JPH01255605A - Method for treating surface of ferromagnetic iron powder and magnetic record medium - Google Patents

Method for treating surface of ferromagnetic iron powder and magnetic record medium

Info

Publication number
JPH01255605A
JPH01255605A JP63081399A JP8139988A JPH01255605A JP H01255605 A JPH01255605 A JP H01255605A JP 63081399 A JP63081399 A JP 63081399A JP 8139988 A JP8139988 A JP 8139988A JP H01255605 A JPH01255605 A JP H01255605A
Authority
JP
Japan
Prior art keywords
iron powder
ferromagnetic iron
organic solvent
ferromagnetic
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63081399A
Other languages
Japanese (ja)
Inventor
Michiji Okai
理治 大貝
Takeshi Ozawa
武 小澤
Tomiyoshi Kubo
久保 富義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63081399A priority Critical patent/JPH01255605A/en
Publication of JPH01255605A publication Critical patent/JPH01255605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture ferromagnetic iron powder displaying excellent dispersibility, etc., in magnetic coating by pretreating the ferromagnetic iron powder containing iron in main part manufactured by dry reduction method with oxygen and steam, treating with polyurethane resin in organic solvent and specifying each content of denaturant in the organic solvent and moisture. CONSTITUTION:The ferromagnetic iron powder (agglomeration of acicular fine particle having <=about 1mum length) containing iron as main composition manufactured by dry type reduction method is oxidized on the surface thereof under atmosphere of gas containing oxygen to execute oxidization containing about 50-150g of O2/kg of the iron powder. Successively, after bringing it into contact with gas mixing steam having 0.01-10.0% partial pressure of the steam at <=100 deg.C, it is treated with the organic solvent (benzene, etc.) containing the polyurethane resin so as to come to contain <=0.1wt.% denaturant in the organic solvent and <=1.5wt.% moisture in the ferromagnetic iron powder. By this method, the ferromagnetic iron powder displaying excellent dispersibility, orientatability and stability in the magnetic coating, is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記録媒体用磁性粉として用いられる強磁性
鉄粉の表面処理方法及び該表面処理を施した強磁性鉄粉
を含む磁性層を有する磁気記録媒体に関するものである
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for surface treatment of ferromagnetic iron powder used as magnetic powder for magnetic recording media, and a magnetic layer containing the ferromagnetic iron powder subjected to the surface treatment. The present invention relates to a magnetic recording medium having a magnetic recording medium.

(従来の技術) 塗布型磁気記録媒体は通常、磁性粉、バインダー、研磨
剤、潤滑剤および有機溶剤からなる磁性塗料をポリエス
テルフィルムなどの基体に塗布したものである。
(Prior Art) A coated magnetic recording medium is usually one in which a magnetic paint consisting of magnetic powder, a binder, an abrasive, a lubricant, and an organic solvent is coated on a substrate such as a polyester film.

また強磁性鉄粉は、保磁力、飽和磁化が高いことから高
密度磁気記録媒体用の磁性粉として用途が広がりつつあ
り、更に高密度化の方向として磁性粉の微細化、高比表
面積が要求されている。
In addition, ferromagnetic iron powder has high coercive force and saturation magnetization, so its use as magnetic powder for high-density magnetic recording media is expanding.Furthermore, in the direction of higher density, finer magnetic powder and high specific surface area are required. has been done.

しかし、強磁性鉄粉を微細、高比表面積とする場合、磁
性塗料調製時の鉄粉の分散性および記録媒体中での安定
性の点で問題が生じる。
However, when the ferromagnetic iron powder is fine and has a high specific surface area, problems arise in terms of the dispersibility of the iron powder when preparing a magnetic coating material and its stability in a recording medium.

この問題点を解決するひとつの方法として、強磁性鉄粉
の表面を界面活性剤、カップリング剤。
One way to solve this problem is to coat the surface of ferromagnetic iron powder with surfactants and coupling agents.

高分子化合物などで改質することが考えられている。す
なわち、特開昭61−201702号公報には強磁性鉄
粉の酸化処理を有機溶剤中で行う際に鉄粉表面に生ずる
有機溶剤変成物を低減させ、さらにその後ポリウレタン
樹脂で被覆することにより、鉄粉の耐酸化性9分散性を
改良する方法が開示されている。しかしながら、この方
法で得られた鉄粉は分散性や配向性の点で未だ問題が残
り、更にこれを用いて作製した磁気テープの耐蝕性テス
トの結果は表面光沢の低下が見られるという問題がある
It is being considered that it can be modified with polymeric compounds. That is, Japanese Patent Application Laid-Open No. 61-201702 discloses that when ferromagnetic iron powder is oxidized in an organic solvent, the organic solvent modification products generated on the surface of the iron powder are reduced, and then the iron powder is coated with a polyurethane resin. A method for improving the oxidation resistance 9 dispersibility of iron powder is disclosed. However, the iron powder obtained by this method still has problems in terms of dispersibility and orientation, and furthermore, the corrosion resistance test results of magnetic tapes made using it showed a decrease in surface gloss. be.

