JPH01258361A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH01258361A
JPH01258361A JP63086494A JP8649488A JPH01258361A JP H01258361 A JPH01258361 A JP H01258361A JP 63086494 A JP63086494 A JP 63086494A JP 8649488 A JP8649488 A JP 8649488A JP H01258361 A JPH01258361 A JP H01258361A
Authority
JP
Japan
Prior art keywords
resistant agent
shrink resistant
shrink
negative electrode
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63086494A
Other languages
Japanese (ja)
Inventor
Akio Tokunaga
徳永 昭夫
Toshiaki Hayashi
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63086494A priority Critical patent/JPH01258361A/en
Publication of JPH01258361A publication Critical patent/JPH01258361A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To ensure the continuity of the effectiveness of lignin as a shrink resistant agent by adding both of a material containing the shrink resistant agent in a hydrocarbon having a low fusing point or a fatty acid and an untreated shrink resistant agent to a negative electrode paste. CONSTITUTION:The powder of a shrink resistant agent (expander) is added to and blended with a saturated hydrocarbon having a low fusion point, an unsaturated hydrocarbon, a saturated fatty acid, an unsaturated fatty acid, wax, paraffin, synthetic resin or materials similar thereto, all in a molten condition, and then solidified. Thereafter, the compound shrink resistant agent so obtained is powdered and an untreated shrink resistant agent is added thereto. The product so obtained is added to a negative electrode paste. In other words, for example, one of a lauric acid having a fusion point of 44 deg.C, a myristic acid having a fusion point of 54 deg.C, a palmitic acid having a fusion point of 63 deg.C a lead stearate having a fusion point of 70 deg.C and the like is heated and melted, and 20wt.% of lignin for a lead acid battery is added thereto as a shrink resistant agent and well blended. Thereafter, the product so obtained is cooled, solidified, and freeze crushed, thereby obtaining a fine particle state. Then, the fine powder so obtained, the untreated shrink resistant agent, barium sulfate and carbon are used as the negative electrode paste.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in lead-acid batteries.

従来の技術 現代は軽薄短小の時代であるといわれているが、鉛蓄電
池についても例外ではなく小形軽量化の要求は強く、鋭
意努力を重ね軽量化、小形化が進んできている。一方、
この鉛蓄電池の主用途である自動車においても同様に小
形化、軽量化が進み、広く快適な居住空間に対する要求
とあいまって鉛蓄電池の置かれるエンジンルーム内はよ
りコンパクトに設計されるようになってきている。
Conventional technology It is said that the modern era is an age of light, thin, short and small size, and lead-acid batteries are no exception; there is a strong demand for smaller and lighter batteries, and diligent efforts are being made to make them lighter and smaller. on the other hand,
Cars, which are the main use for lead-acid batteries, are also becoming smaller and lighter, and with the demand for spacious and comfortable living spaces, the interior of the engine room where lead-acid batteries are placed has become more compact. ing.

発明が解決しようとする課題 このなめ、エンジンルーム内は高温になり、かつ従来よ
りもエンジンの近くに鉛蓄電池が配置されるようになり
、鉛蓄電池は従来よりも高温にさらされる傾向が強くな
ってきている。
Problems that the invention aims to solve As a result of this, the engine room becomes hotter, and lead-acid batteries are placed closer to the engine than before, making lead-acid batteries more prone to being exposed to high temperatures than before. It's coming.

実際に自動車に搭載され寿命となった電池をいくつか調
査した結果、特に負極板の劣化が著しく、負極活物質の
比表面積の減少によって、放電性能、特に高率放電性能
が著しく低下することがわかった。
As a result of investigating several batteries that had actually been installed in automobiles and had reached the end of their service life, we found that the deterioration of the negative electrode plate in particular was significant, and the specific surface area of the negative electrode active material decreased, resulting in a significant decline in discharge performance, especially high-rate discharge performance. Understood.

負極活物質には通常パルプ製造廃液から製造されるリグ
ニンなどが防縮剤(エキスパンダー)として硫酸バリウ
ムやカーボンと共に添加されるが、電池が高温になると
防縮剤の効果が失われ、負極活物質である金属鉛の結晶
が成長して粗大化し、そのため充分な放電容量が得られ
なくなるものと思われる。
Lignin, which is produced from pulp manufacturing waste, is usually added to the negative electrode active material as an expander along with barium sulfate and carbon, but when the battery becomes high temperature, the effect of the preshrink agent is lost, and the negative electrode active material It is thought that the crystals of metallic lead grow and become coarse, making it impossible to obtain sufficient discharge capacity.

