JPH01259090A - Nozzle for blasting gasifying agent into fluidized bed gasification furnace for coals - Google Patents

Nozzle for blasting gasifying agent into fluidized bed gasification furnace for coals

Info

Publication number
JPH01259090A
JPH01259090A JP8626688A JP8626688A JPH01259090A JP H01259090 A JPH01259090 A JP H01259090A JP 8626688 A JP8626688 A JP 8626688A JP 8626688 A JP8626688 A JP 8626688A JP H01259090 A JPH01259090 A JP H01259090A
Authority
JP
Japan
Prior art keywords
nozzle
fluidized bed
coal
center line
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8626688A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kikutani
菊谷 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP8626688A priority Critical patent/JPH01259090A/en
Publication of JPH01259090A publication Critical patent/JPH01259090A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To provide the subject nozzle for the fluidization of coals, free from the trouble of clogging with deposited molten coal, positioned at the lower stage part of a fluidized bed-forming zone of a fluidized bed gasification furnace for coals, horizontally protruded through the furnace wall toward the center line and having a tip opening directing slantly upward. CONSTITUTION:A nozzle 21 for blowing a gasification agent into a lower stage of a furnace is horizontally extended through a furnace wall 23 at the lower stage of a fluidized bed-forming zone A of a fluidized bed gasification furnace for coals and protruded toward the center line X of the zone A. The opening 2 at the tip end 1 of the nozzle 21 is opened toward the center line X of the zone A directing slantly upward. Coal is supplied into the gasification furnace through a coal-feeding nozzle 22 slantly extended through the furnace wall 23 and directing toward the center line X. The coal is fluidized with the gasification agent blown through the lower-stage blowing nozzle 1 to form a fluidized bed. The formation of sintered part at the tip end of the nozzle can be prevented and the coal gasification can be smoothly performed by the use of the nozzle.

Description

【発明の詳細な説明】 本発明は、たとえば多孔板を介して或いは多孔板を介す
ることなしに、流動層形成用ガスを炉体内に炉体底部よ
り導入して、炉体内に石炭類の流動層を形成し、該流動
層形成区域の少なくとも下段部にガス化剤を吹込んで、
該区域においてガス化反応を行い、流動層形成区域より
上方の空塔部から石炭類ガス化物を取り出し、一方、ガ
ス化残渣固形分を炉体底部より抜き出して石炭類の流動
層ガス化を行なう石炭類の流動層ガス化炉に於て、上記
下段部にガス化剤を吹込むための下段吹込みノズルにお
ける従来ノズルの技術的欠陥を克服して、顕著に改善さ
れた石炭類の流動層ガス化を行なうことを可能にするガ
ス化剤下段吹込みノズル構造物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention introduces a gas for forming a fluidized bed into the furnace body from the bottom of the furnace body through a perforated plate or without passing through a perforated plate. forming a bed, and blowing a gasifying agent into at least the lower part of the fluidized bed forming area,
A gasification reaction is carried out in this zone, and coal gasified materials are extracted from the empty column above the fluidized bed formation zone, while solid content of gasification residue is extracted from the bottom of the furnace body to perform fluidized bed gasification of coal. Fluidized bed gasification of coal has been significantly improved by overcoming the technical deficiencies of the conventional nozzle in the lower blowing nozzle for blowing the gasifying agent into the lower part of the coal fluidized bed gasifier. The present invention relates to a gasifying agent lower-stage blowing nozzle structure that makes it possible to perform the following steps.

更に詳しくは、本発明は、石炭類流動層ガス化炉の流動
層形成区域の下段部に、炉壁を貫通して該区域の中心線
方向に突出させて水平に設けられるガス化剤下段吹込み
ノズルであって、該ノズルの先端部開口が該区域の中心
線方向に且つ斜め上方に向って開口していることを特徴
とする石炭類流動層ガス化炉用ガス化剤吹込みノズル構
造物に関する。
More specifically, the present invention provides a gasifying agent lower blower which is installed horizontally in the lower part of the fluidized bed forming area of the coal fluidized bed gasifier, penetrating the furnace wall and protruding in the direction of the center line of the area. A gasifying agent injection nozzle structure for a coal fluidized bed gasifier, characterized in that the nozzle has a tip opening opening in the direction of the center line of the area and diagonally upward. relating to things.

従来、分散板(流動層形成用多孔整流板)を介して流動
層形成用ガスを炉体内に炉体底部より導入して石炭類の
流動層を形成し、該流動層形成区域の少なくとも下段部
(たとえば、下段部或いは下段部及び中段部)にガス化
剤を吹込んで、該区域においてガス化反応を行なう分散
板型石炭類流動層ガス化炉、更には、分散板を介するこ
となしに、炉体底部より流動層形成用ガス噴流を導入し
て炉体内に石炭類の流動層を形成し、同様にしてガス化
剤を吹込んでガス化反応を行なう噴流型石炭類流動層ガ
ス化炉、などの石炭類流動層ガス化炉が知られている。
Conventionally, a fluidized bed of coal is formed by introducing gas for forming a fluidized bed into the furnace body from the bottom of the furnace body through a dispersion plate (a porous straightening plate for forming a fluidized bed), and at least the lower part of the fluidized bed formation area. A dispersion plate type coal fluidized bed gasifier in which a gasification agent is injected into the lower stage (for example, the lower stage or the lower and middle stages) and the gasification reaction is carried out in the area, and furthermore, without using a dispersion plate, A jet type coal fluidized bed gasifier, which introduces a gas jet for forming a fluidized bed from the bottom of the furnace body to form a fluidized bed of coal in the furnace body, and similarly injects a gasifying agent to perform a gasification reaction. Coal fluidized bed gasifiers such as the following are known.

