JPH0125787B2 - - Google Patents

Info

Publication number
JPH0125787B2
JPH0125787B2 JP56098915A JP9891581A JPH0125787B2 JP H0125787 B2 JPH0125787 B2 JP H0125787B2 JP 56098915 A JP56098915 A JP 56098915A JP 9891581 A JP9891581 A JP 9891581A JP H0125787 B2 JPH0125787 B2 JP H0125787B2
Authority
JP
Japan
Prior art keywords
acid
acrylic
polyurethane
polyol
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56098915A
Other languages
Japanese (ja)
Other versions
JPS581753A (en
Inventor
Kyoshi Morya
Masanori Shindo
Koichi Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Polyurethane Industry Co Ltd
Original Assignee
Nippon Polyurethane Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Polyurethane Industry Co Ltd filed Critical Nippon Polyurethane Industry Co Ltd
Priority to JP56098915A priority Critical patent/JPS581753A/en
Publication of JPS581753A publication Critical patent/JPS581753A/en
Publication of JPH0125787B2 publication Critical patent/JPH0125787B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は匟性䜓甚コヌテむング剀ずしお適した
比范的䜎枩で焌付可胜な䜎枩硬化性の新芏な被芆
甚組成物に関するものである。 近幎各皮合成暹脂に぀いおの技術革新はめざた
しく、特に自動車産業に斌おは、安党性の向䞊及
び軜量化等の目的から各皮プラスチツクの採甚が
図られおいる。りレタン特有の衝撃吞収機胜を有
するプラスチツク郚品はその兞型的な䞀䟋であ
る。しかしながら䞀般にプラスチツクは耐候性が
䞍十分であり、たた自動車等の倖装品ずしお甚い
る堎合は倚皮損傷からの保護或いは矎芳、劣化防
止、デザむン䞊の必芁性から塗装を斜されるこず
が倚く、この堎合の塗料ずしおは、玠材の可撓
性、衝撃埩元性、剛性など諞物性を䜎䞋させるこ
ずなく、匷靭で䞔぀䜎枩でのたわみ性、耐衝撃
性、付着性、耐薬品性、適床な䌞び、䜜業性等の
優れた性胜を有するフレキシブルな塗装系が芁求
されおいるが、これたでそれらの性胜をすべお満
足する塗料は埗られおいない。プラスチツク甚塗
料ずしおはポリりレタン塗料が倚く䜿われおいる
が、たずえば液型のポリりレタン塗料は、比范
的塗膜性胜は優れおいるものの塗装時に液を蚈
量しお混合しなければならないこず、混合液は䜎
枩でも埐々に反応するため、定められた時間内に
䜿い切らねばならないこず等、䜜業䞊の制玄を受
ける。䞀方、ブロツクむ゜シアネヌトを䜿甚した
䞀液型ポリりレタン塗料には硬化枩床が高いこ
ず、ブロツク剀の飛散に䌎う光沢の䜎䞋、等の欠
点がある。 又、末端に氎酞基を有するポリりレタン暹脂を
アミノプラスト暹脂で架橋させる䞀液型ポリりレ
タン塗料は特公昭54−5440号公報により公知であ
り、既にポリりレタン゚ラストマヌ甚ずしお実甚
に䟛されおいるが、硬化枩床が高く、䜎枩でのた
わみ性が乏しい等の欠点が指摘されおおり、その
他に、末端氎酞基を有するポリりレタン゚ステル
ポリオヌルずアクリル暹脂をブレンドする䟋が特
公昭54−2667号公報に蚘茉されおいるが、ポリり
レタン゚ステルポリオヌルずの盞溶性が劣るた
め、硬化塗膜の初期光沢、耐氎性、耐薬品性、䜎
枩性、耐候性等を䜎䞋させる等の欠点があり圓業
者からその改善の぀いお匷く芁望されおいるのが
珟状である。 埓぀お本発明の䞻目的は、ポリりレタンフオヌ
ムやフオヌムラバヌ、゚ラストマヌ等の匟性を有
する基材に塗垃するために、前述の欠点を改良し
䜎枩時のたわみ性、耐候性、付着性、耐薬品性、
光沢等の性胜が優れ、比范的䜎枩で焌付け硬化す
るこずのできる䞀液型のポリりレタン塗料を提䟛
するこずにある。 本発明者等は、この目的に沿぀お鋭意研究怜蚎
を重ねた結果、む゜シアネヌト末端プレポリマヌ
に特定のアクリルポリオヌルを反応せしめた新芏
な組成物であるポリりレタン・アクリル共重合䜓
を、アミノ・ホルムアルデヒド暹脂ず組合せお䜿
甚するこずによ぀お本目的を達するこずができ
た。 即ち本発明は、分子䞭に少くずも個の氎酞基
を有するポリ゚ステルポリオヌルず有機ポリむ゜
シアネヌトずの反応生成物であ぀お、末端がむ゜
シアネヌト基であるプレポリマヌ(a)ず、分子䞭に
少くずも個の氎酞基を有し分子量が10000以䞋
であるアクリルポリオヌル(b)をNCOOH圓量比
1.5〜20の範囲で反応せしめお埗たポリ
りレタン・アクリル共重合䜓ず、䟡アルコヌル
で゚ヌテル化したアミノ・ホルムアルデヒド暹脂
ずから成る熱硬化性被芆甚組成物、に関するもの
である。 本発明に䜿甚できるポリりレタン・アクリル共
重合䜓は、段階の反応によ぀お埗るこずができ
る。 たず、第段階ずしお、有機ポリむ゜シアネヌ
トずポリ゚ステルポリオヌルずを反応せしめおむ
゜シアネヌト末端プレポリマヌ(a)ずし、第段階
ずしお、該プレポリマヌ(a)に特定のアクリルポリ
オヌル(b)を反応せしめる方法である。又、有機ポ
リむ゜シアネヌト、ポリ゚ステルポリオヌル、ア
クリルポリオヌル等を䞀床に反応せしめる方法
段階法によ぀おも行うこずができる。 段階法に斌お第段階の反応は、通垞のりレ
タン化枩床即ち60〜90℃で〜時間反応せしめ
るこずにより行うこずができ、この堎合䜿甚でき
る有機ポリむ゜シアネヌトずしおは、䟋えば、メ
チレンゞむ゜シアネヌト、テトラメチレンゞむ゜
シアネヌト、ヘキサメチレンゞむ゜シアネヌト
以䞋HDIずいう、トリメチルヘキサメチレン
ゞむ゜シアネヌト、む゜ホロンゞむ゜シアネヌト
以䞋IPDIずいう、・4′メチレンビスシクロ
ヘキシルむ゜シアネヌト以䞋氎添MDIずい
う、キシリレンゞむ゜シアネヌト、トリレンゞ
む゜シアネヌト、キシレンゞむ゜シアネヌト、フ
゚ニレンゞむ゜シアネヌト、・ナフタレンゞ
む゜シアネヌト、クメン・ゞむ゜シアネヌ