課題を解決するための手段 本発明は上記の欠点を除去するもので、負極ペースト中
に低融点の炭化水素や脂肪酸に防縮剤を閉じ込めた物質
を未処理の防縮剤と共に添加することを特徴とする。
Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks, and is characterized in that a substance in which an anti-shrink agent is trapped in a low-melting hydrocarbon or fatty acid is added to the negative electrode paste together with an untreated anti-shrink agent. do.

実施例 第1表に示す融点の異なる4種類の脂肪酸をそれぞれ別
々に加熱溶融させ、その中に防縮剤として鉛蓄電池用リ
グニンを20wt%添加してよく混合する。
Example Four types of fatty acids having different melting points shown in Table 1 are heated and melted separately, and 20 wt % of lignin for lead-acid batteries is added thereto as an anti-shrink agent and mixed well.

第1表 溶融混合物は冷却、Ii固させな後、凍結粉砕して微粒
子状の複合防縮剤A〜Dを作製した。これらの複合防縮
剤と未処理の防縮剤、硫酸バリウムおよびカーボンを用
いて常法により負極ペーストを調製し、その一定量を鉛
合金格子に充填して負極板を作製した。そこで、作製し
た負極板を用いて公称容量28Ah (5hR)の自動
車用鉛蓄電池を組立て、初期の容量試験および寿命試験
を行った。第   2表は試験に供した電池の負極板の
内容と初期の容量試験結果を示し、第1図に寿命試験の
結果を示す。
The molten mixtures in Table 1 were cooled and solidified, and then freeze-pulverized to produce fine particulate composite anti-shrink agents A to D. A negative electrode paste was prepared by a conventional method using these composite anti-shrink agents, an untreated anti-shrink agent, barium sulfate, and carbon, and a certain amount of the paste was filled into a lead alloy grid to produce a negative electrode plate. Therefore, an automotive lead-acid battery with a nominal capacity of 28 Ah (5 hR) was assembled using the produced negative electrode plate, and an initial capacity test and a life test were conducted. Table 2 shows the contents of the negative electrode plates of the batteries tested and the initial capacity test results, and Figure 1 shows the results of the life test.

第2表 第2表において試験電池N001は従来品で負極ペース
トには市販のリグニンを防縮剤としてそのママ未処理で
添加したものである。 NO,2〜5は本発明による負
極板を用いた電池であって、NO12は融点44℃のラ
ウリン酸とリグニンを上述した方法で微粒子化した複合
防縮剤とN011と同じ量の未処理リグニンを添加した
ものである。NO,3〜5も同様で、複合防縮剤を併用
したが、N013はA、Bと未処理リグニン、 NO,
4は^、8.Cと未処理リグニン、N085はA、B、
C,Dと未処理リグニンというように、2〜4種類の複
合防縮剤と未処理リグニンを併用したものである。
Table 2 In Table 2, test battery No. 001 is a conventional product in which commercially available lignin was added as an anti-shrink agent to the negative electrode paste without any treatment. Nos. 2 to 5 are batteries using negative electrode plates according to the present invention, and Nos. 12 is a composite shrink-preserver made of lauric acid with a melting point of 44°C and lignin made into fine particles by the method described above, and the same amount of untreated lignin as Nos. 011. It was added. The same was true for NO, 3 to 5, and a composite anti-shrink agent was used together, but NO,
4 is ^, 8. C and untreated lignin, N085 is A, B,
Two to four types of composite antishrink agents, such as C and D and untreated lignin, are used in combination with untreated lignin.

初期容量はいずれの電池もほぼ同じ程度で大差はなかっ
た。これは放電を使用した脂肪酸の融点以下で行ったの
で、添加した複合防縮剤の作用はなく、未処理リグニン
のみが放電に寄与したからである。
The initial capacity of both batteries was almost the same and there was no significant difference. This is because the discharge was carried out at a temperature below the melting point of the fatty acid used, so the added composite anti-shrink agent had no effect, and only the untreated lignin contributed to the discharge.

