JPH01255273A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JPH01255273A
JPH01255273A JP63083538A JP8353888A JPH01255273A JP H01255273 A JPH01255273 A JP H01255273A JP 63083538 A JP63083538 A JP 63083538A JP 8353888 A JP8353888 A JP 8353888A JP H01255273 A JPH01255273 A JP H01255273A
Authority
JP
Japan
Prior art keywords
transfer
charge
vertical
units
vertical transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63083538A
Other languages
Japanese (ja)
Inventor
Kazuya Kubo
久保 加寿也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63083538A priority Critical patent/JPH01255273A/en
Publication of JPH01255273A publication Critical patent/JPH01255273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve transfer efficiency by constructing at least the width of a charge transfer channel of a vertical transfer unit so as to gradually increase along a charge transferring direction at least under the same electrode. CONSTITUTION:In a solid stage image sensor element in which charges photoelectrically converted by a plurality of regularly arranged photodetectors 2211-2288 are transferred to horizontal transfer units 25a, 25b through vertical transfer units 141a-244b, at least the widths W of the charge transfer channels of the units 241a-244b are so formed as to gradually increase along a charge transferring direction at least under the same electrode. For example, vertical transfer units 241a and 241b, 242a and 242b, 243a and 243b, 244a and 244b are so constructed as to perform a vertical transferring operation by sole gate electrodes. The channel widths W of the units 241a-244b are so formed of a channel stop as to gradually increase its width along the charge transferring direction to the units 25a, 25b.

Description

【発明の詳細な説明】 〔概要〕 電荷結合素子を用いて電荷の転送を行なう固体撮像素子
に関し、 転送効率の向上を目的とし、 規則的に配列された複数の受・元部により光電変換して
得られた電荷を垂直転送部を介して水平転送部へ転送す
る固体撮像素子において、少なくとも該垂直転送部の電
荷転送ヂャネルの幅を、電荷転送方向に沿って漸次広く
なるように構成する。
[Detailed Description of the Invention] [Summary] Regarding a solid-state image sensor that transfers charges using a charge-coupled device, the purpose of improving the transfer efficiency is to perform photoelectric conversion using a plurality of regularly arranged receiving/source parts. In a solid-state imaging device that transfers charges obtained through a vertical transfer section to a horizontal transfer section, at least the width of the charge transfer channel of the vertical transfer section is configured to gradually increase along the charge transfer direction.

〔産業上の利用分野〕[Industrial application field]

本発明はtg体礒像素子に係り、特に電荷結合素子(C
G [) : Charge Coupled Dev
ice)を用いて電荷の転送を行なう固体撮像素子に関
する。
The present invention relates to a TG image device, and particularly to a charge coupled device (C
G[): Charge Coupled Dev
The present invention relates to a solid-state image sensor that transfers charges using an ice.

固体撮像素子の画素数は高画質化の要求から近年益々増
加する傾向にあり、それと同時にチップサイズの縮小化
も進められている。このため、固体1liil!!素子
の高密度化が顕著となり、単位画素面積(すなわち、1
画素分の電荷の発生、蓄積、転送に必要な各部分の総面
積)の縮小化が要求されている。
The number of pixels in solid-state image sensors has been increasing in recent years due to the demand for higher image quality, and at the same time, the chip size has been reduced. For this reason, solid 1liil! ! The density of elements has become remarkable, and the unit pixel area (i.e. 1
There is a need to reduce the total area of each part required to generate, accumulate, and transfer charge for a pixel.

しかし、(、CD形固体踊像素子では単位画素毎に受光
部と転送部とがあり、感度向上には受光部の転送部に対
する面積比を大きくしなければならないため、転送部の
面積比が小さくなり、転送電荷量が少なくなってしまう
。従って、単位画素面積が縮小されても感度を劣化させ
ることなく、転送電荷量が十分に多くとれるようにする
必要があ為。
However, (in a CD-type solid state image element, each unit pixel has a light receiving section and a transfer section, and in order to improve sensitivity, the area ratio of the light receiving section to the transfer section must be increased. Therefore, even if the unit pixel area is reduced, it is necessary to ensure that a sufficiently large amount of transferred charge can be obtained without deteriorating the sensitivity.