ト、・4′メチレンビスプニルむ゜シアネヌ
ト、・クロロ―プニレンゞむ゜シアネヌ
ト、・―ブチル・・プニレンゞむ゜シア
ネヌト、・3′ゞメチル―・4′ビプニレンゞ
む゜シアネヌト、・3′ゞメトキシ―・4′ビフ
゚ニレンゞむ゜シアネヌト、コロネヌトHL日
本ポリりレタン工業補、む゜シアネヌト末端基プ
レポリマヌの商品名、コロネヌト日本ポリり
レタン工業補 む゜シアネヌト末端プレポリマヌ
の商品名、デスモゞナヌルバむ゚ル瀟補 脂
肪族ポリむ゜シアネヌトの商品名等及びこれら
類䌌の化合物の単独又は皮以䞊の混合物が挙げ
られる。 又、有機ポリむ゜シアネヌトの盞手物質ずしお
䜿甚できるポリオヌルは、肉持感、耐候性、適床
な硬さ等ぞの期埅から分子䞭にケ以䞊の氎酞基
を有するポリ゚ステルポリオヌルが適しおいる。 ポリ゚ステルポリオヌルずしおは、ε―カプロ
ラクトンを開環重合させたポリカプロラクトンポ
リ゚ステル、酞ずアルコヌルからのポリ゚ステル
ポリオヌル等があり、酞ずアルコヌルからのポリ
゚ステルポリオヌルずしお、この分野で既知のも
のはすべお䜿甚するこずができる。䟋えば酞ずし
おはアゞピン酞、セバシン酞、フタル酞、マレむ
ン酞、フマル酞、アれラむン酞、グルタル酞、テ
トラクロロフタル酞及びこれら類䌌のカルボン酞
が挙げられ、これらの単独又は䜵甚で䜿甚するこ
ずができる。 アルコヌルずしおぱチレングリコヌル、ブチ
レングリコヌル、プロピレングリコヌル、ヘキサ
ンゞオヌル等のグリコヌル、トリメチロヌルプロ
パン、グリセリン等のトリオヌルの単独又は䜵甚
で䜿甚するこずができる。分子䞭に窒玠原子を有
するポリ゚ステルアミドポリオヌルも有甚であ
る。これは前蚘の酞及びアルコヌルず有機ポリア
ミンから合成される。有機ポリむアミンずしお
は、䟋えばむ゜ホロンゞアミン、ヘキサメチレン
ゞアミン、キシレンゞアミン等のゞアミン類が挙
げられるが、モノ゚タノヌルアミン等のアミノア
ルコヌルも䜿甚できる。 本発明に䜿甚されるポリ゚ステルポリオヌルの
分子量は300〜10000の範囲、奜たしくは500〜
4000の範囲にある。たわみ性や䌞びを改善するに
は本質的には盎鎖状で比范的高分子量のポリ゚ス
テルポリオヌルが有甚であるが、分子量が10000
以䞊になるず埗られた塗料の䜜業性、スプレヌ性
及び顔料の分散性等が䜎䞋し奜たしくない。 次に、第段階の反応では、第段階で埗られ
たむ゜シアネヌト末端プレポリマヌ(a)ず、分子䞭
に少くずも個の氎酞基を有する特定のアクリル
ポリオヌル(b)をNCOOH圓量比1.5〜
20の範囲で反応せしめお末端に氎酞基を有するポ
リりレタン・アクリル共重合䜓を埗る。又、この
反応は60〜90℃で〜時間反応を行うが、
NCOOH圓量比が1.5より倧になるず分子
量が倧きくなりすぎるず同時に゚チレン性䞍飜和
結合やむ゜シアネヌト基ずの副反応が生じ貯蔵安
定性の䜎い暹脂液が埗られたり、堎合によ぀おは
ゲル化したりする等奜たしくない傟向を瀺すよう
になる。又、20より小になるず、塗膜の䜎枩
たわみ性、䌞び等が䜎䞋する傟向を瀺すようにな
る。 第段階の反応に䜿甚できる特定のアクリルポ
リオヌル(b)ずしおはメタクリル酞メチル、メタク
リル酞゚チル、メタクリル酞ブチル、メタクリル
酞む゜ブチル、アクリル酞メチル、アクリル酞゚
チル、アクリル酞ブチル、アクリル酞む゜ブチ
ル、アクリル酞゚チルヘキシル、メタクリル
酞、ラりリル、メタクリル酞、―゚チルヘキシ
ル、メタクリル酞―ヒドロキシ゚チル、アクリ
ル酞―ヒドロキシ゚チルアクリル酞ヒドロキシ
プロピル、アクリル酞、グリシゞル、メタクリル
酞グリシゞル、メタクリル酞、アクリル酞等の重
合性ビニル単量䜓の組合せによるアクリル暹脂共
重合䜓が甚いられる。 曎に、本発明に䜿甚できるアクリルポリオヌル
(b)ずしおは、スチレン、ビニトル゚ン、アクリル
アミド、アクリルニトリル等の重合性ビニルモノ
マヌの䜵甚も公知のアクリル暹脂におけるず同様
䜕らさし぀かえない。 これらアクリルポリオヌルずしおは、氎酞基䟡
が50〜300でありか぀酞䟡が〜40である分子量
500〜10000のアクリルポリオヌルを䜿甚するこず
ができる。 酞䟡が40より倧になるず、塗料化埌の貯蔵安定
性を䜎䞋させ、か぀耐氎性に悪圱響をおよがす傟
向を瀺すようになり、酞䟡がより小になるず硬
化性、付着性等が劣るようになる。 分子量が10000以䞊になるず䜎枩性、耐衝撃性、
盞溶性等が特に劣る傟向を瀺すようになり、分子
量が500以䞋の堎合も䜎枩性、耐衝撃性、盞溶性、
耐氎性等が䜎䞋する傟向を瀺すようになる。 又、アクリルポリオヌルの遞択にあたり、特に
重芁な点は、通垞䜿甚されおいるアクリルポリオ
ヌルはガラス転移枩床が20℃〜105℃であるが、
本発明に䜿甚されるアクリルポリオヌルのガラス
転移枩床を20℃〜−50℃に調補したものを䜿甚す
るこずである。このような特別のアクリルポリオ
ヌルずむ゜シアネヌト末端プレポリマヌを反応せ
しめるこずにより暹脂䞭に少くずも぀の゚チレ
ン性䞍飜和結合を導入するこずによ぀お埓来埗ら
れなか぀た優れた䜎枩たわみ性、盞溶性、䌞展性
等を持たせか぀、最終塗膜の性胜を向䞊するこず
ができるのである。 このようにしお埗られたポリりレタン・アクリ
ル共重合䜓のゲルパヌミ゚ヌシペンクロマトグラ
フむ法による平均分子量は5000〜50000の範囲で
あるが、このうち10000〜40000の範囲のものが本
願発明の実斜䞊特に奜たしい。分子量が5000以䞋
では塗膜の物理的匷床、耐久性、䜎枩たわみ性等
に欠点がみられ50000以䞊では、塗装䜜業性、局
間付着性䜎䞋の傟向がある。 ポリりレタン・アクリル共重䜓の氎酞基䟡は20
〜250の範囲であるこずが必芁である。 氎酞基䟡の量は硬床、耐氎性、耐薬品性、耐ガ
゜リン性に圱響を及がし、氎酞基䟡が20以䞋にな
るず耐氎性、耐薬品性、耐候性、耐ガ゜リン性等
が䜎䞋する傟向を瀺すようになり、氎酞基䟡が
250以䞊の堎合も、䜎枩性、耐衝撃性、耐氎性、
耐薬品等が䜎䞋する。 本発明のポリりレタン・アクリル共重合䜓は、
アミノ・ホルムアルデヒド暹脂ず配合しお甚いら
れる。 配合割合はポリりレタン・アクリル共重合䜓の
骚栌やこれを埗るために䜿甚したポリオヌルの
量、或いは芁求される塗膜性胜により定められる
が、ポリりレタンアクリル共重合䜓100重量郚に
察しおアミノ・ホルムアルデヒド暹脂〜100重
量郚が望たしい。䞀般にアミノ・ホルムアルデヒ
ド暹脂の増量に䌎い塗膜は硬いものになる。 ポリりレタン・アクリル共重合䜓ず組合せられ
るアミノホルムアルデヒド暹脂を構成するアミノ
化合物ずしおは、メラミン、尿玠、ベンゟグアナ
ミン、アセトグアナミン、ステアログアナミン、
スピログアナミン等が挙げられる。アミノホルム
アルデヒド暹脂の゚ヌテル化に䜿甚されるアルコ
ヌルは、メチル、゚チル、プロピル、む゜プロピ
ル、ブチル、む゜ブチル等の䜎炭玠数の䟡アル
コヌルであり、これらぱヌテル亀換反応におい
