionally solidified ingot of single-solid solution alloy cast by a heated mold-type continuous casting method where heating is applied to the internal surface of a mold up to a temp. of the solidification temp. of a metal to be cast or above is subjected to a repetition of cold forging from lateral side while inhibiting deformation in a forging direction and changing the direction of pressurization so as to be hardened and provided with required strength, by which a hard and strong metallic material excellent in fatigue resistance can be manufactured. This material is suitable for use as a metallic material for structural machines influencing the safety of lives, such as airplanes and automobiles.

Description

【発明の詳細な説明】 本発明は、耐疲労性にすぐれた強靭な構造用金属材料の
製造法に関する。より詳しくは、鋳造金属の溶湯が接す
る鋳型の壁面が、鋳造金属の萩固温度以上に保たれた鋳
型を用いることを特徴とする、鋳塊の加熱鋳型式連続鋳
造法によって、結晶が一方向にのみ成長した鋳塊または
凝固粒界のない単結晶からなる金属鋳塊を鋳造し、それ
に結晶の成長方向の変形を阻止し鋳塊側面に、加圧方向
を変えて繰り返し変形加工を施し、加工硬化させ、疲労
破壊に強い、強靭な構造用金属材料を製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a strong structural metal material with excellent fatigue resistance. More specifically, crystals are produced in one direction by a heated mold continuous casting method for ingots, which is characterized by using a mold in which the wall surface of the mold in contact with the molten metal is kept at a temperature higher than the solidification temperature of the cast metal. A metal ingot consisting of an ingot that has grown only in grains or a single crystal without solidification grain boundaries is cast, and deformation in the direction of crystal growth is prevented, and the sides of the ingot are repeatedly deformed by changing the direction of pressure. The present invention relates to a method for manufacturing a strong structural metal material that is work hardened and resistant to fatigue fracture.

一般に純金属は軟らかく、塑性変形をあたえても硬化し
に<<、構造用材料として使用できないために、強度を
増すために、合金元素を添加し合金の形で使用されてき
た。合金元素を添加するのみでは軟らかすぎる場合には
、焼き入れの如き熱処理や時効硬化処理によって、合金
を硬化させ強くして構造用材料として使用されてきた。
Generally, pure metals are too soft to harden even when subjected to plastic deformation and cannot be used as structural materials, so they have been used in the form of alloys by adding alloying elements to increase their strength. If the alloy is too soft by simply adding alloying elements, heat treatment such as quenching or age hardening treatment is used to harden and strengthen the alloy and use it as a structural material.

たとえば、飛行機の材料は軽くて強いことが必要で、そ
のために比重の小さいAρ基の合金が犬量に使用されて
きた。純Aβは飛行機の構造材料として使用するには軟
らかく、強度が充分でないために、Cu、Zn、Mgな
どを添加し、析出硬化型の合金をつくり、時効硬化処理
によって強度をあたえて使用されてきた。
For example, materials for airplanes need to be light and strong, and for this reason, Aρ-based alloys with low specific gravity have been used for bulk materials. Pure Aβ is too soft and strong enough to be used as a structural material for airplanes, so it is used by adding Cu, Zn, Mg, etc. to create a precipitation-hardening alloy, and applying age-hardening treatment to give it strength. Ta.