(発明が解決しようとする問題点) 本発明の目的は、磁気記録媒体の磁性塗料中において、
分散性、配向性および安定性に優れた強磁性鉄粉を得る
ための表面処理方法及び該表面処理方法を施した強磁性
鉄粉を用いた磁気記録媒体を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to
The object of the present invention is to provide a surface treatment method for obtaining ferromagnetic iron powder with excellent dispersibility, orientation, and stability, and a magnetic recording medium using the ferromagnetic iron powder subjected to the surface treatment method.

(問題点を解決するための手段) 本発明者等は上記問題点を解決するために鋭意検討を行
った結果、強磁性鉄粉をあらかじめ酸素。
(Means for Solving the Problems) The inventors of the present invention conducted intensive studies to solve the above problems and found that ferromagnetic iron powder was mixed with oxygen in advance.

水蒸気で処理した後に有機溶剤中にてポリウレタン樹脂
で処理を行えば、優れた磁気特性を有する強磁性鉄粉を
得ることができることを見出だし、本発明を完成するに
至った。すなわち本発明は、乾式還元法で製造した鉄を
主成分とする強磁性鉄粉を、酸素を含むガス雰囲気中で
表面酸化した後、水蒸気処理を行い、次いでポリウレタ
ン樹脂を含む有機溶剤で処理し、強磁性鉄粉の有機溶剤
変成物含有量を0.1重量%以下、水分含有量を165
重量%以下とすることを特徴とする強磁性鉄粉の表面処
理方法及び該処理方法を施した強磁性鉄粉を含む磁性層
を有する磁気記録媒体である。
The inventors have discovered that ferromagnetic iron powder with excellent magnetic properties can be obtained by treating it with water vapor and then treating it with a polyurethane resin in an organic solvent, leading to the completion of the present invention. That is, in the present invention, ferromagnetic iron powder containing iron as a main component produced by a dry reduction method is subjected to surface oxidation in a gas atmosphere containing oxygen, then subjected to steam treatment, and then treated with an organic solvent containing polyurethane resin. , the organic solvent modification content of ferromagnetic iron powder is 0.1% by weight or less, and the water content is 165%.
The present invention provides a method for surface treatment of ferromagnetic iron powder, characterized in that the surface treatment amount is less than % by weight, and a magnetic recording medium having a magnetic layer containing ferromagnetic iron powder subjected to the treatment method.

以下、その詳細について説明する。The details will be explained below.

本発明の処理方法において用いられる強磁性鉄粉は、長
さ1μm以下の針状微粒子の集合物であり、粉末、造粒
物、破砕物などの形状を有している。この強磁性鉄粉は
鉄を主成分とするものであるが、その他の成分としてコ
バルト、ニッケル。
The ferromagnetic iron powder used in the treatment method of the present invention is an aggregate of acicular fine particles having a length of 1 μm or less, and has a shape such as a powder, a granulated product, or a crushed product. The main component of this ferromagnetic iron powder is iron, but other components include cobalt and nickel.

クロム、リン、アルミニウム、チタン、シリコン。Chromium, phosphorus, aluminum, titanium, silicon.

ジルコニウム、カルシウム、マグネシウム、亜鉛など適
宜添加したものも用いることができる。
It is also possible to use zirconium, calcium, magnesium, zinc, etc. added as appropriate.

また、この強磁性鉄粉は含水酸化鉄2酸化鉄などを乾式
還元して得ることができるが、特にα−オキシ水酸化鉄
の表面を焼結防止剤などで処理した後、脱水・焼成し酸
化第二鉄とし、次いで水素ガスを用いて乾式還元して得
たものを用いることが好ましい。更に、還元直後の強磁
性鉄粉は空気中に取出すと発火するおそれがあるので、
不活性ガス雰囲気中で取扱うことが好ましい。
In addition, this ferromagnetic iron powder can be obtained by dry reduction of hydrated iron oxide, etc., but in particular, after treating the surface of α-iron oxyhydroxide with an anti-sintering agent etc., it is dehydrated and calcined. It is preferable to use ferric oxide and then dry reduction using hydrogen gas. Furthermore, there is a risk of ignition if ferromagnetic iron powder is taken out into the air immediately after reduction.
It is preferable to handle in an inert gas atmosphere.