お、前蚘以倖のアルコヌル類よりも䜎枩で反応す
るこずができるずずもに脱ホルマリン反応も少
く、又、このようにしお埗られたアミノ・ホルム
アルデヒド暹脂はポリりレタン・アクリル共重合
䜓ずの反応も速い。 本発明のポリりレタン・アクリル共重合䜓ずア
ミノ・ホルムアルデヒド暹脂の配合から成る被芆
甚組成物は必芁に応じお酞觊媒を甚いおもよく、
酞觊媒ずしおは、塩酞、リン酞、リン酞ゞメチ
ル、リン酞トリ゚チル、リン酞トリクレシル、リ
ン酞トリプニル、リン酞トリブチル、リン酞ト
リメチル、―トル゚ンスルフオン酞、キシレン
スルフオン酞、スルフアニル酞、シクロヘキシル
スルフアミン酞、ナフタリンスルフオン酞、ベン
れンスルフオン酞、メタンスルフオン酞、アルキ
ルベンれンスルフオン酞、ゞナフタレンゞスルフ
オン酞、ゞナフタレンモノスルフオン酞、アミノ
プノヌルスルフオン酞等が挙げられる。 酞觊媒の添加量は、党暹脂量に察しお0.4〜5.0
重量郚の範囲が奜たしい。酞觊媒の量が0.4重量
郚以䞋では硬化性にほずんど効果が認められず、
5.0重量郚以䞊では貯蔵安定性が悪くゲル化が非
垞に速くなる。 本発明に係る組成物は、必芁ならば溶媒、無機
あるいは有機の着色染料、充填剀、可塑剀、酞化
防止剀、玫倖線吞収剀、レベリング剀、界面掻性
剀等を配合するこずができる。 又、塗装にあた぀おは通垞の゚アヌスプレヌ、
゚アレススプレヌ、静電塗装ロヌルコヌタヌ、カ
ヌテンフロヌコヌタヌ等を利甚するこずができ
る。倚くの堎合70〜120℃の枩床で〜60分の焌
付けで硬化させる。基材ずしおポリりレタンフオ
ヌムやフオヌムラバヌ、゚ラストマヌ等の匟性䜓
に適しおいるが、䜎枩硬化で耐久性が埗られるた
め、各皮の金属類、プラスチツク類、ガラス類、
朚材、スレヌト等すべおの基材に察しおも適甚で
きる。 本発明を曎に実斜䟋により説明するが、本発明
がこれに制限されるものではない。本実斜䟋にお
いお党おの郚及びは特にこずわりのない限り重
量郚および重量である。 ポリ゚ステルポリオヌルの補造、補造䟋〜
衚 枩床蚈、撹拌機、脱氎装眮及び䞍掻性ガス導入
管を備えた容摺合せ付ガラス補四぀口フラス
コに衚に瀺す割合の原料を仕蟌み窒玠ガスを
吹蟌みながら撹拌を行い、150℃に昇枩埌は時
間に200℃昇枩するように加熱撹拌を続けお反応
せしめ、210〜220℃で氎の留出が止぀た埌枛圧反
応を行い、酞䟡を枬定しお以䞋にな぀たずき反
応を終了した。埗られたポリ゚ステルポリオヌル
の酞䟡、氎酞基䟡を衚に瀺した。 アクリルポリオヌルの補造、補造䟋〜衚
 枩床蚈、撹拌機、冷华噚及び滎䞋ロヌトを備え
た容摺合せ付ガラス補四぀口フラスコに衚
に瀺す原料割合の量を仕蟌み、撹拌しな
がら100〜110℃に昇枩し、曎に残りの原料を滎䞋
ロヌトから時間を芁しお滎䞋した。 滎䞋終了埌時間、100〜110℃に保ち次いでア
ゟむ゜ブチロニトリル郚ず酢酞ブチル10郚の混
合物を滎䞋し80℃で時間反応せしめた。埗られ
たアクリルポリオヌルの氎酞基䟡、分子量を衚
に瀺した。 実斜䟋〜9.比范䟋 ポリりレタン・アクリル共重合䜓の補造衚
 枩床蚈、冷华噚及び撹拌機を備えた容摺合
せ付ガラス補四぀口フラスコに衚に瀺した割
合のむ゜シアネヌト末端プレポリマヌ合成甚の原
料を仕蟌み各々の反応条件で反応せしめお該プレ
ポリマヌを埗た。 次に、衚に瀺したアクリルポリオヌルを加
え各々の反応条件で反応せしめ、酢酞ブチルを加
えお固圢分50に垌釈した。埗られた生成物の氎
酞基䟡ず分子量を衚に瀺した。 比范䟋はアクリルポリオヌルのガラス転移枩
床が高い本願の範囲倖のものものを䜿甚した
䟋である。 比范䟋  実斜䟋ず同様の装眮ず方法で衚に瀺した
割合の原料を甚いおむ゜シアネヌト末端プレポリ
マヌを埗、該プレポリマヌずアクリルポリオヌル
をブレンドしお溶剀衚の割合を加え比范
詊料ずした。 塗料甚暹脂組成物の調補衚 衚に瀺した原料を配合しお塗料甚暹脂組成
物を調補した。実斜䟋から埗られた組成物の被膜
は特に䜎枩たわみ性、密着性の優れたものであ぀
た。比范䟋は、ガラス転移枩床の高いアクリル
ポリオヌル本願の範囲倖のものをアミノ・ホ
ルムアルデヒド暹脂ずずもに䜿甚した。 塗料の調補及び塗膜詊隓衚 実斜䟋〜、比范䟋〜の組成物100郚に
察しおタむペヌク―930石原産業補 ルチル型
酞化チタンの商品名33.3郚、む゜ブタノヌル
シクロヘキサノンキシレン107020重量
比75.0郚、むルガノツクス1010チバガむギヌ
補、酞化防止剀0.17郚及びチヌビン328チバガ
むギヌ補、玫倖線吞収剀0.17郚をレツドデビル
分散機にお分散せしめお埗た熱硬化性塗料をポリ
りレタンプラスチツクに゚アスプレヌ装眮にお塗
垃した埌、110℃で30分焌付けお塗膜物性の詊隓
を行い結果を衚に瀺した。
The present invention relates to a novel low-temperature curable coating composition which can be baked at a relatively low temperature and is suitable as a coating agent for elastic bodies. In recent years, technological innovations regarding various synthetic resins have been remarkable, and especially in the automobile industry, various plastics are being adopted for the purpose of improving safety and reducing weight. A typical example is plastic parts that have the shock absorption function unique to urethane. However, plastics generally do not have sufficient weather resistance, and when used as exterior parts for automobiles, they are often coated for protection from various types of damage, aesthetics, prevention of deterioration, and design needs. As a paint, it is tough and flexible at low temperatures, impact resistance, adhesion, chemical resistance, moderate elongation, and workability without reducing physical properties