このような従来ガス化炉に於て、流動層形成区域の少な
くとも下段部に、ガス化剤、通常、空気及び/又は酸素
とスチームを含有するガス化剤を該下段吹込みノズルを
介して吹込んでガス化反応が行われるが、該下段吹込み
ノズルとして、ガス化炉の炉壁を貫通して該区域の中心
線方向に突出させて水平に設けられるガス化剤下段吹込
みノズルが知られている。しかしながら、このようなガ
ス化剤下段吹込みノズルにおいては、ノズル先端部の周
囲に溶融灰が固着成長してガス化剤吹込みの正常且つ円
滑な供給及び吹込み操作を阻害するトラブルが比較的短
時間で発生し、更に、固着成長した溶融灰の塊状物の脱
落による例えば分散板の口塞りやガス化残渣固形分の抜
き出し不全、閉塞その他のトラブル発生の原因ともなる
In such conventional gasifiers, a gasifying agent, typically containing air and/or oxygen and steam, is blown into at least the lower section of the fluidized bed formation zone through the lower blowing nozzle. A gasification reaction is carried out in the gasification reaction, and a gasification agent lower injection nozzle is known as the lower injection nozzle, which is installed horizontally through the furnace wall of the gasification furnace and protrudes in the direction of the center line of the area. ing. However, in such a lower stage gasifying agent injection nozzle, molten ash adheres and grows around the nozzle tip, which hinders the normal and smooth supply and operation of gasifying agent injection. This occurs in a short period of time, and furthermore, the falling off of lumps of molten ash that have grown and fixed can cause problems such as clogging of the mouth of the dispersion plate, failure to extract the gasification residue solids, blockage, and other troubles.

このようなトラブルを回避するため、噴流型石炭類流動
層ガス化炉において、炉壁を貫通して流動層形成区域の
中心線方向に突出させて水平に設けられるガス化剤下段
吹込みノズルに固着成長する溶融灰を、上述のようなト
ラブルの発生しないうちに機械的掻き落し手段を設けて
除去する特開昭59−117586号の提案が知られて
いる。
In order to avoid such troubles, in jet-type coal fluidized bed gasifiers, a lower gasifying agent injection nozzle is installed horizontally, penetrating the furnace wall and protruding in the direction of the center line of the fluidized bed forming area. There is a known proposal in JP-A-59-117586 to remove the molten ash that adheres and grows by providing a mechanical scraping means before the above-mentioned troubles occur.

この提案においては、先行技術として特開昭52−12
6404号の提案を紹介し、該先行技術に開示されてい
る分散板型石炭類流動層ガス化炉における炉内に突出し
た下段吹込みノズルでは、長い時間の運転に際しては依
然として溶融灰の融着発生のトラブルが回避できない技
術的欠陥のあることを指摘している。そして、上記特開
昭59−117586号の提案では、噴流型石炭類流動
層ガス化炉に於て、上記ガス化剤下段吹込みノズルに連
続的ないし断続的な振動を与えたり、或いは又、ノズル
外周をパイプが可動となるように設計する等の機械的な
除去手段を付加して、溶融灰が過度に固着成長しないう
ちにこれを除去する噴流型石炭類流動層ガス化炉を提案
している。
In this proposal, JP-A No. 52-12
Introducing the proposal of No. 6404, the lower blowing nozzle protruding into the furnace in the distributed plate type coal fluidized bed gasifier disclosed in the prior art still causes fusion of molten ash during long-time operation. It points out that there is a technical defect that cannot avoid the trouble that occurred. In the proposal of JP-A No. 59-117586, in a jet type coal fluidized bed gasifier, continuous or intermittent vibration is applied to the gasifying agent lower injection nozzle, or, We proposed a jet-type coal fluidized bed gasifier that removes molten ash before it becomes too fixed and grows by adding mechanical removal means such as designing the outer circumference of the nozzle so that the pipe can move. ing.

しかしながら、この提案においては、機械的な除去手段
を設ける装置上の不利益及び該手段を作動させる操作上
の不利益などの新しい技術的欠陥を伴うことが回避でき
ない。また、従来のガス化炉では、例えば、機械的な手
段を高温−高圧下のガス化炉に取付けることは実質的に
不可能であり、また炉内に突出したノズルの先端に成長
した溶融灰の形状や大きさを直接検知することも困難で
ある。また、従来の上記の如きガス化炉では溶融灰の量
を制御することも困難であった。
However, this proposal inevitably involves new technical deficiencies, such as disadvantages in the device of providing the mechanical removal means and disadvantages in the operation of operating the means. In addition, in conventional gasifiers, for example, it is virtually impossible to attach mechanical means to the gasifier under high temperature and high pressure, and molten ash grows at the tip of the nozzle protruding into the furnace. It is also difficult to directly detect the shape and size of the object. Furthermore, in the conventional gasifier as described above, it is also difficult to control the amount of molten ash.

本発明者らは、石炭類流動層ガス化炉の流動層形成区域
の下段部に、炉壁を貫通して該区域の中心線方向に突出
させて水平に設けられるガス化剤下段吹込みノズルにお
ける上述の如き従来技術の欠陥を克服できる石炭類流動
層ガス化剤吹込みノズル構造物を開発すべく研究を進め
てきた。
The present inventors have proposed a gasifying agent lower blowing nozzle that is installed horizontally in the lower part of the fluidized bed forming area of a coal fluidized bed gasifier, penetrating the furnace wall and protruding in the direction of the center line of the area. Research has been carried out to develop a nozzle structure for injecting a coal-based fluidized bed gasifying agent that can overcome the deficiencies of the prior art as described above.