次に得られた強磁性鉄粉を酸素を含むガス雰囲気中で表
面酸化し、耐蝕性、耐候性を付与する。
Next, the surface of the obtained ferromagnetic iron powder is oxidized in an oxygen-containing gas atmosphere to impart corrosion resistance and weather resistance.

この気相中での表面酸化としては従来法が採用できるが
、温度200℃以下、酸素濃度0.05容口%以上大気
組成以下、水蒸気濃度5000 ppm以下の不活性ガ
ス雰囲気中で、強磁性鉄粉1.0kgあたり02として
50〜150gの酸化量の酸化を行うことが好ましい。
Conventional methods can be used for surface oxidation in the gas phase, but ferromagnetic It is preferable to perform oxidation in an amount of 50 to 150 g as 02 per 1.0 kg of iron powder.

また、このとき温度を4段階に変化させて酸化反応を行
えば優れた耐蝕性、耐候性を付与することができるので
更に好ましい。温度を4段階に変化させて反応を行う場
合、1段目の反応は50〜150℃、2段目の反応は0
〜40℃、3段[jの反応は45〜70°C更に4段目
の反応は0〜40℃の温度下で行い、酸素濃度は1段目
から3段目の反応においては0.05容瓜%以上大気組
成以下、4段目の反応においては 1.0容量%以上大
気組成以下とし、このときの1段目の反応における酸化
量は強磁性鉄粉1゜Q kgあたり02として20〜1
00gとし、2段口の反応は酸化が停止するか一定の酸
化速度となったところで反応を終了しく通常2〜8時間
)、3段目の反応における酸化量は1段目の反応の5〜
30%mとし、更に強磁性鉄粉の発火性を抑制するため
に行う4段目の反応は1〜5時間行うことが好ましい。
Further, it is more preferable to carry out the oxidation reaction by changing the temperature in four steps, since excellent corrosion resistance and weather resistance can be imparted. When performing a reaction by changing the temperature in four stages, the first stage reaction is 50 to 150 °C, and the second stage reaction is 0 °C.
~40℃, 3 stages [J reaction is performed at 45~70°C, and the fourth stage reaction is performed at a temperature of 0~40℃, and the oxygen concentration is 0.05 in the first to third stage reactions. The amount of oxidation in the first stage reaction is 20 as 02 per 1°Q kg of ferromagnetic iron powder. ~1
00 g, and the reaction in the second stage stops when the oxidation stops or reaches a constant oxidation rate (usually 2 to 8 hours), and the amount of oxidation in the third stage is 5 to 5 times the amount of oxidation in the first stage reaction.
It is preferable that the fourth stage reaction is carried out for 1 to 5 hours to further suppress the ignitability of the ferromagnetic iron powder.

その後、表面酸化を行った強磁性鉄粉に水蒸気を接触さ
せ水蒸気処理を行うが、この水蒸気処理は強磁性鉄粉に
残存している表面活性な部分をつぶすのみなので、短時
間で行うことができる。また、水蒸気処理は100℃以
下の温度下にて行うことが好ましく、100℃を越える
場合、表面酸化によって付与された強磁性鉄粉の耐蝕性
が低下するおそれがある。
After that, the surface-oxidized ferromagnetic iron powder is brought into contact with steam and subjected to steam treatment, but this steam treatment only destroys the surface active parts remaining in the ferromagnetic iron powder, so it can be carried out in a short time. can. Further, the steam treatment is preferably carried out at a temperature of 100°C or lower; if the temperature exceeds 100°C, there is a risk that the corrosion resistance of the ferromagnetic iron powder imparted by surface oxidation may deteriorate.

水蒸気処理の方法としては例えば、強磁性鉄粉と不活性
ガスあるいは酸素を含む不活性ガスに水蒸気を混合した
ガスなどを接触させる方法などが挙げられ、このとき用
いるガスの水蒸気含有量は水蒸気分圧で0.01〜10
.096とすることが好ましい。水蒸気分圧が0.01
%未満の場合、処理効果が現われるまで長時間を要し、
10゜0%を越える場合、強磁性鉄粉の磁気特性、耐候
性が低下するおそれがあるからである。
An example of a steam treatment method is to bring ferromagnetic iron powder into contact with an inert gas or a mixture of steam and oxygen-containing inert gas, and the steam content of the gas used at this time is pressure 0.01~10
.. 096 is preferable. Water vapor partial pressure is 0.01
If it is less than %, it will take a long time for the treatment effect to appear.
This is because if it exceeds 10.0%, the magnetic properties and weather resistance of the ferromagnetic iron powder may deteriorate.