such as flexibility, impact resilience, and rigidity. Although there is a demand for a flexible coating system that has excellent properties such as properties, so far no coating that satisfies all of these properties has been obtained. Polyurethane paints are often used as paints for plastics, but two-component polyurethane paints, for example, have relatively good film performance, but the two components must be measured and mixed during painting, and mixing is difficult. Since the liquid reacts gradually even at low temperatures, it is subject to operational constraints such as having to use it up within a set time. On the other hand, one-component polyurethane paints using blocking isocyanates have drawbacks such as high curing temperatures and reduced gloss due to scattering of the blocking agent. Furthermore, a one-component polyurethane paint in which a polyurethane resin having a terminal hydroxyl group is crosslinked with an aminoplast resin is known from Japanese Patent Publication No. 54-5440, and has already been put into practical use for polyurethane elastomers, but the curing temperature is high. In addition, Japanese Patent Publication No. 54-2667 describes an example of blending a polyurethane ester polyol having a terminal hydroxyl group with an acrylic resin. Due to its poor compatibility with polyurethane ester polyols, it has drawbacks such as deterioration of the initial gloss, water resistance, chemical resistance, low temperature resistance, weather resistance, etc. of the cured coating film, and there is a strong demand for improvement from those skilled in the art. The current situation is that Therefore, the main purpose of the present invention is to improve the above-mentioned drawbacks and improve flexibility at low temperatures, weather resistance, adhesion, and chemical resistance in order to coat elastic substrates such as polyurethane foam, foam rubber, and elastomers. ,
The purpose of the present invention is to provide a one-component polyurethane paint that has excellent properties such as gloss and can be cured by baking at a relatively low temperature. As a result of extensive research and study in line with this objective, the present inventors have developed a polyurethane-acrylic copolymer, a novel composition made by reacting an isocyanate-terminated prepolymer with a specific acrylic polyol, using an amino-formaldehyde resin. We were able to achieve this objective by using it in combination with That is, the present invention provides a prepolymer (a) which is a reaction product of a polyester polyol having at least two hydroxyl groups in the molecule and an organic polyisocyanate, the terminal of which is an isocyanate group; A polyurethane-acrylic copolymer obtained by reacting an acrylic polyol (b) having hydroxyl groups and a molecular weight of 10,000 or less at an NCO/OH equivalent ratio in the range of 1/1.5 to 1/20, and a monohydric alcohol. The present invention relates to a thermosetting coating composition