JPH01257221A - Hot-wire type air flow rate detector for internal combustion engine - Google Patents

Hot-wire type air flow rate detector for internal combustion engine

Info

Publication number
JPH01257221A
JPH01257221A JP63084800A JP8480088A JPH01257221A JP H01257221 A JPH01257221 A JP H01257221A JP 63084800 A JP63084800 A JP 63084800A JP 8480088 A JP8480088 A JP 8480088A JP H01257221 A JPH01257221 A JP H01257221A
Authority
JP
Japan
Prior art keywords
flow rate
air flow
internal combustion
combustion engine
flap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63084800A
Other languages
Japanese (ja)
Inventor
Koichi Fujiwara
浩一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP63084800A priority Critical patent/JPH01257221A/en
Publication of JPH01257221A publication Critical patent/JPH01257221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable highly accurate detection of a flow rate at a high accuracy over a wide range of flow rate, by arranging a mobile flap within a main intake path so that it is energized with a return spring in the direction of being closed while being turned in the direction of being opened according to a flow rate or air. CONSTITUTION:In an operation range with a relatively small intake air flow rate of an internal combustion engine 1, a mobile flap 11 energized in the direction of being closed with an unillustrated return spring is almost fully closed so that the most of intake air passes to a bypass path 8 to increase a diversion ratio on the side of the path 8. Therefore, a flow velocity in a host wire 9 becomes higher though the flow rate as a whole is small to improve detection accuracy at a low flow rate area. On the other hand, in an operation range relatively large in the intake air flow rate, the flap 11 is opened against an energizing force of the return spring and air also passes to a main intake path 7 to lower the diversion ratio on the side of the path 8. Then, the flap 11 is almost fully opened near the largest output of the engine 1. Thus, increase in a pressure loss is made almost negligible thereby enabling detection of a flow rate in a wide range avoiding a drop in the largest output.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、線状もしくは箔状とした発熱体からの熱放
散を利用して内燃機関の吸入空気流量の検出を行う熱線
式空気流量検出装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a hot wire air flow rate detection device that detects the intake air flow rate of an internal combustion engine by utilizing heat dissipation from a wire or foil heating element. Regarding improvements.

従来の技術 内燃機関の空気流量検出装置の一種として従来から熱線
式のものが知られている(例えば日照自動車(株)昭和
58年6月発行の「サービス周報第484号」参照)。
BACKGROUND ART A hot wire type is known as a type of air flow rate detection device for an internal combustion engine (for example, see "Service Bulletin No. 484" published by Nissho Jidosha Co., Ltd. in June 1988).

これは、空気流路中に白金線やNi箔などの熱線を配設
し、これを一定温度に保つように通電制御して流速測定
を行うものであって、空気流量つまり流速が増加して放
散熱量が増すと、熱線の温度が低下し、熱線の抵抗が小
さくなるので、その抵抗変化をブリッジ回路等によって
検出することで、空気流量に応じた出力電圧を得るよう
になっている。
This method measures the flow velocity by placing a hot wire such as a platinum wire or Ni foil in the air flow path and controlling the current to keep it at a constant temperature. As the amount of heat dissipated increases, the temperature of the hot wire decreases and the resistance of the hot wire decreases, so by detecting the change in resistance using a bridge circuit or the like, an output voltage corresponding to the air flow rate is obtained.

第5図は、従来におけるバイパス型の熱線式空気流量検
出装置の構成を模式的に示したものであって、エアクリ
ーナ21から内燃機関22に至る吸気通路23の一部、
詳しくは絞弁24より上流側の一部を、主吸気通路25
とバイパス通路26とに分離形成するとともに、上記バ
イパス通路26内に、検出部となる熱線27を配設しで
ある。
FIG. 5 schematically shows the configuration of a conventional bypass type hot wire air flow rate detection device, in which a part of the intake passage 23 leading from the air cleaner 21 to the internal combustion engine 22,
Specifically, a part of the upstream side of the throttle valve 24 is connected to the main intake passage 25.
and a bypass passage 26, and a hot wire 27 serving as a detection section is disposed within the bypass passage 26.