〔従来の技術〕[Conventional technology]

第5図は従来の固体撮像素子の一例の構成図を示す。同
図中、111〜1nnは夫々受光部で、フォトダイオー
ド等からなり、水平方向にn個、垂直方向にn個の計n
2個の受光部がマトリクス状に配置されている。また、
211〜2nnは各々受光部111〜’nnに1対1に
対応して設けられたトランスフ1ゲート、31〜3.は
垂直転送部、4は水平転送部である。
FIG. 5 shows a configuration diagram of an example of a conventional solid-state image sensor. In the same figure, 111 to 1nn are light receiving parts, each consisting of a photodiode, etc., with a total of n pieces in the horizontal direction and n pieces in the vertical direction.
Two light receiving sections are arranged in a matrix. Also,
211-2nn are transfer 1 gates provided in one-to-one correspondence with the light receiving sections 111-'nn, respectively; 31-3. 4 is a vertical transfer section, and 4 is a horizontal transfer section.

受光部111〜’nnにより充電変換して得られた電荷
は、トランスフ1ゲート211〜2nnにより画素選択
されて例えば−括して一水平ラインのnl[l;]の受
光部からのN荷が垂直転送部31〜3oに転送される。
Charges obtained by charge conversion by the light receiving sections 111 to 'nn are selected by pixels by the transfer 1 gates 211 to 2nn, and, for example, the N charges from the light receiving sections of nl [l;] of one horizontal line are collectively The data is transferred to the vertical transfer units 31 to 3o.

垂直転送部31〜3oに転送された電荷は次に矢印へ方
向(垂直方向)へ転送されて水平転送部4に蓄積される
The charges transferred to the vertical transfer sections 31 to 3o are then transferred in the direction of the arrow (vertical direction) and accumulated in the horizontal transfer section 4.

水平転送部4はこの蓄積電荷を矢印B方向(水平方向)
ヘシリアルに転送し、出力部5を通して出力端子6へ映
像信号として出力される。このようにして、各水平ライ
ンのn個の受光部角に、かつ、上から下方向へ順次画素
選択して得られた電荷が転送される。
The horizontal transfer unit 4 transfers this accumulated charge in the direction of arrow B (horizontal direction).
The video signal is transferred serially to the output terminal 6 through the output section 5 and outputted as a video signal. In this way, charges obtained by sequentially selecting pixels from the top to the bottom are transferred to the n light-receiving portion corners of each horizontal line.

この従来の固体路WI素子において、単位画素面積の縮
小に伴う転送部(トランスファゲートと対応する垂直転
送部の一部)の面積の縮小による転送電荷けの低下を補
なうため、垂直方向の数画素あるいは同一垂直方向上の
全画素を構成する受光部の転送部のゲート電極が共用さ
れている。従って、例えば同じ垂直方向の全画素の受光
部(例えば1.1 、・・・、1,1など)の転送部の
ゲート電極を共用した構造の場合は、垂直転送部31〜
3nの各々は夫々単一ゲート電極で転送できる構成とさ
れる。
In this conventional solid-state WI element, in order to compensate for the decrease in transfer charge due to the reduction in the area of the transfer section (a part of the vertical transfer section corresponding to the transfer gate) due to the reduction in the unit pixel area, vertical direction The gate electrode of the transfer section of the light receiving section constituting several pixels or all pixels in the same vertical direction is shared. Therefore, for example, in the case of a structure in which the gate electrodes of the transfer sections of the light receiving sections of all pixels in the same vertical direction (for example, 1.1, . . . , 1, 1, etc.) are shared, the vertical transfer sections 31 to 31
3n each has a configuration that allows transfer with a single gate electrode.