comprising an etherified amino formaldehyde resin. The polyurethane/acrylic copolymer that can be used in the present invention can be obtained by a two-step reaction. First, in the first step, an organic polyisocyanate and a polyester polyol are reacted to form an isocyanate-terminated prepolymer (a), and in the second step, a specific acrylic polyol (b) is reacted with the prepolymer (a). It is. It can also be carried out by a method (one-step method) in which organic polyisocyanate, polyester polyol, acrylic polyol, etc. are reacted all at once. In the two-step method, the first step reaction can be carried out by reacting at a normal urethanization temperature, that is, 60 to 90°C, for 3 to 6 hours. Examples of organic polyisocyanates that can be used in this case include methylene Diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (hereinafter referred to as HDI), trimethylhexamethylene diisocyanate, isophorone diisocyanate (hereinafter referred to as IPDI), 4,4' methylene bis(cyclohexyl isocyanate) (hereinafter referred to as hydrogenated MDI), xylylene diisocyanate, Diisocyanate, xylene diisocyanate, phenylene diisocyanate, 1,5 naphthalene diisocyanate, cumene 2,4 diisocyanate, 4,4' methylene bis(phenyl isocyanate), 4, chloro-m phenylene diisocyanate, 4, t-butyl m, Phenylene diisocyanate, 3,3'dimethyl-4,4' biphenylene diisocyanate, 3,3'dimethoxy-4,4' biphenylene diisocyanate, Coronate HL (manufactured by Nippon Polyurethane Industries, trade name of isocyanate-terminated prepolymer) ), Coronate L (trade name of isocyanate-terminated prepolymer manufactured by Nippon Polyurethane Industries), Desmodyur N (trade name of aliphatic polyisocyanate manufactured by Bayer), and similar compounds thereof alone or in a mixture of two or more thereof. Further, polyester polyols having two or more hydroxyl groups in the molecule are suitable as polyols that can be used as a partner substance for the organic polyisocyanate, from the viewpoint of providing a feeling of texture, weather resistance, appropriate hardness, and the like. Examples of polyester polyols include polycaprolactone polyester obtained by ring-opening polymerization of ε-caprolactone, polyester polyols made from acids and alcohols, and all known polyester polyols made from acids and alcohols in this field can be used. can. For example, acids include adipic acid, sebacic acid, phthalic acid, maleic acid, fumaric acid, azelaic acid, glutaric acid, tetrachlorophthalic acid, and similar carboxylic acids, which can be used alone or in combination. . As the alcohol, glycols such as ethylene glycol, butylene glycol, propylene glycol, and hexanediol, and triols such as trimethylolpropane and glycerin can be used alone or in combination. Polyesteramide polyols having nitrogen atoms in the molecule are also useful. It is synthesized from the acid and alcohol mentioned above and an organic polyamine. Examples of organic polyamines include diamines such as isophorone diamine, hexamethylene diamine, and xylene diamine, but amino alcohols such as monoethanolamine can also be used. The molecular weight of the polyester polyol used in the present invention ranges from 300 to 10,000, preferably from 500 to