このような合金を用いてつくられた飛行機が、しばしば
墜落事故を起こし、その原因が、金属材料の疲労破壊に
基因すると結論づけられることが多かったことは周知の
事実である。飛行機の構造材のように、振動のような繰
り返し応力を長時間うける材料は、疲労破壊を起こしや
すいので、常に、疲労による亀裂の早期発見のための厳
重な検ノ査を行わなければならなかった。たとえ材料表
面に発生する亀裂は発見できても、材料の内部で発生す
る亀裂は、それが表面に伝播するまで発見することがで
きない。そのような材料内部に発生した亀裂は、いつ、
材料表面にまで伝播して、その材料の表面破壊につなが
るかわからない。そのため飛行機の乗客は、常にそのよ
うな事故発生の不安を感じさせられてきた。そして金属
疲労の起こりにくい飛行機の構造材料の速やかな出現が
強く望まれてきた。
It is a well-known fact that airplanes made using such alloys often crash, and the cause of the crashes has often been concluded to be due to fatigue failure of the metal material. Materials such as aircraft structural materials that are subjected to repeated stress such as vibration for long periods of time are prone to fatigue failure, so strict inspections must always be conducted to detect fatigue-induced cracks at an early stage. Ta. Even if cracks that occur on the surface of a material can be detected, cracks that occur inside the material cannot be discovered until they propagate to the surface. When cracks occur inside such materials,
It is not known whether it will propagate to the surface of the material and lead to surface destruction of the material. Therefore, passengers on airplanes have always been made to feel anxious about the possibility of such an accident occurring. There has been a strong desire for the rapid development of structural materials for airplanes that are resistant to metal fatigue.

金属疲労による構造材の破壊による事故発生の危険は、
単に飛行機に限らず、長時間の振動の如き繰り返し応力
をうける機械部品には常に伴うもので、疲労破壊発生の
起源となる因子を取り除き、安心して使える信用度の高
い構造材料の製造法を見出すことは、きわめて重要なこ
とである。
The risk of accidents due to destruction of structural materials due to metal fatigue is
This is not limited to just airplanes, but is always associated with mechanical parts that are subjected to repeated stress such as long-term vibration, and we aim to eliminate the factors that cause fatigue failure and find a method for producing highly reliable structural materials that can be used with peace of mind. is extremely important.

鋳塊が多結晶体からなる時は、その凝固時に形成された
結晶と結晶の粒界、すなわち凝固粒界に鋳造法として用
いられてきた方法は、冷却鋳型に金属溶湯を注湯して、
鋳型の抜熱によって金属を凝固させて鋳塊を得るもので
あった。そのような鋳塊においては、結晶が表面にほぼ
垂直に並んで成長した柱状晶帯が形成され、鋳塊の内部
には、しばしば等軸晶帯があられれた。
When the ingot is made of polycrystalline material, the method that has been used for casting the grain boundaries between the crystals formed during solidification, that is, the solidification grain boundaries, is to pour molten metal into a cooling mold.
The ingot was obtained by solidifying the metal by removing heat from the mold. In such an ingot, columnar crystal zones were formed in which crystals grew almost perpendicular to the surface, and equiaxed crystal zones were often formed inside the ingot.

このような鋳塊を冷間で加工する時は、表面の柱状晶の
粒界から亀裂が入りやすく、そのため、冷間加工に先立
って鋳塊はまず加熱して軟化させてから加工して、後の
冷間加工にさいして表面から内部に亀裂の伝播が起こり
にくくなるように、表層の柱状晶をおしつぶしてしまう
ことが必要であった。
When such an ingot is cold worked, cracks tend to form at the grain boundaries of the columnar crystals on the surface, so before cold working, the ingot is first heated to soften it and then worked. It was necessary to crush the columnar crystals in the surface layer to prevent cracks from propagating from the surface to the inside during subsequent cold working.

このような凝固時に形成される粒界には、ガスや不純物
が偏析しやすく、とくに3個以上の結晶の粒界の交わる
、いわゆる、粒界の三重点は、微細な空孔が形成しやす
いことが知られている。このような凝固粒界は、鋳塊の
組織の中で最も弱い場所であり、そのような凝固粒界が
その鋳塊を加工して作られた機械部品の表面に存在する
時は、ような凝固粒界が一旦形成してしまうと、たとえ
塑性加工や熱処理を施しても、それは凝固粒界の履歴と
して最終製品の中に残ってしまう。そのような不純物の
偏析した、結晶間の結合の不完全な凝固粒界が構造用材
料の疲労破壊に対する弱い場所であることは周知の事実
である。
Gases and impurities tend to segregate in these grain boundaries formed during solidification, and fine pores are particularly likely to form at the so-called triple points of grain boundaries, where three or more grain boundaries intersect. It is known. These solidification grain boundaries are the weakest places in the structure of the ingot, and when such solidification grain boundaries exist on the surface of machine parts made by processing the ingot, Once a solidified grain boundary is formed, it remains in the final product as a history of the solidified grain boundary even if plastic working or heat treatment is performed. It is a well-known fact that solidification grain boundaries, where such impurities are segregated and where intercrystalline bonds are incomplete, are vulnerable sites for fatigue failure in structural materials.