これにより転送電荷量は垂直転送部31〜3゜の各々に
おいてそのゲート電極を共用する複数の受光部の各電荷
の総和とすることができるので、転送電荷量を増大させ
ることができる。
Thereby, the amount of transferred charges can be the sum of the charges of the plurality of light receiving sections sharing the gate electrode in each of the vertical transfer sections 31 to 3°, so that the amount of transferred charges can be increased.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の固体撮像素子においては、第6図(A)に
示す如く、ゲート電極を共用する転送部■から次のゲー
ト電極を共用する転送部■へ垂直転送を行なう場合、転
送部■に蓄積された複数の画素からの電荷8aが、転送
部■のポテンシャルが9で示す如く低く変化されること
により、矢印Cで示す如く転送部■へ転送されていく。
In the conventional solid-state image sensing device described above, as shown in FIG. Accumulated charges 8a from a plurality of pixels are transferred to the transfer section (2) as shown by arrow C as the potential of the transfer section (2) is changed to a low value as shown by 9.

この場合、第6図(A>に示すように、転送開始直後は
転送部■には多くの電荷があり、転送部■と■とのポテ
ンシャルの差が大きいので、電界が大きく、電荷8aは
高速で転送部■へ転送され始める。
In this case, as shown in FIG. 6 (A>), immediately after the start of transfer, there is a lot of charge in the transfer section (■), and the difference in potential between the transfer sections (■) and (2) is large, so the electric field is large and the charge 8a is The data begins to be transferred to the transfer unit ■ at high speed.

しかし、転送部■はゲート電極を共用しているのでチャ
ネル環が良く、また第6図(B)に示す如く時間が経つ
と転送部■の電荷が8bで示1如く少なくなり、かつ、
転送部■の電荷8Cが増加し、転送部■と■との間のポ
テンシャルの差が小さくなるため(電界が小さくなるた
め)、電荷の転送速度は次第に遅くなり、通常の限られ
た読み出し時間内では転送部■に電荷の取り残しが生じ
、転送効率の低下を生じる。
However, since the transfer section (2) shares the gate electrode, the channel ring is good, and as time passes as shown in FIG.
As the charge 8C in the transfer section ■ increases and the difference in potential between the transfer sections ■ and ■ becomes smaller (because the electric field becomes smaller), the charge transfer speed gradually slows down and the normal limited readout time is reduced. Inside, charges are left behind in the transfer section (2), resulting in a decrease in transfer efficiency.

本発明は上記の点に鑑みてなされたもので、転送効率の
向上を可能とした固体撮像素子を提供することを目的と
する。
The present invention has been made in view of the above points, and an object of the present invention is to provide a solid-state image sensor that can improve transfer efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の固体撮像素子は、垂直転送部及び水平転送部の
うら少なくとも垂直転送部の電荷転送チャネルの幅を、
少なくとも同じ電極下で電荷転送方向に沿って漸次広く
なるよう構成したものである。
In the solid-state imaging device of the present invention, the width of the charge transfer channel of at least the vertical transfer section of the vertical transfer section and the horizontal transfer section is
The structure is such that it gradually becomes wider along the charge transfer direction under at least the same electrode.

(作用) 垂直転送部や水平転送部は、第1図(A)。(effect) The vertical transfer section and horizontal transfer section are shown in FIG. 1(A).

(C)に夫々模式的に示す如く、半導体基板10上に絶
縁膜11が形成され、更にその上にゲート電極12が形
成されたMO8li造とされており、半導体基板10の
表面側にはチャネルストップと呼ばれる高濃度拡散層1
3a、13bが設けられている。
As schematically shown in (C), the MO8LI structure is formed in which an insulating film 11 is formed on a semiconductor substrate 10 and a gate electrode 12 is further formed thereon, and a channel is formed on the surface side of the semiconductor substrate 10. High concentration diffusion layer 1 called stop
3a and 13b are provided.