In the range of 4000. Essentially linear polyester polyols with relatively high molecular weights are useful for improving flexibility and elongation, but polyester polyols with a molecular weight of 10,000
If it is more than that, the workability, sprayability, pigment dispersibility, etc. of the resulting coating material will deteriorate, which is undesirable. Next, in the second step reaction, the isocyanate-terminated prepolymer (a) obtained in the first step and a specific acrylic polyol (b) having at least two hydroxyl groups in the molecule are mixed in an NCO/OH equivalent ratio. 1/1.5~1/
20 to obtain a polyurethane/acrylic copolymer having a hydroxyl group at the end. In addition, this reaction is carried out at 60 to 90°C for 5 to 9 hours,
When the NCO/OH equivalent ratio is greater than 1/1.5, the molecular weight becomes too large and at the same time side reactions with ethylenically unsaturated bonds and isocyanate groups occur, resulting in a resin liquid with low storage stability, or in some cases. begins to exhibit unfavorable tendencies such as gelation. Moreover, when it is smaller than 1/20, the low temperature flexibility, elongation, etc. of the coating film tend to decrease. Specific acrylic polyols (b) that can be used in the second step reaction include methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, acrylic 2-ethylhexyl acid, methacrylic acid, lauryl, methacrylic acid, 2-ethylhexyl, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, acrylic acid, glycidyl, glycidyl methacrylate, methacrylic acid, acrylic acid, etc. An acrylic resin copolymer made of a combination of polymerizable vinyl monomers is used. Furthermore, acrylic polyols that can be used in the present invention
As (b), a combination of polymerizable vinyl monomers such as styrene, vinyltoluene, acrylamide, acrylonitrile, etc. is also acceptable, as in the case of known acrylic resins. These acrylic polyols have a molecular weight with a hydroxyl value of 50 to 300 and an acid value of 1 to 40.
500-10000 acrylic polyols can be used. When the acid value is higher than 40, it tends to decrease the storage stability after being made into a paint and has a negative effect on water resistance, and when the acid value is lower than 1, the curing properties, adhesion, etc. are poor. It becomes like this. When the molecular weight is 10,000 or more, low temperature resistance, impact resistance,
Compatibility, etc. tend to be particularly poor, and even when the molecular weight is less than 500, low temperature resistance, impact resistance, compatibility,
Water resistance etc. tend to decrease. In addition, when selecting an acrylic polyol, an especially important point is that commonly used acrylic polyols have a glass transition temperature of 20°C to 105°C.