この構成においては、上記熱線27によって実際にはバ
イパス通路26内の流速つまり該パイパス通路26側の
空気流量を検出しているのであるが、上記主吸気通路2
5とバイパス通路26とには、空気流量の大小に拘わら
ず常に一定の分流比で空気が通流するので、このバイパ
ス通路26側の流速に基づいて内燃機関22全体の空気
流’itを検出することができるのである。
In this configuration, the hot wire 27 actually detects the flow velocity in the bypass passage 26, that is, the air flow rate on the side of the bypass passage 26, but the main intake passage 27
5 and the bypass passage 26, air always flows at a constant division ratio regardless of the size of the air flow rate, so the air flow 'it of the entire internal combustion engine 22 is detected based on the flow velocity on the side of the bypass passage 26. It is possible.

発明が解決しようとする課題 しかしながら、上記のような熱線式空気流量検出装置に
おいては、機関アイドリング時のような空気流量の少な
い領域では、バイパス通路26内で生じる圧力損失によ
って熱線27付近の流速が過度に小さくなってしまい、
検出精度が低下する。
Problems to be Solved by the Invention However, in the hot wire type air flow rate detection device as described above, in a region where the air flow rate is low such as when the engine is idling, the flow velocity near the hot wire 27 decreases due to the pressure loss generated in the bypass passage 26. becomes too small,
Detection accuracy decreases.

つまり出力電圧がある値以下となるような低流量域では
、種々の要因による誤差の影響が大きくなり、その検出
精度を保証することができない。
In other words, in a low flow rate region where the output voltage is below a certain value, the influence of errors due to various factors increases, and the detection accuracy cannot be guaranteed.

尚、主吸気通路25の通路断面積を小さく設定してバイ
パス通路26側の分流比を大きくすれば、それだけ低流
量域の検出精度が向上するが、これに伴って高流量域で
の圧力損失が増大し、内燃機関の最大出力の低下を来し
てしまう。
Incidentally, if the cross-sectional area of the main intake passage 25 is set small and the flow division ratio on the bypass passage 26 side is increased, the detection accuracy in the low flow rate region will be improved accordingly, but this will also reduce the pressure loss in the high flow rate region. increases, resulting in a decrease in the maximum output of the internal combustion engine.

また熱線式空気流量検出装置においては、吸気の脈動を
敏感に検出してしまい、出力電圧が大きな振幅で変化す
るので、その対策も大きな技術課題となっている。
In addition, hot wire air flow rate detection devices sensitively detect pulsation of intake air, and the output voltage changes with a large amplitude, so countermeasures for this are a major technical issue.

課題を解決するための手段 この発明は上記従来の課題を解決するためになされたも
ので、内燃機関の吸気通路の一部を主吸気通路とバイパ
ス通路とに分離形成するとともに、上記バイパス通路内
に熱線を配設してなる内燃機関の熱線式空気流量検出装
置において、上記主吸気通路内に、リターンスプリング
にて閉方向に付勢され、かつ空気流量に応じて開方向に
回動する可動フラップを配設したことを特徴としている
Means for Solving the Problems The present invention has been made to solve the above-mentioned conventional problems, and includes separating a part of the intake passage of an internal combustion engine into a main intake passage and a bypass passage, and also forming a part of the intake passage of an internal combustion engine into a main intake passage and a bypass passage. In the hot wire type air flow rate detection device for an internal combustion engine, the hot wire type air flow rate detection device for an internal combustion engine is provided with a movable member in the main intake passage that is biased in the closing direction by a return spring and rotates in the opening direction depending on the air flow rate. It is characterized by a flap.

作用 上記可動フラップは、空気流量に応じて自然に開閉し、
例えば低流’rt域では開度が小さい。そのため、バイ
パス通路側の分流比が大きくなり、熱線による検出精度
が向上する。また高流量域では可動フラップの開度が自
然に大きくなるので、最大出力付近での圧力損失は小さ
なものとなる。尚、上記可動フラップの開度ひいては分
流比は、機関全体の空気流量によって一義的に定まるの
で、出力電圧と空気流量との関係も従来と同様に固定的
な特性として与えられる。
Function: The movable flap above opens and closes naturally depending on the air flow rate.
For example, the degree of opening is small in the low flow 'rt region. Therefore, the branching ratio on the bypass passage side increases, and the detection accuracy using the hot wire improves. Furthermore, since the opening degree of the movable flap naturally increases in the high flow rate range, the pressure loss near the maximum output becomes small. Incidentally, since the opening degree of the movable flap and thus the flow division ratio are uniquely determined by the air flow rate of the entire engine, the relationship between the output voltage and the air flow rate is also given as a fixed characteristic as in the conventional case.