その結果、従来は、流動層形成区域の中心線に直行する
方向に向って開口していたガス化剤下段吹込みノズルの
先端部開口を、該区域の中心線方向に且つ斜め上方に向
って開口させるという簡単な構造変更を充足するように
設計することによって、前述の従来技術の欠陥が一挙に
解決できることを発見した。
As a result, the opening at the tip of the lower gasifying agent blowing nozzle, which conventionally opened in the direction perpendicular to the center line of the fluidized bed formation area, has been changed from opening in the direction of the center line of the area and diagonally upward. It has been discovered that the above-mentioned deficiencies of the prior art can be solved at once by designing the device to satisfy the simple structural change of opening.

更に、ガス化剤下段吹込みノズルの先端部開口を上記の
如く設計することにより、ガス化剤を直接流動層内に供
給することが可能となった。そのため該開口を通してガ
ス化剤を流動層内に分割供給することができ、そうする
ことによって従来法の分散板型石炭類流動層ガス化炉に
比べて、高濃度の酸素を炉内に供給することができるよ
うになり、その結果炉内の温度をより高温度に且つ均一
化することができ、後述する冷ガス効率および信頼性が
向上することが明らかとなった。
Furthermore, by designing the opening at the tip of the lower gasifying agent blowing nozzle as described above, it has become possible to directly supply the gasifying agent into the fluidized bed. Therefore, the gasifying agent can be dividedly supplied into the fluidized bed through the opening, thereby supplying a higher concentration of oxygen into the furnace than in the conventional distributed plate type coal fluidized bed gasifier. It has become clear that as a result, the temperature inside the furnace can be made higher and more uniform, and the cold gas efficiency and reliability, which will be described later, are improved.

従って、本発明は石炭類の流動層ガス化を工業的に顕著
に有利に実施することを可能とする石炭類流動層ガス化
炉用ガス他剤下段吹込みノズル構造物を提供するにある
Accordingly, the present invention provides a lower stage injection nozzle structure for gases and other agents for a coal fluidized bed gasifier, which enables the fluidized bed gasification of coal to be carried out industrially with remarkable advantage.

本発明の上記目的及び更に多くの他の目的ならびに利点
は、以下の記載から一層明らかとなるであろう。
The above objects and many other objects and advantages of the present invention will become more apparent from the following description.

本発明の石炭類流動層ガス化炉用のガス他剤下段吹込み
ノズル構造物は、前述した分散板型及び噴流型のいづれ
のタイプの石炭類流動層ガス化炉にも適用できるが、分
散板型石炭類流動層ガス化炉用のガス他剤下段吹込みノ
ズル構造物に適用するのにとくに好適であるので、以下
においては、添付図面を用いて、この態様について主と
して詳細に説明する。
The lower-stage injection nozzle structure for other gases and other agents for a coal fluidized bed gasifier of the present invention can be applied to either the above-mentioned dispersion plate type or jet type coal fluidized bed gasifier. Since it is particularly suitable for application to a lower blowing nozzle structure for gases and other agents for a plate-type coal fluidized bed gasifier, this embodiment will be mainly described in detail below with reference to the accompanying drawings.

添付図面第1図は、本発明の石炭類流動層ガス化炉用の
ガス他剤下段吹込みノズル構造物の一例を示す側断面図
であり、第2図は分散板型石炭類流動層ガス化炉の一態
様を示す一部切欠しI;暗示的断面図である。
FIG. 1 of the accompanying drawings is a side sectional view showing an example of the lower blowing nozzle structure for gases and other agents for a coal fluidized bed gasifier according to the present invention, and FIG. It is a partially cutaway I; implicit cross-sectional view showing one aspect of the curing furnace.

第2図の例において、分散板(流動層形成多孔板)20
を介して、流動層形成用ガスを炉壁23で囲まれて形成
されている炉体内に炉体底部より導入して(図中、イ)
、石炭類の流動層を形成する。石炭類は、例えばスラリ
ー生石炭類粉末の形態でスチームにより石炭類供給ノズ
ル22を介して流動層形成区域Δ中に噴霧され、この例
では該区域の中断部に導入されている。該区域Δの少な
くとも下段部(たとえば、下段部或いは下段部及び中段
部)に、下段吹込みノズル21を介してガス化剤を吹込
んで、該区域Δにおいてガス化反応を行なう。第2図の
例においては、該区域Δの中断部にもガス他剤中段吹込
みノズル21’が設けられ、これら下段及び中段吹込み
ノズル21.21′は炉壁23を貫通して該区域Δの中
心線X方向に突出させて水平に設けられており、該ノズ
ルの先端部開口は該中心線Xに直行する方向に向って開
口している。また、第2図の例においては、石炭類供給
ノズル22は上記中心線X方向に且つ斜め上方にに向っ
て石炭類スラリーを噴霧するように、炉壁23を斜めに
貫通して設けられている。
In the example of FIG. 2, the distribution plate (perforated plate for fluidized bed formation) 20
The gas for forming a fluidized bed is introduced from the bottom of the furnace body surrounded by the furnace wall 23 (a in the figure).
, forming a fluidized bed of coal. Coal, for example in the form of slurry raw coal powder, is atomized by steam via a coal feed nozzle 22 into the fluidized bed formation zone Δ, which in this example is introduced into an interruption of the zone. A gasifying agent is blown into at least the lower part (for example, the lower part or the lower part and the middle part) of the area Δ through the lower blow nozzle 21 to perform a gasification reaction in the area Δ. In the example of FIG. 2, a middle blowing nozzle 21' for gases and other agents is also provided at the interrupted part of the area Δ, and these lower and middle blowing nozzles 21, 21' penetrate the furnace wall 23 and pass through the area. The nozzle is provided horizontally so as to protrude in the direction of the center line X of Δ, and the tip opening of the nozzle is open in the direction perpendicular to the center line X. In the example shown in FIG. 2, the coal supply nozzle 22 is provided diagonally through the furnace wall 23 so as to spray the coal slurry in the direction of the center line X and diagonally upward. There is.