ところで、ゲート電極直下のチャネルに相当する半導体
領域のポテンシャルは、第3図の概念図に示すように、
幅の広いゲート電極(第3図(A)の19)や幅の狭い
ゲート電極(第3図(B)の20)の幅に対応したチャ
ネル幅となるが、原理的には実線で示す如く深さは同じ
である。
By the way, the potential of the semiconductor region corresponding to the channel directly under the gate electrode is as shown in the conceptual diagram of FIG.
The channel width corresponds to the width of the wide gate electrode (19 in Figure 3 (A)) and the narrow gate electrode (20 in Figure 3 (B)), but in principle, as shown by the solid line. The depth is the same.

しかし、実際にはポテンシャルのエツジ部分は第3図(
A)、(B)に示す如く急峻ではなく、破線で示す如く
なだらかにポテンシャルが変化する。従って、チャネル
幅が狭くなると第3図(B)に破線で示す如く、チャネ
ル幅が広い場合(第3図(A)に比べてポテンシャルが
浅くなる。
However, in reality, the edge part of the potential is shown in Figure 3 (
The potential changes not steeply as shown in A) and (B), but gently as shown by the broken line. Therefore, as the channel width becomes narrower, as shown by the broken line in FIG. 3(B), the potential becomes shallower than when the channel width is wide (FIG. 3(A)).

この現象はゲート電極の形状が同じでも、チャネルスト
ップを用いてチャネル幅を変えても同様である。本発明
はこの点に着目し、チャネルストップを用いてチャネル
幅を変えることにより、ポテンシャルの深さを電荷転送
方向に沿って傾斜させるようにしたものである。
This phenomenon is the same even if the shape of the gate electrode is the same or the channel width is changed using a channel stop. The present invention focuses on this point, and by changing the channel width using a channel stop, the depth of the potential is made to be inclined along the charge transfer direction.

すなわち、本発明では電荷転送方向の上流側では第1図
(C)に示す如く高濃度拡散層(チャネルストップ)1
3bにより、チャネル幅W2を狭くして第1図(D)に
示す如くチャネル幅のポテンシャルを浅くし、またこれ
よりも電荷転送方向の下流側では第1図(A)に示す如
く高濃度拡散層(チャネルストップ)13aにより、チ
ャネル幅W1を相対的に広く形成して、第1図(B)に
示す如くチャネル幅のポテンシャルを相対的に深くする
That is, in the present invention, on the upstream side in the charge transfer direction, a high concentration diffusion layer (channel stop) 1 is formed as shown in FIG. 1(C).
3b, the channel width W2 is narrowed to make the potential of the channel width shallow as shown in FIG. 1(D), and on the downstream side of this in the charge transfer direction, high concentration diffusion is made as shown in FIG. 1(A). The channel width W1 is formed relatively wide by the layer (channel stop) 13a, and the potential of the channel width is made relatively deep as shown in FIG. 1(B).

従って、本発明における垂直転送部のポテンシャルは第
2図(A)〜(C)に14で示す如く電荷転送方向に沿
って漸次深くなる傾斜を持ったものとなる。
Therefore, the potential of the vertical transfer section in the present invention has a slope that gradually becomes deeper along the charge transfer direction, as shown by 14 in FIGS. 2(A) to 2(C).

これにより、垂直転送部の電荷が転送される水平転送部
のポテンシャルが第2図(A)に168で示す如く浅い
ときに垂直転送部に蓄積された電荷15aは、水平転送
部のポテンシャルが同図(B)に16bで示す如く浅く
されることにより、矢印り方向へ転送され始め、時間が
経過して15bで示す如く垂直転送部の電荷が少なくな
っても、ポテンシャル14が傾斜しているために電荷転
送速度は従来にくらべて高速で転送され続ける。従って
、電荷は第2図(C)に15cで示す如く、従来より短
時間で水平転送部へ転送し終る。
As a result, when the potential of the horizontal transfer section to which the charges of the vertical transfer section are transferred is shallow as shown at 168 in FIG. 2(A), the charges 15a accumulated in the vertical transfer section are By making it shallow as shown at 16b in Figure (B), the transfer starts in the direction of the arrow, and even if the charge in the vertical transfer part decreases as time passes as shown at 15b, the potential 14 is tilted. The charge transfer rate continues to be faster than before. Therefore, as shown by 15c in FIG. 2(C), the charge is completely transferred to the horizontal transfer section in a shorter time than in the past.