実施例 第1図はこの発明に係る熱線式空気流量検出装置の一実
施例を示している。
Embodiment FIG. 1 shows an embodiment of a hot wire type air flow rate detection device according to the present invention.

図において、Iは内燃機関、2はエアクリーナ、3はこ
のエアクリーナ2から内燃機関Iに至る吸気通路をそれ
ぞれ示しており、上記吸気通路3には、絞弁4が介装さ
れているとともに、この絞弁4の上流側に、エアフロメ
ータ5が介装されている。
In the figure, I indicates an internal combustion engine, 2 indicates an air cleaner, and 3 indicates an intake passage leading from the air cleaner 2 to the internal combustion engine I.A throttle valve 4 is interposed in the intake passage 3, and a throttle valve 4 is interposed in the intake passage 3. An air flow meter 5 is interposed on the upstream side of the throttle valve 4.

上記エアフロメータ5は、吸気通路3の一部を構成する
ケーシング6を有し、このケーシング6内に、主吸気通
路7とバイパス通路8とが分離形成されている。尚、上
記主吸気通路7は、第2図に示すように断面略矩形をな
している。また上記バイパス通路8は断面略円形をなし
、かつ主吸気通路7に対しかなり小さな断面積に設定さ
れている。
The air flow meter 5 has a casing 6 that constitutes a part of the intake passage 3, and within the casing 6, a main intake passage 7 and a bypass passage 8 are formed separately. The main intake passage 7 has a substantially rectangular cross section as shown in FIG. Further, the bypass passage 8 has a substantially circular cross section, and is set to have a considerably smaller cross-sectional area than the main intake passage 7.

そして、」−記バイパス通路8の中心部に、検出部とな
る白金線やNi箔等からなる熱線9が配設されている。
A hot wire 9 made of platinum wire, Ni foil, or the like and serving as a detection section is disposed in the center of the bypass passage 8.

IOは上記熱線9の温度を定温度に保つように制御して
流速に応じた出力電圧VQを出力する制御回路部を示し
ており、これはケーシング6上面に取り付けられている
IO indicates a control circuit section that controls the temperature of the hot wire 9 to be kept at a constant temperature and outputs an output voltage VQ according to the flow velocity, and this is attached to the upper surface of the casing 6.

また主吸気通路7には、上端の弁軸11aを中心に回動
可能な可動フラップ11が配設されている。この可動フ
ラップ11は、主吸気通路7全体を閉塞し得る大きさの
矩形の板状をなし、かつ図示せぬストッパによって主吸
気通路7全閉位置(Δ位置)より6上流側へは回動でき
ないようになっている。つまり下流側へのみ回動可能に
構成されている。そして、ケーシング6を1丁通した弁
!+h 11 aには、ケーシング6側面に取り付けら
れた渦為状リターンスプリング12の内周端部が連係し
ており、これによって上記可動フラップ11が常に閉方
向に付勢されている。
Further, a movable flap 11 is provided in the main intake passage 7 and is rotatable about a valve shaft 11a at the upper end. The movable flap 11 has a rectangular plate shape large enough to close the entire main intake passage 7, and can be rotated 6 points upstream from the fully closed position (Δ position) of the main intake passage 7 by a stopper (not shown). It is now impossible to do so. In other words, it is configured to be rotatable only toward the downstream side. And a valve with one casing 6 passed through! +h 11 a is linked to the inner circumferential end of a spiral return spring 12 attached to the side surface of the casing 6, thereby constantly biasing the movable flap 11 in the closing direction.

また13は、上記制御回路+”a< t oの出力電圧
VQがら空気流量を算出するコントロールユニットを示
している。このコントロールユニット13は、例えばデ
ジタルマイクロコンピュータを利用したもので、検出し
た空気流量に基づいて内燃機関lの空燃比制御や点火時
期制御等を同時に行っている。
Reference numeral 13 indicates a control unit that calculates the air flow rate from the output voltage VQ of the control circuit +"a<t o. This control unit 13 uses, for example, a digital microcomputer, and is configured to calculate the detected air flow rate. Based on this, air-fuel ratio control, ignition timing control, etc. of the internal combustion engine 1 are simultaneously performed.