このような疲労破壊に弱い凝固粒界のない材料、すなわ
ち単結晶や、結晶が鋳塊の鋳造方向にのみ成長した一方
向凝固鋳塊がなぜ構造材料として従来用いられなかった
かを考えてみると理由は大きくわけて、二つ存在するよ
うに考えられる。
If we consider why such materials without solidification grain boundaries, which are susceptible to fatigue fracture, such as single crystals and unidirectionally solidified ingots in which crystals grow only in the casting direction of the ingot, have not been used as structural materials in the past. There seem to be two main reasons for this.

第1の理由は、従来、単結晶や一方向凝固鋳塊を作るた
めには、1時間に数mmというような、きわめて遅い凝
固速度でなければならなかったために、生産性が低く特
殊な機能材料には使用できても、構造用材料として大量
に安く製造することは、到底不可能と考えられてきたこ
と。
The first reason is that in the past, in order to make single crystals or unidirectionally solidified ingots, the solidification rate had to be extremely slow, such as several mm per hour, resulting in low productivity and special functions. Although it could be used as a material, it was thought to be impossible to manufacture it cheaply in large quantities as a structural material.

第2の理由は、単結晶や一方向凝固鋳塊は軟らかくて加
工しても硬化しにくいために、強い材料は微細な結晶か
らなる多結晶体でなければならないと、−船釣に信じら
れてきたためと考えられる。
The second reason is that single crystals and directionally solidified ingots are soft and difficult to harden even when processed, so a strong material must be a polycrystalline body consisting of fine crystals. This is thought to be due to the fact that

本発明者は、さきに鋳型の内壁の温度を鋳造金属の凝固
温度以上に加熱する加熱鋳型式連続鋳造法(特許第10
49146号)を発明した。そして、その方法によって
、A7!やCuやNiなどの一方向凝固鋳塊が容易に製
造できることを見出した。そして加熱鋳型式連続鋳造法
で鋳造した、鋳塊表面から内部に向かって成長した凝固
粒界のないAA基の単一固溶体からなる鋳塊を鋳造方向
の変形を阻止しつつ、側面から冷間で加圧方向を変化さ
せつつ、繰り返し鍛錬加工することによって、耐疲労性
のすくれた、硬くて強い材料が得られることを見出し本
発明を完成した。
The present inventor first developed a heated mold continuous casting method (Patent No. 10) in which the temperature of the inner wall of the mold is heated above the solidification temperature of the cast metal.
No. 49146). And by that method, A7! It has been found that unidirectionally solidified ingots of copper, copper, nickel, etc. can be easily produced. Then, an ingot made of a single AA-based solid solution without solidification grain boundaries that grew from the ingot surface toward the inside, which was cast using a heated mold continuous casting method, was cold-cast from the side while preventing deformation in the casting direction. The present invention was completed by discovering that a hard and strong material with low fatigue resistance can be obtained by repeatedly forging the material while changing the direction of pressure.

多結晶体からなる鋳塊に塑性加工を施すと、結晶内に生
成した転位が移動することによって変形する。そして、
この転位が移動して結晶粒界に集まると、ここで移動は
停止し、結晶は硬化し、ついには粒界から破壊する。し
たがって、結晶粒は微細なほど金属材料は加工硬化しゃ
ずいといわれてきた。いいかえれば、結晶粒が大きいほ
ど金属材料は軟らかくて硬化しにくいといわれてきた。
When plastic working is applied to a polycrystalline ingot, the ingot is deformed due to movement of dislocations generated within the crystals. and,
When these dislocations move and gather at grain boundaries, the movement stops there, the crystal hardens, and eventually breaks from the grain boundaries. Therefore, it has been said that the finer the crystal grains, the less work-hardened the metal material will be. In other words, it has been said that the larger the crystal grains, the softer the metal material is and the harder it is to harden.