表面酸化から水蒸気の過程において用いられる反応装置
としては、固定床方式、流動床方式1回転キルン方式な
どのものが用いられる。
As the reaction apparatus used in the process from surface oxidation to steam, a fixed bed type, a fluidized bed type, a one-rotation kiln type, etc. are used.

水蒸気処理を行った強磁性鉄粉は、有機溶剤中にてポル
ウレタン樹脂を用いて処理を行う。
The steam-treated ferromagnetic iron powder is treated with polyurethane resin in an organic solvent.

本発明において用いられるポリウレタン樹脂としては、
通常、磁性塗料調製時に用いられるポリウレタンバイン
ダーが好ましいが、更に、特開昭61−107531号
公報、同81−143470号、同57−83560号
、同57−1654134号、同57−111311号
、同62−10129号、同G2−4347Q号、同G
2−179521号、同5G−137522号、同57
−113420号、同57−60152号などに開示さ
れているポリウレタン樹脂などを用いることもできる。
The polyurethane resin used in the present invention includes:
Generally, polyurethane binders used in the preparation of magnetic paints are preferred; No. 62-10129, No. G2-4347Q, No. G
No. 2-179521, No. 5G-137522, No. 57
Polyurethane resins disclosed in Japanese Patent No. 113420, No. 57-60152, etc. can also be used.

また、有機溶剤としては用いるポリウレタン樹脂を溶解
するものであればよく、ベンゼン、トルエン、キシレン
などの芳香族炭化水素、メチルエチルケトン、シクロヘ
キサノンなどのケトン類、酢酸ブチルなどのエステル類
などを用いることができる。
Further, the organic solvent may be any solvent as long as it dissolves the polyurethane resin used, and aromatic hydrocarbons such as benzene, toluene, and xylene, ketones such as methyl ethyl ketone and cyclohexanone, and esters such as butyl acetate can be used. .

強磁性鉄粉を有機溶剤中にて処理する場合、強磁性鉄粉
の表面に残存する活性表面が用いた有機溶剤を酸化し、
有機溶剤の酸化変成物が生じる。
When ferromagnetic iron powder is treated in an organic solvent, the active surface remaining on the surface of the ferromagnetic iron powder oxidizes the organic solvent used.
Oxidative modification products of organic solvents are produced.

そして、該変性物は強磁性鉄粉の表面を汚染し、鉄粉の
磁性塗料中での分散性や配向性を低下させる原因となる
。従って、表面処理後の強磁性鉄粉に含まれる有機溶剤
の変成物を乾燥鉄粉あたり0.1重量%以下に調整する
必要がある。更に、表面処理後の強磁性鉄粉の水分量を
量が1.5重量%を越える場合、鉄粉の磁性塗料中にお
ける分散性、耐蝕性が低下するおそれがある。
The modified product contaminates the surface of the ferromagnetic iron powder and causes a decrease in the dispersibility and orientation of the iron powder in the magnetic paint. Therefore, it is necessary to adjust the modified organic solvent contained in the ferromagnetic iron powder after surface treatment to 0.1% by weight or less based on the dry iron powder. Furthermore, if the moisture content of the ferromagnetic iron powder after surface treatment exceeds 1.5% by weight, the dispersibility and corrosion resistance of the iron powder in the magnetic paint may deteriorate.

処理後の強磁性鉄粉に含まれる有機溶剤変成物。Organic solvent modification product contained in ferromagnetic iron powder after treatment.

水分量を調整するためには、本発明中の水蒸気処理にお
いて過剰の水蒸気が付着することを防ぎ、用いる有機溶
剤としては含有水分の低いものを選択すればよく、それ
でも不十分な場合は処理後の強磁性鉄粉を有機溶剤で洗
浄すればよい。
In order to adjust the water content, it is sufficient to prevent excessive water vapor from adhering during the steam treatment in the present invention, and to select an organic solvent with a low water content as an organic solvent. The ferromagnetic iron powder can be washed with an organic solvent.

更に本発明の磁気記録媒体は、上記表面処理方法を施し
た強磁性鉄粉をバインダー、溶剤その他必要に応じて添
加した成分からなる組成物を混錬・分散して作製した磁
性塗料を支持体上に塗布。
Furthermore, the magnetic recording medium of the present invention uses a magnetic coating material as a support, which is prepared by kneading and dispersing a composition consisting of ferromagnetic iron powder subjected to the above surface treatment method, a binder, a solvent, and other components added as necessary. Apply on top.