次に上記構成の作用について第3図の特性図を参照して
説明する。先ず、内燃機関Iの吸入空気流量が比較的小
さな運転領域では、リターンスプリング12にて閉方向
に付勢された可動フラップ11が略全閉状態にあり、吸
入空気の大部分がバイパス通路8側を通流する。つまり
、バイパス通路8側の分流比が非常に大きくなる。その
ため、全体としての流量が少なくても熱線9部分での流
速が高く得られ、第3図に示すようにそれだけ高い出力
電圧VQが確保される。従って、アイドル時等の低流量
域での検出精度が向上するとともに、検出精度が保証さ
れる最小流量(下限電圧■。に対応する滝川)は、従来
(破線参照)のものよりも小さくなり、−層低流量側で
の検出が可能となる。尚、」−記のように可動フラップ
11が閉じることによってyF、力損失は増大する(第
4図参照)が、この運転領域では全体としての空気流量
が少ないので、その圧力損失増大は何ら問題とならない
Next, the operation of the above structure will be explained with reference to the characteristic diagram shown in FIG. First, in an operating range where the intake air flow rate of the internal combustion engine I is relatively small, the movable flap 11 biased in the closing direction by the return spring 12 is in a substantially fully closed state, and most of the intake air is directed to the bypass passage 8 side. Flow through. In other words, the branching ratio on the bypass passage 8 side becomes extremely large. Therefore, even if the overall flow rate is small, a high flow velocity can be obtained in the hot wire 9 portion, and as shown in FIG. 3, a correspondingly high output voltage VQ is ensured. Therefore, detection accuracy in low flow areas such as when idling is improved, and the minimum flow rate (Takigawa corresponding to the lower limit voltage ■) for which detection accuracy is guaranteed is smaller than the conventional one (see broken line). - Detection is possible on the low flow rate side of the layer. Furthermore, as shown in ``-'', when the movable flap 11 closes, the force loss yF increases (see Figure 4), but since the overall air flow rate is small in this operating range, this increase in pressure loss poses no problem. Not.

一方、吸入空気流(倉が比較的大きな運転領域では、」
−3己FiJ動フラツプI!かリターンスプリング12
の付勢力に抗して押し開かれるため、主吸気通路7側へ
も空気が通流することになり、つまりバイパス通路8側
の分流比が低下する。そして、内燃機関lの最大出力近
傍では、上記可動フラップ11が略全開状態となるので
、これによる圧力損失の増大は殆ど無視できるものとな
る。つまり、第4図に示すように、可動フラップ11を
具備しない従来(破線)のものと略同程度の圧力損失に
保つことができ、最大出力の低下を回避できる。
On the other hand, in the operating region where the intake airflow (the hold is relatively large),
-3 Self FiJ dynamic flap I! or return spring 12
Since it is pushed open against the urging force of , air also flows to the main intake passage 7 side, which means that the division ratio on the bypass passage 8 side decreases. In the vicinity of the maximum output of the internal combustion engine 1, the movable flap 11 is substantially fully open, so that the increase in pressure loss caused by this can be almost ignored. That is, as shown in FIG. 4, the pressure loss can be maintained at approximately the same level as that of the conventional type (indicated by the broken line) that does not include the movable flap 11, and a decrease in the maximum output can be avoided.