ガス化反応により生成した石炭類ガス化物は流動層形成
区域Δの上面A′より上方の空塔部旦(−部切欠して示
しである)から取り出され、一方、ガス化残渣固形分は
炉体底部より残渣抜出し路24を介して抜出される(図
中、口)。
The coal gasified product produced by the gasification reaction is taken out from the empty column (shown with a - part notched away) above the upper surface A' of the fluidized bed formation area Δ, while the solid content of the gasification residue is taken out from the furnace. It is extracted from the bottom of the body via the residue extraction passage 24 (mouth in the figure).

上記下段吹込みノズル21中段吹込みノズル21’、石
炭類供給ノズル22は、複数ケをそれぞれ中心線X方向
に供給流が互いに衝突するように対向する位置に設ける
のが普通であり、第2の例ではそれぞれ2ケのノズルが
図示されているが、それ以上複数ケ設けてよいことは勿
論である。
The lower blowing nozzle 21, the middle blowing nozzle 21', and the coal supply nozzle 22 are usually provided in a plurality of positions facing each other in the direction of the center line X so that the supply flows collide with each other. Although two nozzles are shown in each example, it goes without saying that more than two nozzles may be provided.

本発明は、上述した第2図に分散板型石炭類流動層ガス
化炉の一例を示したようなガス化炉の炉壁23を貫通し
て該区域Δの中心線X方向に突出させて水平に設けられ
るガス化剤吹込みノズルの改善に関する。
The present invention penetrates the furnace wall 23 of a gasifier, such as the one shown in FIG. This invention relates to an improvement in a horizontally installed gasifying agent blowing nozzle.

本発明の石炭類流動層ガス化炉用のガス他剤下段吹込み
ノズル構造物は、石炭類流動層ガス化炉の流動層形成区
域Δの下段部に、炉壁23を貫通して該区域の中心線方
向に突出させて水平に設けられるガス他剤下段吹込みノ
ズルであって、第1図にその一例についての側断面図を
示したように、該ノズル21の先端部開口lが該区域Δ
の中心線X方向に且つ斜め上方に向って開口して居るこ
とを特徴としている。第1図の例について、この特徴を
更に詳しく説明する。
The lower blowing nozzle structure for other gases and other agents for a coal fluidized bed gasifier of the present invention penetrates the furnace wall 23 into the lower part of the fluidized bed forming area Δ of the coal fluidized bed gasifier. A lower blowing nozzle for gases and other agents is provided horizontally so as to protrude in the direction of the center line of the nozzle 21, and as shown in a side sectional view of an example of the nozzle in FIG. Area Δ
It is characterized by opening in the direction of the center line X and diagonally upward. This feature will be explained in more detail with respect to the example shown in FIG.

本発明のガス他剤下段吹込みノズル21は、炉壁23を
貫通して流動層形成区域Δの中心線X方向に突出させて
水平に設けられている。ここで、「中心線方向に突出さ
せて水平」と称するのは、第1図に示されているように
、ノズル突出部軸線Yが上記区域Δの中心線Xに直交す
る場合だけではなく、それに近い状態でほぼ直交する場
合を包含する意味である。例えば、図中、角θ1が90
0である場合を包含して80°〜100°の如き範囲、
好ましくは90°±5°の範囲で交わる場合を包含する
The lower blowing nozzle 21 for gases and other agents of the present invention is provided horizontally, penetrating the furnace wall 23 and protruding in the direction of the center line X of the fluidized bed forming area Δ. Here, the term "horizontally projected in the direction of the center line" refers not only to the case where the nozzle protrusion axis Y is perpendicular to the center line X of the area Δ, as shown in FIG. This is meant to include cases where they are nearly orthogonal to each other. For example, in the figure, the angle θ1 is 90
A range such as 80° to 100° including the case where it is 0,
Preferably, this includes cases where they intersect within a range of 90°±5°.

更に、本発明のガス他剤下段吹込みノズル21は、該ノ
ズルの先端部2の開口lが、流動層形成区域Aの中心線
X方向に且つ斜め上方に向って開ロしている。ここで、
「該区域の中心線方向に且つ斜め上方」と称するのは、
第1図に示されているように、ノズル突出部の先端部2
の軸線Y′が流動層形成区域Δの中心線Xと交わる場合
だけではなく、該軸線Y′を軸線として先端部開口lの
径を径とする円柱の延長が該中心線Xと交わる程度に偏
位した場合を包含した意味の中心線方向で、且つ図中θ
で示した角度が90°未満、たとえば、50°〜70°
、好ましくは60°±5°の如き角度を示す意味の斜め
上方を意味する。
Further, in the lower blowing nozzle 21 for gases and other agents of the present invention, the opening 1 at the tip 2 of the nozzle opens in the direction of the center line X of the fluidized bed forming area A and diagonally upward. here,
"In the direction of the center line of the area and diagonally above" means:
As shown in FIG. 1, the tip 2 of the nozzle protrusion
Not only when the axis Y' intersects the center line X of the fluidized bed formation area Δ, but also to the extent that the extension of a cylinder whose axis is the axis Y' and whose diameter is the diameter of the tip opening l intersects the center line X. In the direction of the center line, which includes the case of deviation, and in the figure θ
The angle indicated by is less than 90°, for example, 50° to 70°
, preferably obliquely upward, meaning an angle such as 60°±5°.