乾燥することにより形成した磁性層を有するものであり
、鉄粉から公知の手段で得ることができる。
It has a magnetic layer formed by drying, and can be obtained from iron powder by known means.

(実施例) 以下、実施例により本発明を更に詳しく説明するが、本
発明は何らこれらに限定されるものではない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these in any way.

実施例I Ni、A、Q、SiをFeに対し各々5.5重量%、3
.8重量%、0.3重量%含む針状酸化第二鉄の造粒品
を水素気流中450℃で8時間流動還元し、強磁性鉄粉
を得た。
Example I Ni, A, Q, Si each 5.5% by weight relative to Fe, 3
.. A granulated product of acicular ferric oxide containing 8% by weight and 0.3% by weight was subjected to fluid reduction in a hydrogen stream at 450° C. for 8 hours to obtain ferromagnetic iron powder.

その後、得られた強磁性鉄粉を窒素ガス気流中で70°
Cまで冷却した後表面酸化を行った。また、表面酸化は
温度を4段階に変化させて流動反応炉内で行った。1段
目の反応は酸素0.2容量%含む窒素ガスを反応炉内に
強磁性鉄粉1、Okgあt;す3Nm”/時の流量で供
給して行い、酸化量が強磁性鉄粉1.0kgあたり02
として70gとなったところで酸素の供給を停止した。
Thereafter, the obtained ferromagnetic iron powder was heated at 70° in a nitrogen gas stream.
After cooling to C, surface oxidation was performed. Moreover, the surface oxidation was performed in a fluidized reactor while changing the temperature in four stages. The first stage reaction was carried out by supplying nitrogen gas containing 0.2% by volume of oxygen into the reactor at a flow rate of 1 kg of ferromagnetic iron powder and 3 Nm/hour, and the amount of oxidation was 02 per 1.0kg
When the weight reached 70g, the supply of oxygen was stopped.

次いで、窒素ガス気流中で25℃まで冷却した後、酸素
0.2容量26含む窒素ガスを1段目の反応と同じ流量
で供給し、2段目の反応を行い、酸素消費量がほぼ一定
となった3、5時間後に反応を終えた。
Next, after cooling to 25°C in a nitrogen gas stream, nitrogen gas containing 0.2 volumes of oxygen was supplied at the same flow rate as in the first stage reaction, and the second stage reaction was carried out, so that the oxygen consumption remained almost constant. The reaction was completed 3 to 5 hours after the reaction.

2段目の反応終了後、引続き酸素0.2容量%含む窒素
ガスを反応炉内に供給しながら温度を20℃/時の割合
で60℃まで上げ、3段目の反応を行った。このときの
酸化量は強磁性鉄粉1.Okgあたり02として12g
とした。3段目の反応終了後、酸素の供給を停止し、窒
素気流中で25℃まで冷却し、再び酸素0.2容量96
含む窒素ガスの供給を行い4段目の反応を行った。4段
目の反応において酸素を含む窒素ガス中の酸素濃度を次
第に上げてゆき、1時間後に酸素濃度を2容量%とし、
更にそのまま1時間反応を続けた後終了した。
After the second stage reaction was completed, the temperature was raised to 60° C. at a rate of 20° C./hour while nitrogen gas containing 0.2% by volume of oxygen was continuously supplied into the reactor to carry out the third stage reaction. The amount of oxidation at this time is 1. 12g as 02 per Okg
And so. After the completion of the third stage reaction, the supply of oxygen was stopped, the temperature was cooled to 25°C in a nitrogen stream, and the oxygen was added again by 0.2 volume (96°C).
A fourth stage reaction was carried out by supplying nitrogen gas containing nitrogen. In the fourth stage reaction, the oxygen concentration in the oxygen-containing nitrogen gas was gradually increased, and after 1 hour, the oxygen concentration was reduced to 2% by volume.
The reaction was further continued for 1 hour and then terminated.

次に表面酸化を行った強磁性鉄粉に、温度30℃、水蒸
気分圧が1.0%である窒素ガスを接触させ、1時間水
蒸気処理を行った。水蒸気処理後の強磁性鉄粉の含有水
分量はカールフィッシャー水分81でM1定した結果0
.5重量%であった。
Next, the surface-oxidized ferromagnetic iron powder was brought into contact with nitrogen gas having a temperature of 30° C. and a water vapor partial pressure of 1.0%, and was subjected to steam treatment for 1 hour. The moisture content of ferromagnetic iron powder after steam treatment is 0 as a result of M1 constant with Karl Fischer moisture 81.
.. It was 5% by weight.