このことは、結晶粒界のない単結晶の場合は、W性加工
によって生成される転位は、移動して結晶の外に出てし
まい、生成される転位の移動を阻止して、材料を硬化せ
しめるものが存在しないために、このような鋳塊を加工
硬化させるためには、結晶内の転位の移動を阻止するに
有効な手段を見出す必要のあることを示すものである。
This means that in the case of a single crystal without grain boundaries, the dislocations generated by W-based processing move and exit the crystal, preventing the movement of the generated dislocations and hardening the material. This indicates that in order to work harden such an ingot, it is necessary to find an effective means for preventing the movement of dislocations within the crystals.

単結晶を含む、一方向凝固鋳塊は、鋳造方向に優先的に
変形することが知られている。したがって一方向凝固鋳
塊を加工硬化せしめるためには、ます、鋳造方向の変形
を阻止し、さらに結晶内の転位の移動を阻止するに有効
な手段を見出さなければならなかった。
It is known that directionally solidified ingots containing single crystals deform preferentially in the casting direction. Therefore, in order to work harden a unidirectionally solidified ingot, it was first necessary to find an effective means to prevent deformation in the casting direction and further to prevent movement of dislocations within the crystal.

本発明者は、単結晶の如き一方向凝固鋳塊に圧延とか引
き抜きの如き単純な塑性加工を施すのでなくて、結晶の
変形しやすい方向すなわち、鋳造方向の変形を阻止しつ
つ鋳塊側面に、加圧方向を変えて繰り返し塑性加工を施
すことによって、結晶内における転位の増殖を促し、生
成した転位を互いにからませ、転位の自由な移動を阻止
し、硬化させる方法が有効と考え、Aff−4%Cu合
金の棒状の多結晶体からなる鋳塊と、一方向に凝固せし
めて得た単結晶鋳塊を用い、長さ方向の変形を阻止しつ
つ側面から、曲面体を用い1、加圧方向を変えながら繰
り返し圧縮加工を行った。その結果、多結晶体がピンカ
ース硬度100ですでに破壊したのに対し、単結晶鋳塊
はビッカース硬度130になっても破壊することなく、
軟らかい一方向凝固した単結晶鋳塊がきわめて強靭な構
造材料に変わる事実を見出した。
The inventor of the present invention did not apply simple plastic working such as rolling or drawing to a unidirectionally solidified ingot such as a single crystal, but instead applied it to the side surface of the ingot while preventing deformation in the direction in which the crystal tends to deform, that is, in the casting direction. Af Using an ingot made of a rod-shaped polycrystalline body of -4% Cu alloy and a single crystal ingot obtained by solidifying in one direction, using a curved body from the side while preventing deformation in the length direction, 1. Compression processing was performed repeatedly while changing the pressure direction. As a result, while the polycrystalline body already broke at a Pinkers hardness of 100, the single crystal ingot did not break even at a Vickers hardness of 130.
We have discovered that a soft, unidirectionally solidified single crystal ingot can be transformed into an extremely strong structural material.