(実施例〕 第4図は本発明の一実施例の構成図を示す。木実滴例は
水平方向8画素、I直方面8雨素の計64画素からなる
固体m像素子で、2211〜2288は各画素を構成す
る受光部、23〜2388は受先部2211〜2288
に1体1に対応して設けられたトランスファゲート、2
41..24B、、242a。
(Embodiment) Fig. 4 shows a configuration diagram of an embodiment of the present invention.The tree droplet example is a solid-state m-image element consisting of a total of 64 pixels, 8 pixels in the horizontal direction and 8 pixels in the I-direction direction. 2288 is a light receiving part that constitutes each pixel, 23 to 2388 are receiving parts 2211 to 2288
a transfer gate provided corresponding to one body 1;
41. .. 24B, 242a.

242b、 243a、・・・、244bは夫々垂直転
送部、25a及び25bは夫々水平転送部、26a及び
26bは夫々出力部、27a及び27bは夫々出力端子
である。水平転送部25a及び25bは通常CODであ
る。
242b, 243a, . . . , 244b are vertical transfer sections, 25a and 25b are horizontal transfer sections, 26a and 26b are output sections, and 27a and 27b are output terminals. The horizontal transfer units 25a and 25b are normally COD.

垂直転送部241a及び241bは例えば夫々同一のゲ
ート電極で転送動作を行なうよう構成されており、同様
に垂直転送部24 と2425,243゜a と243b、244aと244.は夫々単一のゲート電
極で垂直転送動作を行なうよう構成されている。
The vertical transfer sections 241a and 241b are configured to perform a transfer operation using, for example, the same gate electrode, and similarly, the vertical transfer sections 24 and 2425, 243°a and 243b, 244a and 244. are each configured to perform a vertical transfer operation using a single gate electrode.

また、垂直転送部2418のチャネル幅Wは水平転送部
25aへの電荷転送方向に沿って漸次幅が広くなるよう
、前記チャネルストップを用いて構成されている。他の
垂直転送部241b〜244bのチャネル幅も同様に電
荷転送方向に沿って漸次広くされている。これにより、
前記したように、垂自転送部241a〜244bの各々
はそのチャネルに相当する領域では、電荷転送方向に沿
って漸次ポテンシャルが深くなる傾斜ポテンシャル特性
をもつ。
Further, the channel width W of the vertical transfer section 2418 is configured using the channel stop so that the width becomes gradually wider along the direction of charge transfer to the horizontal transfer section 25a. Similarly, the channel widths of the other vertical transfer sections 241b to 244b are gradually widened along the charge transfer direction. This results in
As described above, each of the vertical transfer sections 241a to 244b has a gradient potential characteristic in which the potential gradually becomes deeper along the charge transfer direction in the region corresponding to its channel.

なお、垂直転送部241.〜244bのゲート電櫓は各
々1対1に対応して全部で8つ形成してもよい。この場
合は各単一ゲート電極の形状は対応する垂直転送部のチ
ャネル幅に対応したものとなり、かつ、隣接する垂直転
送部のゲート電極は互いに分離される。
Note that the vertical transfer unit 241. A total of eight gate towers 244b to 244b may be formed in one-to-one correspondence. In this case, the shape of each single gate electrode corresponds to the channel width of the corresponding vertical transfer section, and the gate electrodes of adjacent vertical transfer sections are separated from each other.