水蒸気処理後、強磁性鉄粉を直鎖状ポリエステル型ポリ
ウレタン樹脂を含むメチルエチルケトン溶液に懸濁し、
鉄粉の表面にポリウレタン樹脂を被着させた。このとき
ポリウレタンの被着mは強磁性鉄粉に対し2.0重量%
であった。また、有機溶剤を除去した後の強磁性鉄粉の
水分含有量は0.3重量%であり、メチルエチルケトン
変成物の含有ユは、ジクロロメタンを用いて抽出、濃縮
してガスクロマトグラムで定量した結果、0.1重量%
以下であった。
After steam treatment, the ferromagnetic iron powder is suspended in a methyl ethyl ketone solution containing a linear polyester type polyurethane resin,
Polyurethane resin was applied to the surface of iron powder. At this time, the adhesion m of polyurethane is 2.0% by weight based on the ferromagnetic iron powder.
Met. In addition, the water content of the ferromagnetic iron powder after removing the organic solvent was 0.3% by weight, and the content of the methyl ethyl ketone modified product was extracted using dichloromethane, concentrated, and determined by gas chromatography. 0.1% by weight
It was below.

以上、得られた表面処理後の強磁性鉄粉100重量部を
塩ビ酢ピコポリマー25重量部、レシチン1重量部、メ
チルエチルケトン160m1.  シクロへキサノン1
60m1と共にガラスピーズをいれたサンドグラインダ
ーに装入し、6時間部合1分散して配向性シートを作製
した。
100 parts by weight of the surface-treated ferromagnetic iron powder obtained above, 25 parts by weight of PVC vinegar picopolymer, 1 part by weight of lecithin, and 160 ml of methyl ethyl ketone. Cyclohexanone 1
The mixture was charged into a sand grinder containing 60 ml of glass beads, and dispersed in one portion for 6 hours to produce an oriented sheet.

得られた配向性シートの磁気特性値を評価するために、
保磁力(lie)、残留磁束密度(Br)、角形比(R
s)を振動試料型磁力計を用いて測定した。
In order to evaluate the magnetic properties of the obtained oriented sheet,
Coercive force (lie), residual magnetic flux density (Br), squareness ratio (R
s) was measured using a vibrating sample magnetometer.

また、配向性シートを60℃、90%相対湿度の空気中
にl?A間放置し、残留磁束密度の低下率(ΔBr)お
よび光沢からの耐蝕性の評価を行った。
In addition, the oriented sheet was placed in air at 60°C and 90% relative humidity. After being left for a period of A, the corrosion resistance was evaluated based on the rate of decrease in residual magnetic flux density (ΔBr) and gloss.

これらの結果を表1に示す。These results are shown in Table 1.

比較例1 実施例1で用いたものと同様の強磁性鉄粉を窒素ガス気
流中で70℃まで冷却した後、表面酸化を行った。表面
酸化は流動反応炉内で行い、反応炉内へ酸素0.2容量
%含む窒素ガスを強磁性鉄粉1.0kgあたり3Nm”
/時の流量で供給し、酸化量が強磁性鉄粉1.0kgあ
たり02として7ogとなるまで行った。
Comparative Example 1 Ferromagnetic iron powder similar to that used in Example 1 was cooled to 70° C. in a nitrogen gas stream, and then surface oxidized. Surface oxidation is performed in a fluidized reactor, and nitrogen gas containing 0.2% oxygen by volume is introduced into the reactor at a rate of 3Nm per 1.0kg of ferromagnetic iron powder.
The ferromagnetic iron powder was supplied at a flow rate of /hour until the oxidation amount reached 7 og at 0.02 kg per 1.0 kg of ferromagnetic iron powder.

表面酸化を行った強磁性鉄粉は冷却後トルエンに浸漬し
空気乾燥を行い、その後表面処理物質として直鎖状ポリ
エステル型ポリウレタンを用いてメチルエチルケトン中
で実施例1と同様に表面処理した。
The surface-oxidized ferromagnetic iron powder was cooled, immersed in toluene, air-dried, and then surface-treated in methyl ethyl ketone in the same manner as in Example 1 using linear polyester polyurethane as a surface treatment substance.

表1より得られた表面処理後の強磁性鉄粉の有機溶剤変
成物の含有量は非常に多いことがわかる。
It can be seen from Table 1 that the content of the organic solvent modified product in the ferromagnetic iron powder after surface treatment is extremely high.