このような、冷間加工によって強化した構造材料をうる
ためには、純金属は軟らかすぎるので、第2相を晶出し
ない程度の他元素を含む合金であ;1、ることか必要で
ある。合金元素の添加によって、/=固組織に脆弱な第
2相が板状に晶出する時は、それが繰り返し加工にさい
する亀裂発生の起点になってしまう。しかしながら、第
2相が液相からの凝固時の晶出でなく、鋳塊が一旦溶質
過飽和の単一固相体を形成した後、時効析出した徽細な
析出粒子として結晶内に点在することは、鋳塊の硬化に
とってむしろ好ましいことである。
In order to obtain such structural materials strengthened by cold working, pure metals are too soft, so it is necessary to use an alloy containing other elements to the extent that the second phase does not crystallize. . When the second phase, which is weak in the solid structure, crystallizes in the form of a plate due to the addition of alloying elements, this becomes the starting point for cracking during repeated processing. However, the second phase is not crystallized during solidification from the liquid phase, but is scattered within the crystal as fine precipitated particles that precipitate after aging after the ingot forms a single solid phase body that is supersaturated with solutes. This is rather favorable for the hardening of the ingot.

このような溶質過飽和の固溶体合金鋳塊は、加熱鋳型式
連続鋳造法によって、合金を急冷凝固せしめることによ
ってうろことが可能である。
Such a solute-supersaturated solid solution alloy ingot can be cast by rapidly cooling and solidifying the alloy using a heated mold continuous casting method.

従来の構造材料はすべて合金であり、それらは曲げ応力
による破壊や疲労破壊の起点となるべき表面欠陥、すな
わち、凝固粒界や、化合物の如き第2相の晶出物などを
常に有していた。
All conventional structural materials are alloys, and they always have surface defects, such as solidification grain boundaries and second-phase crystallized substances such as compounds, that serve as starting points for fractures due to bending stress and fatigue fractures. Ta.

本発明は、このような表面欠陥はもとより、材料内部と
も、亀裂発生の起点となるような凝固粒界や第2相晶出
物の存在しない、きわめて信頼性の高い構造材料を製造
する方法を提供するものである。
The present invention provides a method for producing highly reliable structural materials that are free from such surface defects as well as solidification grain boundaries and second phase crystallization that can become starting points for cracks inside the material. This is what we provide.

本発明の構造用材料のための製造方法は、単にAlやN
iやCuを用いた材料に限らず、Fe、Co、Mgなど
、熔解鋳造及び加工硬化のできるあらゆる金属に応用す
ることができる。
The manufacturing method for the structural material of the present invention is based solely on Al or N.
It can be applied not only to materials using i and Cu, but also to all metals that can be melt-cast and work-hardened, such as Fe, Co, and Mg.

本発明は、単に鋳塊の凝固法を変え、加熱鋳型式連続鋳
造法を用い、鋳塊表面に亀裂発生の起源となりやすい凝
固粒界のない一方向凝固鋳塊をつくり、それに加圧方向
を変えて繰り返し冷間加工を施して硬化させ、必要な強
度をあたえ、信頼性の大きな構造用材料の製造を可能に
するもので、飛行機や自動車の如く人命にかかわる機械
器具の構造用材料の製法として画期的と考える。
The present invention simply changes the solidification method of the ingot, uses a heated mold continuous casting method, creates a unidirectionally solidified ingot without solidified grain boundaries that are likely to cause cracks on the surface of the ingot, and changes the direction of pressure to the ingot. This method is used to manufacture structural materials for machinery and equipment that are related to human life, such as airplanes and automobiles.It is made possible by repeatedly applying cold working to harden the materials, giving them the necessary strength and making it possible to manufacture highly reliable structural materials. I think this is groundbreaking.

Claims (1)