The acrylic polyol used in the present invention should be adjusted to have a glass transition temperature of 20°C to -50°C. By reacting such a special acrylic polyol with an isocyanate-terminated prepolymer and introducing at least one ethylenically unsaturated bond into the resin, excellent low-temperature flexibility, compatibility, and It is possible to impart extensibility and improve the performance of the final coating film. The average molecular weight of the thus obtained polyurethane-acrylic copolymer determined by gel permeation chromatography is in the range of 5,000 to 50,000, but among these, those in the range of 10,000 to 40,000 are suitable for carrying out the present invention. Particularly preferred. When the molecular weight is less than 5,000, there are disadvantages in the physical strength, durability, and low-temperature flexibility of the coating film, and when it is more than 50,000, there is a tendency for coating workability and interlayer adhesion to decrease. The hydroxyl value of polyurethane/acrylic copolymer is 20
Must be in the range ~250. The amount of hydroxyl value affects hardness, water resistance, chemical resistance, and gasoline resistance, and when the hydroxyl value is less than 20, water resistance, chemical resistance, weather resistance, gasoline resistance, etc. tend to decrease. and the hydroxyl value becomes
Even if it is 250 or more, it has low temperature resistance, impact resistance, water resistance,
Chemical resistance etc. decreases. The polyurethane-acrylic copolymer of the present invention is
Used in combination with amino formaldehyde resin. The blending ratio is determined by the skeleton of the polyurethane-acrylic copolymer, the amount of polyol used to obtain it, or the required coating performance, but the ratio of amino-formaldehyde resin to 100 parts by weight of the polyurethane-acrylic copolymer 5 to 100 parts by weight is desirable. Generally, as the amount of amino formaldehyde resin increases, the coating film becomes harder. The amino compounds that make up the amino formaldehyde resin that can be combined with the polyurethane/acrylic copolymer include melamine, urea, benzoguanamine, acetoguanamine, stearoguanamine,
Examples include spiroguanamine. The alcohols used in the etherification of aminoformaldehyde resins are monohydric alcohols with a low carbon number such as methyl, ethyl, propyl, isopropyl, butyl, and isobutyl, and these are more active than other alcohols in the transetherification reaction. The amino formaldehyde resin thus obtained reacts quickly with polyurethane/acrylic copolymers. The coating composition comprising the polyurethane-acrylic copolymer and amino-formaldehyde resin of the present invention may optionally use an acid catalyst,
As acid catalysts, hydrochloric acid, phosphoric acid, dimethyl phosphate, triethyl phosphate, tricresyl phosphate, triphenyl phosphate, tributyl phosphate, trimethyl phosphate, P-toluenesulfonic acid, xylene sulfonic acid, sulfanilic acid, cyclohexyl Sulfamic acid, naphthalenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, alkylbenzenesulfonic acid, dinaphthalenedisulfonic acid, dinaphthalene monosulfonic acid, aminophenolsulfonic acid, and the like. The amount of acid catalyst added is 0.4 to 5.0 based on the total amount of resin.
Parts by weight ranges are preferred. When the amount of acid catalyst is less than 0.4 parts by weight, there is almost no effect on curing properties.
If it exceeds 5.0 parts by weight, storage stability will be poor and gelation will occur very quickly. The composition according to the present invention may contain a solvent, an inorganic or organic coloring dye, a filler, a plasticizer, an antioxidant, an ultraviolet absorber, a leveling agent, a surfactant, etc., if necessary. Also, when painting, use regular air spray,
Airless spray, electrostatic roll coater, curtain flow coater, etc. can be used. It is often cured by baking at a temperature of 70 to 120°C for 5 to 60 minutes. As a base material, it is suitable for elastic materials such as polyurethane foam, foam rubber, and elastomers, but since it can be cured at low temperatures for durability, it can be used for various metals, plastics, glasses, etc.
It can also be applied to all base materials such as wood and slate. The present invention will be further explained by examples, but the present invention is not limited thereto. In the examples, all parts and percentages are by weight unless otherwise specified. Production of polyester polyol, Production Examples 1 to 4
(Table. 1) Table 1 was placed in a 1-volume glass four-necked flask equipped with a thermometer, a stirrer, a dehydrator, and an inert gas inlet tube. The raw materials in the ratio shown in 1 were prepared and stirred while blowing in nitrogen gas. After the temperature was raised to 150°C, the reaction was continued by heating and stirring so that the temperature was raised to 200°C per hour. After the distillation stopped, a reaction was carried out under reduced pressure, and when the acid value was measured and became 5 or less, the reaction was terminated. The acid value and hydroxyl value of the obtained polyester polyol are shown in the table. Shown in 1. Production of acrylic polyol, Production Examples 5 to 7 (Table.
2) Place the mixture in a 1-volume glass four-necked flask equipped with a thermometer, stirrer, condenser, and dropping funnel.
1/2 of the raw material ratio shown in 2 was charged, the temperature was raised to 100 to 110°C while stirring, and the remaining raw material was added dropwise from the dropping funnel over a period of 3 hours. After completion of the dropwise addition, the temperature was maintained at 100 to 110°C for 4 hours, and then a mixture of 1 part of azoisobutyronitrile and 10 parts of butyl acetate was added dropwise to react at 80°C for 3 hours. The hydroxyl value and molecular weight of the obtained acrylic polyol are shown below.
Shown in 2. Examples 1 to 9. Comparative Example 1 Production of polyurethane/acrylic copolymer (Table.