また、この強磁性鉄粉を用いて実施例1と同様の方法で
配向性シートを作製し、評価を行った。
Furthermore, an oriented sheet was prepared using the ferromagnetic iron powder in the same manner as in Example 1, and evaluated.

その結果を表1に示す。The results are shown in Table 1.

比較例2 水蒸気処理を水蒸気分圧1.0%、30℃の窒素ガス雰
囲気中で3時間行った以外は実施例1と同様の方法で強
磁性鉄粉の表面処理を行い、配向性シートを作製し、そ
の評価を行った。
Comparative Example 2 The surface treatment of ferromagnetic iron powder was carried out in the same manner as in Example 1, except that the steam treatment was carried out in a nitrogen gas atmosphere at 30° C. with a steam partial pressure of 1.0%, and an oriented sheet was formed. We created and evaluated it.

その結果を表1に示す。表1より、得られた強磁性鉄粉
に含まれる水分量は多く、また、これより得られる配向
性シートの特性も実施例のものと比較して低下している
ことがわかる。   −比較例3 水蒸気処理を行わなかった以外は実施例1と同様の方法
で強磁性鉄粉の表面処理を行い、配向性シートを作製し
、その評価を行った。
The results are shown in Table 1. From Table 1, it can be seen that the amount of water contained in the obtained ferromagnetic iron powder was large, and the properties of the oriented sheet obtained therefrom were also deteriorated compared to those of the examples. - Comparative Example 3 Ferromagnetic iron powder was surface-treated in the same manner as in Example 1, except that no steam treatment was performed, and an oriented sheet was prepared and evaluated.

その結果を表1に示す。The results are shown in Table 1.

実施例2 実施例1で得られた表面処理後の強磁性鉄粉1000重
量部に下記の割合でバインダー、添加物、溶剤を加え、
混錬分散を行い、磁性塗料を得た。
Example 2 To 1000 parts by weight of the surface-treated ferromagnetic iron powder obtained in Example 1, binders, additives, and solvents were added in the following proportions,
Kneading and dispersion was performed to obtain a magnetic paint.

塩ビ・酸ピコポリマー     150重量部ポリウレ
タン樹脂       100重量部カーボンブラック
        10重量部潤滑剤         
    40重量部酸化クロム、酸化アルミ     
30重量部メチルエチルケトン     1000重量
部シクロへキサノン      1000重量部トルエ
ン          1000市量部次いで、得られ
た磁性塗料に硬化剤としてイソシアネート化合物を加え
、撹拌の後に厚さ14μmのポリエチレンテレフタレー
トフィルムの片面に塗布し、配向・乾燥し、更にカレン
ダーにかけ表面を平滑にした後、加熱硬化し、8mmの
幅に裁断してビデオテープ即ち磁気記録媒体を得た。
PVC/Acid Picopolymer 150 parts by weight Polyurethane resin 100 parts by weight Carbon black 10 parts by weight Lubricant
40 parts by weight chromium oxide, aluminum oxide
30 parts by weight Methyl ethyl ketone 1000 parts by weight Cyclohexanone 1000 parts by weight Toluene 1000 parts by weight Next, an isocyanate compound was added as a curing agent to the obtained magnetic paint, and after stirring, it was applied to one side of a 14 μm thick polyethylene terephthalate film. After orientation and drying, the surface was smoothed by calendering, cured by heating, and cut into a width of 8 mm to obtain a videotape, that is, a magnetic recording medium.

得られた媒体の磁気特性は、Hc 14000c、 B
r3000G 、 Rs O,82であった。
The magnetic properties of the obtained medium are Hc 14000c, B
It was r3000G, Rs O, 82.

(発明の効果) 以」二述べたとおり、本発明の表面処理を施した強磁性
鉄粉は、磁性塗料中において優れた分散性。
(Effects of the Invention) As mentioned above, the ferromagnetic iron powder subjected to the surface treatment of the present invention has excellent dispersibility in magnetic paint.