第1図に寿命試験の結果を示す、試験条件は放電20A
x1h、充電5AX5hを1サイクルとし、50サイク
ルごとに試験温度を40℃から10°Cずつ高くした。
Figure 1 shows the results of the life test.The test conditions were 20A discharge.
The test temperature was increased by 10°C from 40°C every 50 cycles.

サイクル途中の容量は一15°Cにおける150A放電
を行って確認した。このように高率放電で容量確認を行
った理由は、負極板の影響は放電率が高いほどわかりや
すいからである。
The capacity during the cycle was confirmed by discharging at 150 A at -15°C. The reason why the capacity was confirmed using high rate discharge in this way is that the influence of the negative electrode plate is easier to understand as the discharge rate is higher.

40℃で行った最初の50サイクルでは、いずれの電池
も約20%高率放電容量は低下し、ここでは複合防縮剤
を添加した効果は未だ現れていない。50〜100サイ
クルで試験温度を50℃に高めると従来品のN001は
60%に容量低下した。一方、本発明品のNO12〜5
は放電容量が増加し、その後減少したが、50サイクル
時と100サイクル時で容量はほとんど変わらなかった
。この間では融点44℃のラウリン酸で処理した複合防
縮剤Aが有効に作用している。その後50サイクルごと
に10℃ずつ電池温度を上昇させた結果、第1図に示す
ような容量推移をたどり、従来品N011の容量低下は
顕著であった。
During the first 50 cycles conducted at 40° C., the high rate discharge capacity of all batteries decreased by about 20%, and the effect of adding the composite antishrink agent has not yet appeared. When the test temperature was increased to 50° C. for 50 to 100 cycles, the capacity of conventional product N001 decreased to 60%. On the other hand, No. 12 to 5 of the products of the present invention
The discharge capacity increased and then decreased, but the capacity remained almost unchanged between 50 and 100 cycles. During this period, composite anti-shrink agent A treated with lauric acid having a melting point of 44° C. acts effectively. Thereafter, as a result of increasing the battery temperature by 10° C. every 50 cycles, the capacity changed as shown in FIG. 1, and the capacity decrease of the conventional product N011 was remarkable.

一方、本発明品は使用した脂肪酸の融点以上でサイクル
を行うと複合防縮剤が有効に作用し、80’Cまで温度
上昇させた結果ではA、 B、 C,Dの4種類の複合
防縮剤を添加したN005の電池が最も優れた容量推移
を示した。
On the other hand, in the product of the present invention, the composite anti-shrunk agent acts effectively when cycled at a temperature higher than the melting point of the fatty acid used, and as a result of increasing the temperature to 80'C, four types of composite anti-shrunk agents, A, B, C, and D were detected. The N005 battery with the addition of 20% of the total capacity showed the best capacity change.

発明の効果 以上述べたごとく、本発明は電池温度の上昇によって添
加した複合防縮剤中の脂肪酸が溶融することによって、
防縮剤としてのリグニンの効果を持続させることができ
た。電池の使用条件に応じて融点の異なる脂肪酸で処理
した複合防縮剤を単独または併用すれば種々の耐高温特
性を示す鉛蓄電池が得られ、工業的価値は大きい。なお
、本実施例には融点のことなる飽和脂肪酸を用いたが、
不飽和脂肪酸や炭化水素、高級アルコール、ろう。
Effects of the Invention As described above, the present invention has the effect of melting the fatty acid in the composite anti-shrink agent added as the battery temperature increases.
The effect of lignin as an anti-shrink agent could be sustained. If a composite anti-shrink agent treated with fatty acids having different melting points is used alone or in combination depending on the usage conditions of the battery, lead-acid batteries exhibiting various high-temperature resistance properties can be obtained, which is of great industrial value. Although saturated fatty acids with different melting points were used in this example,
Unsaturated fatty acids, hydrocarbons, higher alcohols, and waxes.