3) Place the mixture in a 1-volume glass four-necked flask equipped with a thermometer, condenser, and stirrer. The raw materials for synthesizing the isocyanate-terminated prepolymer in the proportions shown in 3 were charged and reacted under the respective reaction conditions to obtain the prepolymer. Next, table. The acrylic polyol shown in 3 was added and reacted under each reaction condition, and butyl acetate was added to dilute the solid content to 50%. The hydroxyl value and molecular weight of the obtained product are shown in the table. Shown in 3. Comparative Example 1 is an example in which an acrylic polyol having a high glass transition temperature (outside the range of the present application) was used. Comparative Example 2 Using the same equipment and method as in Example 1. An isocyanate-terminated prepolymer was obtained using the raw materials in the proportions shown in Table 3, the prepolymer and acrylic polyol were blended, and a solvent (in the proportions shown in Table 3) was added to prepare a comparative sample. Preparation of resin composition for paint (Table 4) Table. A coating resin composition was prepared by blending the raw materials shown in 4. The coatings of the compositions obtained in the Examples were particularly excellent in low temperature flexibility and adhesion. Comparative Example 3 used an acrylic polyol with a high glass transition temperature (outside the scope of this application) with an amino formaldehyde resin. Preparation of paint and coating film test (Table 5) 33.3 parts of Taipeiku R-930 (trade name of rutile-type titanium oxide manufactured by Ishihara Sangyo Co., Ltd.) per 100 parts of the compositions of Examples 1 to 9 and Comparative Examples 1 to 3; Isobutanol/
Obtained by dispersing 75.0 parts of cyclohexanone/xylene (10/70/20 weight ratio), 0.17 parts of Irganox 1010 (manufactured by Ciba Geigy, antioxidant) and 0.17 parts of Tinuvin 328 (manufactured by Ciba Geigy, ultraviolet absorber) using a Red Devil disperser. The thermosetting paint was applied to polyurethane plastic using an air spray device, then baked at 110℃ for 30 minutes, and the physical properties of the paint film were tested and the results are presented. 5.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  分子䞭に少くずも個の氎酞基を有するポリ
゚ステルポリオヌルず有機ポリむ゜シアネヌトず
の反応生成物であ぀お、末端基がむ゜シアネヌト
基であるプレポリマヌ(a)ず、分子䞭に少くずも
個の氎酞基を有し分子量が10000以䞋であるアク
リルポリオヌル(b)をNCOOH圓量比1.5〜
20の範囲で反応せしめお埗たポリりレタン・
アクリル共重合䜓ず、䟡アルコヌルで゚ヌテル
化したアミノ・ホルムアルデヒド暹脂ずから成る
熱硬化性被芆甚組成物。
1. A prepolymer (a) which is a reaction product of a polyester polyol having at least two hydroxyl groups in the molecule and an organic polyisocyanate, the terminal group of which is an isocyanate group, and at least two hydroxyl groups in the molecule.
Acrylic polyol (b) having hydroxyl groups and a molecular weight of 10,000 or less at an NCO/OH equivalent ratio of 1/1.5 to
Polyurethane obtained by reacting in a range of 1/20
A thermosetting coating composition comprising an acrylic copolymer and an amino formaldehyde resin etherified with a monohydric alcohol.
JP56098915A 1981-06-25 1981-06-25 Thermosetting coating composition Granted JPS581753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56098915A JPS581753A (en) 1981-06-25 1981-06-25 Thermosetting coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56098915A JPS581753A (en) 1981-06-25 1981-06-25 Thermosetting coating composition

Publications (2)

Publication Number Publication Date
JPS581753A JPS581753A (en) 1983-01-07
JPH0125787B2 true JPH0125787B2 (en) 1989-05-19

Family

ID=14232420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56098915A Granted JPS581753A (en) 1981-06-25 1981-06-25 Thermosetting coating composition

Country Status (1)

Country Link
JP (1) JPS581753A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499543A (en) * 1972-05-25 1974-01-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499543A (en) * 1972-05-25 1974-01-28

Also Published As

Publication number Publication date
JPS581753A (en) 1983-01-07

Similar Documents

Publication Publication Date Title
CN103204983B (en) aliphatic polyisocyanate prepolymer and polyurethane resin coating composition using the same
EP1924663B1 (en) Multi-component, waterborne coating compositions, related coatings and methods
ES2601578T3 (en) Water-based, urethane-based two-layer coating system, its use and substrates coated with it
EP0583377B1 (en) One package polyurethane/thermoplast plastisol composition
EP1704928B1 (en) Aqueous coating compositions
US5817735A (en) Water-based primers with a low volatile organic content
EP1937739B1 (en) Non-aqueous, liquid coating compositions
JP5446077B2 (en) Aqueous resin composition comprising a blocked isocyanate-containing aqueous emulsion composition as a curing agent, and an aqueous baking type paint or adhesive composition using the same
EP1671990B1 (en) Aqueous coating compositions
JP2015504471A (en) Solvent type clear coat coating composition, method for producing the same and use thereof
US5859154A (en) Resinous composition of phosphatized polyester polymers and coating compositions for improved adhesion
AU7737501A (en) Coating composition having improved acid etch resistance
JPS6044561A (en) Rapidly-drying coating composition
US6316543B1 (en) Low VOC, isocyanate based aqueous curable compositions
WO2003099897A1 (en) One-component, waterborne film-forming composition
US8822622B2 (en) Two-component polyurethane coating compositions
WO1998038230A9 (en) Low voc, isocyanate based aqueous curable compositions
US6313218B1 (en) Low VOC, isocyanate based aqueous curable compositions
JPH0457869A (en) Paint resin composition
JPH06220397A (en) Two-pack type urethane coating composition
JPH0125787B2 (en)
JPH027344B2 (en)
JP2009270031A (en) Resin composition and coating material resin composition containing the same
JPS64425B2 (en)
EP2514778A1 (en) Liquid two-component coating compositions