本発明のガス化剤下段吹込みノズル21において、ノズ
ルを流動層形成区域の中心線方向に水平に突出させて設
ける。
In the gasifying agent lower stage blowing nozzle 21 of the present invention, the nozzle is provided so as to project horizontally in the direction of the center line of the fluidized bed forming area.

流動層形成区域において、炉内壁面の近くにある粒子は
、炉内中心部にある粒子よりも運動エネルギーが小さい
。そのため、流動層形成区域の炉内壁面の近傍には粒子
が帯留し易い帯留域が形成される。従って、流動層形成
区域の壁面に設けるガス化剤下段吹込みノズルが壁面か
ら突出していない場合には、ノズルから吹込まれるガス
化剤中の酸素と該帯留域中の粒子とが燃焼反応を起して
発熱するが、熱の拡散が不充分であるため、該ノズル先
端に円筒状の突出したシンターを形成することになる。
In the fluidized bed formation zone, particles near the furnace wall have less kinetic energy than particles located in the center of the furnace. Therefore, a zone where particles are easily trapped is formed near the inner wall surface of the furnace in the fluidized bed forming area. Therefore, if the lower gasifying agent injection nozzle provided on the wall of the fluidized bed formation area does not protrude from the wall, the oxygen in the gasifying agent blown from the nozzle and the particles in the retention area will cause a combustion reaction. However, since the heat is not sufficiently diffused, a cylindrical protruding sinter is formed at the tip of the nozzle.

これに対し、本発明のノズルは壁面から突出してそのノ
ズル開口部が粒子の運動エネルギーの大きい部分にまで
至っており、それ故上記の如き突出したシンターを形成
することがない。
In contrast, the nozzle of the present invention protrudes from the wall surface and its nozzle opening extends to the area where the kinetic energy of the particles is large, so that the above-mentioned protruding sinter is not formed.

本発明によれば、本発明のノズルは炉壁内面から炉中心
線方向に向って、好ましくは約3〜約100cm、より
好ましくは約7〜約30cm突出している。
According to the present invention, the nozzle of the present invention projects preferably from about 3 to about 100 cm, more preferably from about 7 to about 30 cm, from the inner surface of the furnace wall in the direction of the furnace centerline.

また、流動層形成区域において、ガス化剤下段吹込みノ
ズルを炉中心線方向に突出させずに、該中心線から大き
く外れた炉の接線方向に突出させると、該ノズルから吹
込まれるガス量が変動すると、流動層内の粒子の流動お
よび混合状態が一定しない不安定な状態となるので、不
適当である。
In addition, in the fluidized bed formation area, if the gasifying agent lower blowing nozzle is not made to protrude in the direction of the furnace center line, but is made to protrude in the tangential direction of the furnace that is far away from the center line, the amount of gas injected from the nozzle If this value fluctuates, the flow and mixing state of the particles in the fluidized bed will become unstable and not constant, which is inappropriate.

また、炉の接線方向に突出したノズルの背面部位には粒
子の流れが一様でない粒子の高濃度領域が形成されるよ
うになるので、この点においても不適当である。従って
、ガス化剤下段吹込みノズルを接線方向に突出させた場
合には石炭の安定なガス化を達成することは不可能であ
る。
Furthermore, a region with a high concentration of particles is formed in which the flow of particles is not uniform at the back surface of the nozzle that protrudes in the tangential direction of the furnace, which is also unsuitable. Therefore, it is impossible to achieve stable gasification of coal when the gasifying agent lower blowing nozzle is made to protrude in the tangential direction.

これに対し、ガス化剤下段吹込みノズルを中心線方向に
突出させる本発明によれば、ノズル開口からのガス化剤
は炉中心線方向に向って吹出して流動層区域の中心部に
上昇流を形成するため、流動層全体の流れ(動き)を乱
すことなく、安定な流動層を形成する。本発明によれば
、特に炉壁の対向する位置に吹込みノズルを設置するこ
とにより、各ノズルから吹出したガスが炉中心部で衝突
するので、このようなノズルの設置は炉中心部に上昇流
を形成するので好適である。
In contrast, according to the present invention in which the gasifying agent lower blowing nozzle protrudes in the direction of the center line, the gasifying agent from the nozzle opening is blown out in the direction of the furnace center line and flows upward into the center of the fluidized bed area. A stable fluidized bed is formed without disturbing the flow (movement) of the entire fluidized bed. According to the present invention, in particular, by installing the blowing nozzles at opposite positions on the furnace wall, the gas blown from each nozzle collides at the center of the furnace. This is suitable because it forms a flow.

更に又、上記本発明ノズルの先端部開口が流動層形成区
域の中心線方向に、且つ斜め上方に向って開口するよう
に設ける。
Furthermore, the tip opening of the nozzle of the present invention is provided so as to open in the direction of the center line of the fluidized bed forming area and diagonally upward.