パラフィン、合成樹脂など、電池温度が上昇することに
よって溶融する物質であって電池に無害なものであれば
使用することができる。
Any substance that melts as the battery temperature rises and is harmless to the battery, such as paraffin or synthetic resin, can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鉛蓄電池の寿命性能を従来品と比較した
特性図である。 脅1図 づrり〜゛1ルく(ン5にノー口 0    50   100   150   200
   25Q4アイ22し1て 手続補正書く方式) %式% 2、発明の名称 鉛蓄警也 4、補正命令の日付(発送上) 昭和63年6月28日 5、補正の対象 図面(第1図)。 の通り。 斉 1 目 試、験湛友 ?1フル敢
FIG. 1 is a characteristic diagram comparing the life performance of the lead-acid battery of the present invention with that of a conventional product. Threat 1 drawing~゛1 Luk (No say no to N5 0 50 100 150 200
25 Q4 Ai 22 1 (Written procedural amendment) % formula % 2. Name of the invention 4. Date of amendment order (shipment) June 28, 1988 5. Drawing subject to amendment (Fig. 1) ). street. Qi 1st exam, exam friend? 1 full daring

Claims (1)

【特許請求の範囲】[Claims] 1、溶融状態にした低融点の飽和炭化水素、不飽和炭化
水素、飽和脂肪酸、不飽和脂肪酸、ろう、パラフィン、
合成樹脂またはこれらの類似物質に防縮剤(エキスパン
ダー)の粉末を添加、混合した後凝固させた固形物を粉
状にした複合防縮剤と未処理の防縮剤とを負極ペースト
に添加することを特徴とする鉛蓄電池。
1. Melted low melting point saturated hydrocarbons, unsaturated hydrocarbons, saturated fatty acids, unsaturated fatty acids, wax, paraffin,
It is characterized by adding powdered shrink-proofing agent (expander) to synthetic resins or similar substances thereof, and adding a composite shrink-proofing agent (expander), which is made from a solid solid after mixing and solidifying into powder, and an untreated shrink-proofing agent to the negative electrode paste. lead-acid battery.
JP63086494A 1988-04-07 1988-04-07 Lead-acid battery Pending JPH01258361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086494A JPH01258361A (en) 1988-04-07 1988-04-07 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086494A JPH01258361A (en) 1988-04-07 1988-04-07 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH01258361A true JPH01258361A (en) 1989-10-16

Family

ID=13888535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086494A Pending JPH01258361A (en) 1988-04-07 1988-04-07 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH01258361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0809311A1 (en) * 1996-05-20 1997-11-26 Japan Storage Battery Co., Ltd. Negative electrode plate for lead storage battery containing graphite powder
JP2010529619A (en) * 2007-06-06 2010-08-26 ハモンド グループ,インク. Lead-acid battery expansion agent with improved lifetime at high temperatures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0809311A1 (en) * 1996-05-20 1997-11-26 Japan Storage Battery Co., Ltd. Negative electrode plate for lead storage battery containing graphite powder
US6548211B1 (en) 1996-05-20 2003-04-15 Japan Storage Battery Co., Ltd. Negative electrode plate for lead storage battery
JP2010529619A (en) * 2007-06-06 2010-08-26 ハモンド グループ,インク. Lead-acid battery expansion agent with improved lifetime at high temperatures

Similar Documents

Publication Publication Date Title
US3513230A (en) Compaction of potassium sulfate
JPH0432122B2 (en)
JPH06506726A (en) Powder mixture and its manufacturing method
JPH01258361A (en) Lead-acid battery
US2847710A (en) Method of improving fluid properties of finely divided materials
JPH0265103A (en) Resin binder for rare earth-iron and resin magnet using same
JPS5895617A (en) Method of increasing grain size of uranium oxide
US5932513A (en) Container packed with powder of hydrogen absorbing alloy
US3713852A (en) Exothermic hot topping composition
US2622963A (en) Additive composition for sand molds and method of making same
US3185599A (en) Process of producing welding fluxes
US6299805B1 (en) Boron nitride sealing element
AU615964B2 (en) Copper-tungsten metal mixture and process
US3278297A (en) Process of gaseous reducing lead oxide employing an agent to maintain lead in particulate form
GB1583083A (en) Master composition and process for the eutectic component of eutectic and hypo-eutectic aluminiumsilicon casting alloys
JPH08143901A (en) Alloy powder for powder metallurgy having high flowability and its production
US767906A (en) Process of manufacturing spongy lead.
US3309435A (en) Process for the manufacture of rounded powdered magnetite particles
JPS6157380B2 (en)
JP2976267B2 (en) Production method of raw material for thermal battery separator
JPS6110861A (en) Alkaline zinc battery
JPH06228613A (en) Production of granular hydrogen storage alloy
SU412926A1 (en)
US2491411A (en) Refractory agglomerate and method of making
JPS61104040A (en) Manufacture of magnetic al alloy