配向性および安定性を示すものである。従って、この強
磁性鉄粉より得られた磁性塗料を用いて作製された磁気
記録媒体は、磁気特性に優れかつ耐蝕性に優れたものと
なる。
It shows orientation and stability. Therefore, a magnetic recording medium produced using a magnetic paint obtained from this ferromagnetic iron powder has excellent magnetic properties and excellent corrosion resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)乾式還元法で製造した鉄を主成分とする強磁性鉄
粉を、酸素を含むガス雰囲気中で表面酸化した後、水蒸
気処理を行い、次いでポリウレタン樹脂を含む有機溶剤
で処理し、強磁性鉄粉の有機溶剤変成物含有量を0.1
重量%以下、水分含有量を1.5重量%以下とすること
を特徴とする強磁性鉄粉の表面処理方法。
(1) After oxidizing the surface of ferromagnetic iron powder whose main component is iron produced by a dry reduction method in an oxygen-containing gas atmosphere, it is treated with steam, and then treated with an organic solvent containing polyurethane resin to strengthen it. The organic solvent modification content of magnetic iron powder is reduced to 0.1
1. A method for surface treatment of ferromagnetic iron powder, characterized in that the water content is 1.5% by weight or less.
(2)特許請求の範囲第1項に記載の処理方法を施した
強磁性鉄粉を含む磁性層を有する磁気記録媒体。
(2) A magnetic recording medium having a magnetic layer containing ferromagnetic iron powder subjected to the treatment method according to claim 1.
JP63081399A 1988-04-04 1988-04-04 Method for treating surface of ferromagnetic iron powder and magnetic record medium Pending JPH01255605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081399A JPH01255605A (en) 1988-04-04 1988-04-04 Method for treating surface of ferromagnetic iron powder and magnetic record medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081399A JPH01255605A (en) 1988-04-04 1988-04-04 Method for treating surface of ferromagnetic iron powder and magnetic record medium

Publications (1)

Publication Number Publication Date
JPH01255605A true JPH01255605A (en) 1989-10-12

Family

ID=13745232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081399A Pending JPH01255605A (en) 1988-04-04 1988-04-04 Method for treating surface of ferromagnetic iron powder and magnetic record medium

Country Status (1)

Country Link
JP (1) JPH01255605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291304A (en) * 1990-04-09 1991-12-20 Tokin Corp Shape anisotropic and soft magnetic alloy powder and manufacture thereof
JP2013064198A (en) * 2010-08-27 2013-04-11 Toshiba Corp Metal-containing particle aggregate, metal-containing particle composite member, and method of manufacturing the aggregate and the composite member
US8986839B2 (en) 2010-08-27 2015-03-24 Kabushiki Kaisha Toshiba Metal-containing particle aggregate, metal-containing particle composite member, and method of manufacturing the aggregate and the composite member
JPWO2017033266A1 (en) * 2015-08-24 2018-06-28 日産自動車株式会社 Magnet particle and magnet molded body using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291304A (en) * 1990-04-09 1991-12-20 Tokin Corp Shape anisotropic and soft magnetic alloy powder and manufacture thereof
JP2013064198A (en) * 2010-08-27 2013-04-11 Toshiba Corp Metal-containing particle aggregate, metal-containing particle composite member, and method of manufacturing the aggregate and the composite member
US8986839B2 (en) 2010-08-27 2015-03-24 Kabushiki Kaisha Toshiba Metal-containing particle aggregate, metal-containing particle composite member, and method of manufacturing the aggregate and the composite member
JPWO2017033266A1 (en) * 2015-08-24 2018-06-28 日産自動車株式会社 Magnet particle and magnet molded body using the same

Similar Documents

Publication Publication Date Title
JPH0313647B2 (en)
JPS618726A (en) Magnetic recording medium and its manufacture
JPH01255605A (en) Method for treating surface of ferromagnetic iron powder and magnetic record medium
JPH03263615A (en) Production of magnetic recording medium
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPH01230702A (en) Surface treatment method for ferromagnetic iron powder
JPH01246302A (en) Method for treating surface of ferromagnetic iron powder
US5217542A (en) Method for producing surface-treated magnetic powder
JPH03171601A (en) Ferromagnetic metal powder and magnetic recording medium
JPS59169937A (en) Production of magnetic powder
JPH0529662B2 (en)
JPH05250661A (en) Ferromagnetic metal fine particle for magnetic recording medium and magnetic recording using this particle
JPH06290930A (en) Manufacture of needle-like ferrite magnetic powder
JPH0544164B2 (en)
JPS61191521A (en) Production of ferromagnetic iron powder
JPH01247502A (en) Surface treatment of ferromagnetic iron powder
JPH0521321B2 (en)
JPS6364920A (en) Production of magnetic powder for magnetic recording
JPH01241801A (en) Manufacture of ferromagnetic iron powder
JPH0230625A (en) Cobalt-containing ferromagnetic iron oxide powder and production thereof
JPH01147003A (en) Method for stabilizing ferromagnetic iron powder
JPS61132521A (en) Magnetic iron oxide particle powder for magnetic recording medium and production thereof
JPS59159502A (en) Manufacture of cobalt-containing magnetic oxidized iron powder
JPS61154007A (en) Ferromagnetic metal powder coated with toluene polycondensate and manufacture thereof