【特許請求の範囲】 1、一方向凝固鋳塊に、結晶成長方向の変形を阻止しつ
つ、繰り返し鍛錬加工を施して硬化させることを特徴と
する、強靭な構造用金属材料の製造法。 2、前記一方向凝固鋳塊が単結晶からなることを特徴と
する、請求項1記載の強靭な構造用金属材料の製造法。 3、前記一方向凝固鋳塊が、鋳型の内壁面を鋳造金属の
凝固温度以上に加熱する、加熱鋳型式連続鋳造法によっ
て得られることを特徴とする、請求項1記載の強靭な構
造用金属材料の製造法。 4、前記一方向凝固鋳塊が、単一固溶体合金であること
を特徴とする、請求項1記載の強靭な構造用金属材料の
製造法。
[Scope of Claims] 1. A method for producing a strong structural metal material, which comprises repeatedly subjecting a directionally solidified ingot to hardening while preventing deformation in the direction of crystal growth. 2. The method for producing a strong structural metal material according to claim 1, wherein the unidirectionally solidified ingot is made of a single crystal. 3. The strong structural metal according to claim 1, wherein the unidirectionally solidified ingot is obtained by a heated mold continuous casting method in which the inner wall surface of the mold is heated to a temperature higher than the solidification temperature of the cast metal. Method of manufacturing materials. 4. The method for producing a strong structural metal material according to claim 1, wherein the unidirectionally solidified ingot is a single solid solution alloy.
JP8724288A 1988-04-11 1988-04-11 Manufacture of tough metallic material for structural use Pending JPH01259152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8724288A JPH01259152A (en) 1988-04-11 1988-04-11 Manufacture of tough metallic material for structural use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8724288A JPH01259152A (en) 1988-04-11 1988-04-11 Manufacture of tough metallic material for structural use

Publications (1)

Publication Number Publication Date
JPH01259152A true JPH01259152A (en) 1989-10-16

Family

ID=13909343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8724288A Pending JPH01259152A (en) 1988-04-11 1988-04-11 Manufacture of tough metallic material for structural use

Country Status (1)

Country Link
JP (1) JPH01259152A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992502A (en) * 1996-02-20 1999-11-30 Gfm Holding Ag Method of producing metallic bar stock
JP2007203358A (en) * 2006-02-03 2007-08-16 Usui Kokusai Sangyo Kaisha Ltd High pressure fuel piping for accumulator fuel injection systems, and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992502A (en) * 1996-02-20 1999-11-30 Gfm Holding Ag Method of producing metallic bar stock
JP2007203358A (en) * 2006-02-03 2007-08-16 Usui Kokusai Sangyo Kaisha Ltd High pressure fuel piping for accumulator fuel injection systems, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP6368087B2 (en) Aluminum alloy wire, method for producing aluminum alloy wire, and aluminum alloy member
US8636855B2 (en) Methods of enhancing mechanical properties of aluminum alloy high pressure die castings
EP2059359B1 (en) Solidification microstructure of aggregate molded shaped castings
EP0084571A1 (en) Process for producing superplastic aluminium alloy plate
JPH01242762A (en) Manufacture of high strength metallic material for structure
EP1488017A1 (en) Aluminum alloy
JPS5964735A (en) Light metal base alloy and manufacture
US5256202A (en) Ti-A1 intermetallic compound sheet and method of producing same
Saji et al. Combined Recrystallization and Precipitation Reactions in a Cu-4 Wt.% Ti-Alloy
SE444584B (en) PROCEDURE FOR FORMING NICKEL BASE ALLOYS
JPS60114558A (en) Production of elongated material consisting of age hardenable titanium-copper alloy
JPH01259152A (en) Manufacture of tough metallic material for structural use
KR100510012B1 (en) High strength and high thermal conductive Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article
JPH01215426A (en) Manufacture of tough structural metallic material
JP4691735B2 (en) Grain refiner for casting and method for producing the same
JP7380127B2 (en) Manufacturing method for aluminum alloy forgings for automobile suspension parts
RU2449047C1 (en) Method for obtaining superplastic sheet of high-strength aluminium alloy
JPH08246118A (en) Production of aluminum alloy casting
JPH0696756B2 (en) Of heat-treating Al-Cu based aluminum alloy ingot for processing and method of manufacturing extruded material using the same
JPH06228720A (en) Production of member made of magnesium alloy
JPH02166251A (en) Aluminum alloy excellent in ductility and its production
JPS6157385B2 (en)
JPS63190148A (en) Manufacture of structural al-zn-mg alloy extruded material
JP2901345B2 (en) Titanium-aluminum intermetallic compound sheet and method for producing the same
JPH08225903A (en) Production of high-pressure cast aluminum alloy casting