流動層区域に設けるガス吹込みノズルの先端部開口が炉
中心線方向に且つ垂直に開口していると、ノズルからの
ガス化剤の吹込みは炉中心線に直交するようになる、そ
のため、このガス化剤の吹込みがガス化炉の下方から上
方へ上昇している粒子流と交叉することになる。その結
果、ノズルの先端部の下方部に粒子の濃密な滞留部がで
き、そしてこの滞留部ではノズルからの酸素と粒子との
燃焼反応により発生する熱の拡散が不良となり、ノズル
の先端部の下方部に板状のシンターを形成するようにな
る。このような板状のシンターは特に炉下部の上昇流の
強い箇所において顕著である。
If the tip opening of the gas injection nozzle provided in the fluidized bed area is opened perpendicularly in the direction of the furnace center line, the gasifying agent will be blown in from the nozzle perpendicular to the furnace center line. This injection of gasifying agent intersects with the particle stream rising upward from the bottom of the gasifier. As a result, a dense accumulation of particles is formed below the tip of the nozzle, and in this accumulation, the heat generated by the combustion reaction between the oxygen from the nozzle and the particles is poorly diffused, causing the tip of the nozzle to A plate-like sinter is formed in the lower part. Such plate-shaped sinter is particularly noticeable in the lower part of the furnace where the upward flow is strong.

これに対し、本発明のノズルの先端部開口は、中心線方
向に向って斜め上方に開口しているので、流動層区域内
の粒子の動きを乱すことなく、ガス化剤が安定に炉内に
吹込まれ、円滑に粒子と反応して、ガス化を達成する。
In contrast, the opening at the tip of the nozzle of the present invention is opened diagonally upward toward the center line, so that the gasifying agent can stably flow inside the furnace without disturbing the movement of particles in the fluidized bed area. is blown into the air and smoothly reacts with the particles to achieve gasification.

さらに説明すれば、本発明のノズルによって、斜め上方
に噴出されたガス化剤は、炉内の粒子運動をさらに活発
にし、上昇流を強めて、粒子の円滑な炉内循環を達成し
そして層全体を高温化するため、ガス化効率を著しく向
上せしめる。上記の如く、中心部に形成された大きな上
昇流は、ノズルから高濃度の酸素を供給しても上記の如
き板状のシンターの形成を防止するので、安定なガス化
運動を妨げることにはならない。
To explain further, the gasifying agent jetted obliquely upward by the nozzle of the present invention further activates the movement of particles in the furnace, strengthens the upward flow, achieves smooth circulation of particles in the furnace, and Since the entire temperature is raised, gasification efficiency is significantly improved. As mentioned above, the large upward flow formed in the center prevents the formation of plate-like sinter as described above even if high concentration oxygen is supplied from the nozzle, so it does not interfere with stable gasification movement. It won't happen.

本発明のガス化剤下段吹込みノズルにおいては、第1図
の例に示したように、石炭類流動層ガス化炉の炉壁23
の内壁面をこえて流動層形成区域中に水平に突出した部
分の外径を小さく設計するのが、この部分への溶融灰の
付着を避けるのに好ましいので、これに伴って小さくな
る該部分の内径d′を、ガス化剤の所望の吹込みに支障
を生じないかぎり、できるだけ小さく設計するのが好ま
しい。更に、該下段吹込みノズルの挿入及び引抜きが円
滑に行われるように、ノズル先端部開口lを包含して先
端部水平方向最大外径d“が、炉壁23の貫通孔径d”
より図中△dで示したようにやや小さくなるように設計
するのがよい。△dが約0.5〜約5mm、好ましくは
約1〜約3mm程度となるような寸法を例示できる。こ
のような寸法は、当業者の適宜に選択設定し得るところ
であるが、例えば図中、ノズル突出部長さa=約60〜
約90mm、ノズル基部内径d=約20mm〜約40m
m、ノズル突出部内径d′−約15 m m 〜約30
mm(但し、d)d ’、好ましくはd−d’−約5 
m m−約15mm)、△d−約0.5mm〜約5mm
、ノズル先端部開口径d−−約10mm〜約15mm、
の如き寸法を例示することができる。
In the gasifying agent lower blowing nozzle of the present invention, as shown in the example of FIG.
It is preferable to design the outer diameter of the part that protrudes horizontally into the fluidized bed formation area beyond the inner wall surface of the fluidized bed to be small in order to avoid adhesion of molten ash to this part. It is preferable to design the inner diameter d' to be as small as possible unless it interferes with the desired injection of the gasifying agent. Further, in order to smoothly insert and withdraw the lower blowing nozzle, the maximum horizontal outer diameter d" of the tip including the nozzle tip opening 1 is equal to the through hole diameter d" of the furnace wall 23.
It is better to design it so that it is slightly smaller as shown by Δd in the figure. Examples of dimensions include Δd of about 0.5 to about 5 mm, preferably about 1 to about 3 mm. Such dimensions can be selected and set as appropriate by those skilled in the art, but for example, in the figure, the nozzle protrusion length a = about 60 to
Approximately 90mm, nozzle base inner diameter d = approximately 20mm to approximately 40m
m, nozzle protrusion inner diameter d' - approx. 15 mm ~ approx. 30 mm
mm (however, d) d', preferably d-d' - about 5
m m - about 15 mm), △d - about 0.5 mm to about 5 mm
, nozzle tip opening diameter d--about 10 mm to about 15 mm,
For example, dimensions such as:

本発明のガス化剤下段吹込みノズルは、上述したように
、石炭類流動層ガス化炉の流動層形成区域の下段部に、
炉壁を貫通して該区域の中心線方向に突出させて水平に
設けられるガス化剤下段吹込みノズルであって、該ノズ
ルの先端部開口が該区域の中心線方向に且つ斜め上方に
向って開口していることを特徴としている。そして、そ
の−好適態様によれば、分散板型石炭類流動層ガス化炉
の流動層形成区域の下段部に、炉壁を貫通して該区域の
中心線方向に突出させて水平に設けられるガス化剤下段
吹込みノズルであって、該ノズルの先端部開口が該区域
の中心線方向に且つ斜め上方に向って開口しており、該
先端部開口を包含して先端部水平方向最大外径d“が該
炉壁の貫通孔径d″′よりやや小であることを特徴とす
るガス化剤下段吹込みノズルが提供できる。
As described above, the gasifier lower blowing nozzle of the present invention is provided in the lower part of the fluidized bed forming area of the coal fluidized bed gasifier.
A lower gasifying agent blowing nozzle is provided horizontally through the furnace wall and protrudes in the direction of the center line of the area, and the tip opening of the nozzle is directed diagonally upward in the direction of the center line of the area. It is characterized by its opening. According to a preferred embodiment, it is provided horizontally in the lower part of the fluidized bed forming area of the distributed plate type coal fluidized bed gasifier, penetrating the furnace wall and protruding in the direction of the center line of the area. A gasifying agent lower stage blowing nozzle, the tip opening of the nozzle opens in the direction of the center line of the area and diagonally upward, and the maximum horizontal direction of the tip includes the tip opening. It is possible to provide a gasifying agent lower blowing nozzle characterized in that the diameter d'' is slightly smaller than the diameter d'' of the through hole in the furnace wall.

添付図面の第3図には、種々のタイプの石炭ガス化炉の
模式的説明図が開示されている。
FIG. 3 of the accompanying drawings discloses a schematic illustration of various types of coal gasifiers.

第3図の(A)、(B)、(C)および(D)はそれぞ
れ下記の点で相違している。
(A), (B), (C) and (D) in FIG. 3 are different in the following points.

(A)  ガス吹込みノズルを有していない、(B) 
 ガス吹込みノズルが炉壁内面から突出していない、 (C)  ガス吹込みノズルが炉壁内面から中心線方向
に向って突出しておりそしてその開口は中心線に垂直に
向いている、 (D)  ガス吹込みノズルが炉壁内面から、中心線方
向に向って且つその開口が斜め上向きに向いている(本
発明のノズル)、上記各戸を運転して得られた結果を第
1表に示しt;。
(A) does not have a gas blowing nozzle; (B)
The gas injection nozzle does not protrude from the inner surface of the furnace wall. (C) The gas injection nozzle projects from the inner surface of the furnace wall in the direction of the center line, and its opening is oriented perpendicular to the center line. (D) Table 1 shows the results obtained by operating each of the above-mentioned units in which the gas blowing nozzle faces toward the center line from the inner surface of the furnace wall and its opening faces diagonally upward (the nozzle of the present invention). ;.

上記タイプA、B、C,およびDのガス化炉について、
さらに下記の知見が得られた。
Regarding the above types A, B, C, and D gasifiers,
Furthermore, the following findings were obtained.

タイプAの分散板のみのガス他剤供給方式では、分散板
からの酸素許容限界濃度が13%以下と低いために、ガ
ス化炉層上部温度を900℃以上に上げることが出来ず
、よって冷ガス効率が70%以下で、よい結果を得るこ
とが出来なかった(第1表参照)。
In the Type A gas and other agent supply system using only the distribution plate, the upper temperature of the gasifier layer cannot be raised to 900°C or higher because the permissible limit concentration of oxygen from the distribution plate is as low as 13% or less. Good results could not be obtained since the gas efficiency was below 70% (see Table 1).

タイプBおよびCのガス他剤水平吹きノズル供給併用方
式では多少の連続運転時間の差はあったが、ガス他剤水
平吹きノズルまわりに、成長した円筒や板状のシンター
が分散板に蓄積し、最大190時間で、ガス化炉を停止
せざるを得なかっtこ。
Although there was a slight difference in continuous operation time between types B and C, which combined use of horizontal blowing nozzles for gases and other agents, cylindrical and plate-shaped sinter that had grown around the horizontal blowing nozzle for gases and other agents accumulated on the dispersion plate. However, the gasifier had to be shut down after a maximum of 190 hours.

タイプDのガス他剤供給用60’上向きノズルを併用す
ることにより、シンター物によるトラブルはなくなり、
かつ同ノズルより30%の高濃度酸素供給により炉温の
高温化が可能になり、冷ガス効率も75%と大巾に向上
した。
By using the Type D 60' upward nozzle for supplying gas and other agents, troubles caused by sintered materials are eliminated.
In addition, by supplying 30% more concentrated oxygen from the same nozzle, it became possible to raise the furnace temperature, and the cold gas efficiency was greatly improved to 75%.

又、運転時間も300時間、500時間と行ったがなん
ら問題も発生せず、ガス化炉の信頼性が向上した。
Further, the operation time was also 300 hours and 500 hours, but no problems occurred, and the reliability of the gasifier was improved.

第4図には、本発明のガス化剤下段吹込みノズル構造物
の他の例の側断面図である。第4図のノズルは図示のと
おり3つのノズル先端部開口2゜2′および2″を有し
ている。これらのノズル先端部開口はいずれも中心線方
向に向って且つ斜め上方に向って開口している。
FIG. 4 is a side sectional view of another example of the gasifying agent lower stage nozzle structure of the present invention. The nozzle in FIG. 4 has three nozzle tip openings 2° 2' and 2'' as shown. All of these nozzle tip openings open toward the center line and diagonally upward. are doing.