ここで、上記可動フラップIIの開度は、空気流による
押圧力とリターンスプリング12の付勢力とがバランス
する位置に保たれるので、第3図に示すように、内燃機
関1の吸入空気流量に応じて一義的に定まるものとなる
。そして、この可動フラップIfの開度によって分流比
が定まるので、結局のところ、第3図に示した出力電圧
VQと空気流量との関係は、固定的な特性となる。この
出力電圧VQと空気流量との関係は、予めコントロール
ユニット13内に例えばデータマツプとして与えられて
おり、これに基づいて制御回路部IOの出力電圧VQが
ら空気流量が検出される。すなわち、可動フラップ11
の開度の検出やその開度に応じた補正等は全く不要であ
る。
Here, the opening degree of the movable flap II is maintained at a position where the pressing force by the air flow and the biasing force of the return spring 12 are balanced, so that the intake air flow rate of the internal combustion engine 1 is increased as shown in FIG. It is uniquely determined depending on. Since the diversion ratio is determined by the degree of opening of the movable flap If, the relationship between the output voltage VQ and the air flow rate shown in FIG. 3 has a fixed characteristic. The relationship between the output voltage VQ and the air flow rate is provided in advance in the control unit 13, for example, as a data map, and based on this, the air flow rate is detected from the output voltage VQ of the control circuit section IO. That is, the movable flap 11
There is no need to detect the degree of opening of the valve or to make corrections according to the degree of opening.

また上記構成によれば、吸気の脈動変化に対しリターン
スプリング12で支持された可動フラップ11が〜種の
ダンパとして作用するので、吸気脈動が抑制され、出力
電圧VQの脈動の振幅が非常に小さくなる。従って、検
出精度を一屓向上できるとともに、高分解能なサンプリ
ングが不要となる利点がある。
Further, according to the above configuration, the movable flap 11 supported by the return spring 12 acts as a damper against changes in intake pulsation, so intake pulsation is suppressed and the amplitude of pulsation in output voltage VQ is extremely small. Become. Therefore, there is an advantage that detection accuracy can be improved to a certain extent and high-resolution sampling is not required.

発明の効果 以」二の説明で明らかなように、この発明に係る内燃機
関の熱線式空気流量検出装置によれば、低流量域におけ
る検出精度の向上が図れ、−層広い範囲に71って高精
度な流量検出が可能となる。また可動フラップは空気流
によって自然に押1.開かれる構成であり、その開度制
御や開度検出等が全く不要であるので、構成の複雑化を
招くことがない。  。
As is clear from the explanation in Section 2 of ``Effects of the Invention'', the hot wire air flow rate detection device for an internal combustion engine according to the present invention can improve the detection accuracy in the low flow rate range, Highly accurate flow rate detection becomes possible. Also, the movable flap is pushed naturally by the airflow. Since it is an open configuration and there is no need to control the opening degree or detect the opening degree, the configuration does not become complicated. .

そして同時に、可動フラップによって吸気脈動を緩和で
き、吸気脈動による検出精度の低下を回避できる。
At the same time, the movable flap can alleviate the intake pulsation, thereby avoiding a decrease in detection accuracy due to the intake pulsation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る熱線式空気流量検出装置の一実
施例を示す構成説明図、第2図はその■−■線に沿った
断面図、第3図はこの実施例における出力電圧と空気流
量との関係ならびに可動フラップ開度と空気流量との関
係を示す特性図、第4図は同じく圧力損失と空気流量と
の関係を示す特性図、第5図は従来における熱線式空気
流量検出装置の構成説明図である。 3・・・吸気通路、5・・・エアフロメータ、7・・・
主吸気通路、8・・バイパス通路、9・・・熱線、If
・・・可動フラップ、12・・・リターンスプリング。
Fig. 1 is a configuration explanatory diagram showing an embodiment of the hot wire type air flow rate detection device according to the present invention, Fig. 2 is a cross-sectional view taken along the line ■ - A characteristic diagram showing the relationship between the air flow rate and the relationship between the movable flap opening and the air flow rate. Figure 4 is a characteristic diagram also showing the relationship between pressure loss and air flow rate. Figure 5 is a conventional hot wire air flow rate detection. FIG. 2 is an explanatory diagram of the configuration of the device. 3... Intake passage, 5... Air flow meter, 7...
Main intake passage, 8... bypass passage, 9... hot wire, If
...Movable flap, 12...Return spring.

Claims (1)

【特許請求の範囲】[Claims] (1)内燃機関の吸気通路の一部を主吸気通路とバイパ
ス通路とに分離形成するとともに、上記バイパス通路内
に熱線を配設してなる内燃機関の熱線式空気流量検出装
置において、上記主吸気通路内に、リターンスプリング
にて閉方向に付勢され、かつ空気流量に応じて開方向に
回動する可動フラップを配設したことを特徴とする内燃
機関の熱線式空気流量検出装置。
(1) In a hot-wire type air flow rate detection device for an internal combustion engine, in which a part of the intake passage of the internal combustion engine is separated into a main intake passage and a bypass passage, and a hot wire is arranged in the bypass passage, A hot-wire type air flow rate detection device for an internal combustion engine, characterized in that a movable flap is disposed in an intake passageway, the flap being biased in the closing direction by a return spring and rotating in the opening direction depending on the air flow rate.
JP63084800A 1988-04-06 1988-04-06 Hot-wire type air flow rate detector for internal combustion engine Pending JPH01257221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63084800A JPH01257221A (en) 1988-04-06 1988-04-06 Hot-wire type air flow rate detector for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63084800A JPH01257221A (en) 1988-04-06 1988-04-06 Hot-wire type air flow rate detector for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01257221A true JPH01257221A (en) 1989-10-13

Family

ID=13840783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63084800A Pending JPH01257221A (en) 1988-04-06 1988-04-06 Hot-wire type air flow rate detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01257221A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252529A (en) * 1990-03-02 1991-11-11 Hitachi Ltd Hot wire type air flowmeter and internal combustion engine equipped with the same
JP2009014601A (en) * 2007-07-06 2009-01-22 Yamatake Corp Flow meter
JP2010266345A (en) * 2009-05-15 2010-11-25 Panasonic Corp Flow-rate measuring apparatus
JP2011053081A (en) * 2009-09-02 2011-03-17 Panasonic Corp Device for measuring flow of fluid
JP2012137505A (en) * 2012-04-16 2012-07-19 Azbil Corp Flow meter
JP2012145496A (en) * 2011-01-13 2012-08-02 Denso Corp Air flow rate measurement device
JP2018178814A (en) * 2017-04-10 2018-11-15 有限会社ジェイ・ロード L jetronic air flow meter passage air flow adjusting tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252529A (en) * 1990-03-02 1991-11-11 Hitachi Ltd Hot wire type air flowmeter and internal combustion engine equipped with the same
JP2009014601A (en) * 2007-07-06 2009-01-22 Yamatake Corp Flow meter
JP2010266345A (en) * 2009-05-15 2010-11-25 Panasonic Corp Flow-rate measuring apparatus
JP2011053081A (en) * 2009-09-02 2011-03-17 Panasonic Corp Device for measuring flow of fluid
JP2012145496A (en) * 2011-01-13 2012-08-02 Denso Corp Air flow rate measurement device
JP2012137505A (en) * 2012-04-16 2012-07-19 Azbil Corp Flow meter
JP2018178814A (en) * 2017-04-10 2018-11-15 有限会社ジェイ・ロード L jetronic air flow meter passage air flow adjusting tool

Similar Documents

Publication Publication Date Title
JPS61171843A (en) Throttle-valve controller for engine
JPH0256611B2 (en)
US7409859B2 (en) Thermal type flow measuring apparatus
KR880004204A (en) Control device for waste gate valve installed in supercharger of internal combustion engine
JPH01257221A (en) Hot-wire type air flow rate detector for internal combustion engine
JPS58135916A (en) Thermal flow meter for internal combustion engine
JP2857787B2 (en) Thermal air flow meter and internal combustion engine equipped with the flow meter
US6571767B2 (en) Flow amount calculation controller and flow amount calculation control method
JP2552320B2 (en) Hot wire air flow rate detector for internal combustion engine
WO2007029459A1 (en) Air intake device for engine
JPH0335510B2 (en)
JPH06265385A (en) Air flow rate measuring instrument
JPS5861411A (en) Measuring device for flow rate of gas
JPS5939183Y2 (en) Engine fuel injection control device
JPS633422Y2 (en)
JPS628358Y2 (en)
JP2508126B2 (en) Thermal flow meter
JPH08338269A (en) Air flowmeter-integrated throttle body
JPS586415A (en) Thermal flow meter
JPS5942808B2 (en) flow measuring device
JP2007121221A (en) Fluid flow detector
JPS6335826B2 (en)
JPS612020A (en) Thermal type air flowmeter
JP2000161122A (en) Combustion control method for internal combustion engine by use of heating resistor type air flowmeter
JPS6157456B2 (en)