本発明のノズルはこのような複数個のノズル先端部開口
を有するものも包含する。
The nozzle of the present invention also includes a nozzle having a plurality of such nozzle tip openings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の石炭類流動層ガス化炉用のガス化剤下
段吹込みノズル構造物の一例の側断面図である。 第2図は分散板型石炭類流動層ガス化炉の一態様を示す
一部切欠き暗示的断面図である。 第3図は種々のタイプの石炭ガス化炉の模式的説明図で
ある。 第4図は本発明のガス化剤下段吹込みノズル構造物の他
の例の断面図である。
FIG. 1 is a side sectional view of an example of a gasifying agent lower stage nozzle structure for a coal fluidized bed gasifier according to the present invention. FIG. 2 is a partially cutaway implicit sectional view showing one embodiment of a distributed plate type coal fluidized bed gasifier. FIG. 3 is a schematic illustration of various types of coal gasifiers. FIG. 4 is a sectional view of another example of the gasifying agent lower stage nozzle structure of the present invention.

Claims (1)

【特許請求の範囲】 1、石炭類流動層ガス化炉の流動層形成区域の下段部に
、炉壁を貫通して該区域の中心線方向に突出させて水平
に設けられるガス化剤下段吹込みノズルであって、該ノ
ズルの先端部開口が該区域の中心線方向に且つ斜め上方
に向って開口していることを特徴とする石炭類流動層ガ
ス化炉用ガス化剤吹込みノズル構造物。 2、該石炭類流動層ガス化炉が多孔整流器(板)型石炭
類流動層ガス化炉である特許請求の範囲第1項記載のノ
ズル構造物。
[Claims] 1. A gasifying agent lower blower provided horizontally in the lower part of the fluidized bed forming area of the coal fluidized bed gasifier, penetrating the furnace wall and protruding in the direction of the center line of the area. A gasifying agent injection nozzle structure for a coal fluidized bed gasifier, characterized in that the nozzle has a tip opening opening in the direction of the center line of the area and diagonally upward. thing. 2. The nozzle structure according to claim 1, wherein the coal fluidized bed gasifier is a porous rectifier (plate) type coal fluidized bed gasifier.
JP8626688A 1988-04-09 1988-04-09 Nozzle for blasting gasifying agent into fluidized bed gasification furnace for coals Pending JPH01259090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8626688A JPH01259090A (en) 1988-04-09 1988-04-09 Nozzle for blasting gasifying agent into fluidized bed gasification furnace for coals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8626688A JPH01259090A (en) 1988-04-09 1988-04-09 Nozzle for blasting gasifying agent into fluidized bed gasification furnace for coals

Publications (1)

Publication Number Publication Date
JPH01259090A true JPH01259090A (en) 1989-10-16

Family

ID=13882017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8626688A Pending JPH01259090A (en) 1988-04-09 1988-04-09 Nozzle for blasting gasifying agent into fluidized bed gasification furnace for coals

Country Status (1)

Country Link
JP (1) JPH01259090A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091786A (en) * 2005-09-27 2007-04-12 Chubu Electric Power Co Inc Fluidized bed gasification apparatus and coal gasification hybrid power system
CN102827644A (en) * 2012-09-18 2012-12-19 山东天力干燥股份有限公司 Gas distributor for ash agglomerating fluidized-bed gasification furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091786A (en) * 2005-09-27 2007-04-12 Chubu Electric Power Co Inc Fluidized bed gasification apparatus and coal gasification hybrid power system
JP4645953B2 (en) * 2005-09-27 2011-03-09 三菱重工業株式会社 Fluidized bed gasifier and coal gasification combined cycle system
CN102827644A (en) * 2012-09-18 2012-12-19 山东天力干燥股份有限公司 Gas distributor for ash agglomerating fluidized-bed gasification furnace

Similar Documents

Publication Publication Date Title
US4940007A (en) Fast fluidized bed reactor
US3981690A (en) Agglomerating combustor-gasifier method and apparatus for coal gasification
JP2544584B2 (en) Coal gasifier and method of using coal gasifier
JPH0245594A (en) Method and equipment for discharge including aeration
JP3118630B2 (en) Coal gasifier
KR101191954B1 (en) Apparatus for manufacturing molten irons provided with an improved a fluidized-bed reduction reactor
US4934282A (en) Circulating type fluidized bed combustion apparatus
JPS63255311A (en) Melt gasifying apparatus
JPH01259090A (en) Nozzle for blasting gasifying agent into fluidized bed gasification furnace for coals
KR100431863B1 (en) Apparatus for cleaning dispersion plate in fluid-bed reducing furnace
JPS63172808A (en) Melting furnace of swirl air type
JPH0240279B2 (en)
US4817540A (en) System for ash reinjection in bubbling-bed fluidized bed combustor
JPH083361B2 (en) Fine powder raw material gasification burner and fine powder raw material gasifier
JPS6059955B2 (en) Fluidized bed gasifier
JP2540284B2 (en) Coal gasifier
JP2942083B2 (en) Slag discharge structure of coal gasifier
JPS61246287A (en) Spouted bed coal gasification oven
CZ20031818A3 (en) Method for introducing gasifying substances into gasification chambers containing particles and apparatus for making the same
JP4014064B2 (en) Fluidized bed furnace and paste fuel supply nozzle
JP2001059092A (en) Gas flow bed coal gasifier
JPS61197689A (en) Coal gasifying equipment
JPS60212218A (en) Fluidized or solid substance recirculation apparatus and method for fluidized bed type gasification apparatus
KR20240076517A (en) Reduction reactor and manufacturing method of direct reduced iron
JPS6229765Y2 (en)