次に上記の構成の動作につぎ説明する。受光部22〜2
288に夫々入射された被写体からの光はここで光電変
換されて電荷を発生させる。一方、トランスフ1ゲート
23〜2388により、まず最初は第1ラインの受光部
2211.2212.2213゜・・・、2218から
の各電荷が垂直転送部241a。
Next, the operation of the above configuration will be explained. Light receiving section 22-2
The light from the subject incident on each of the photodetectors 288 is photoelectrically converted to generate electric charges. On the other hand, the transfer 1 gates 23 to 2388 first transfer charges from the first line of light receiving sections 2211, 2212, 2213°, . . . , 2218 to the vertical transfer section 241a.

24B、、242a、=・・、244.へ選択転送され
る。
24B,, 242a, =..., 244. Selectively transferred to.

このうち、垂直転送部24 .24 .243a及Ia
      2a び244.へ転送された電荷は水平転送部25aへ垂直
転送され、垂直転送部241..242ゎ、 243゜
及び244.へ転送された電荷は水平転送部25bへ垂
直転送される。
Among these, the vertical transfer section 24. 24. 243a and Ia
2a and 244. The charges transferred to the horizontal transfer section 25a are vertically transferred to the vertical transfer section 241. .. 242°, 243° and 244. The charges transferred to the horizontal transfer section 25b are vertically transferred to the horizontal transfer section 25b.

このとき、前記したように垂直転送部241.〜244
bの夫々は傾斜ポテンシャル特性を有しているので、高
速に水平転送部25a及び25bへ電荷転送を行なう。
At this time, as described above, the vertical transfer unit 241. ~244
Since each of b has a gradient potential characteristic, charges are transferred to the horizontal transfer sections 25a and 25b at high speed.

水平転送部25a及び25bに蓄積された電荷は出力部
26a、26bを介して出力端子27a、27bへ映像
信号としてシリアルに出力される。
The charges accumulated in the horizontal transfer sections 25a and 25b are serially output as video signals to output terminals 27a and 27b via output sections 26a and 26b.

次の水平走査期間では第2ラインの受光部2221゜2
222、2223.・・・、2228からの各電荷が選
択され、垂直転送部241a〜244b、水平転送部2
5a、25b1出力部26a、26bを通して出力端子
27a、27bへ順次出力される。
In the next horizontal scanning period, the light receiving section 2221°2 of the second line
222, 2223. . . , each charge from 2228 is selected and transferred to the vertical transfer units 241a to 244b and the horizontal transfer unit 2.
5a, 25b1 are sequentially outputted to output terminals 27a, 27b through output sections 26a, 26b.

以下、上記と同様にして第3ライン、第4ライン、・・
・、第8ライン、第1ライン、・・・の順序で各受光部
からの電荷が転送されていく。
Thereafter, in the same manner as above, the third line, the fourth line, etc.
. . , the 8th line, the 1st line, .

本実施例によれば、垂直転送部241.〜244bの各
々は単一ゲート電極により1!I!直ラインう体を1画
素分の蓄積領域として使うようにしているから、転送電
荷量を多くできる。しかも、チャネル幅を変えてポテン
シャルに傾斜をもたせているので、転送効率を向上でき
る。また、垂直転送部241、〜244bの各垂直転送
方向は1垂直ライン毎に逆にしているので、面積の有効
利用を図ることができる。
According to this embodiment, the vertical transfer unit 241. Each of ~244b is 1! by a single gate electrode. I! Since the linear cavity is used as an accumulation region for one pixel, the amount of transferred charge can be increased. Moreover, since the channel width is changed to give a slope to the potential, transfer efficiency can be improved. Furthermore, since the vertical transfer directions of the vertical transfer units 241, 244b are reversed for each vertical line, the area can be used effectively.

なお、本発明は上記の実施例に限定されるものではなく
、例えば水平転送部に対しても原理的に適用することが
でき、また垂直転送部のゲート電極の幅は異ならせるよ
うにしてもよい。
Note that the present invention is not limited to the above-described embodiments, and can be applied in principle to, for example, a horizontal transfer section, and the widths of the gate electrodes of the vertical transfer section may also be made different. good.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、転送電荷量の増大と転送
速度の高速化ができるため、多画素化に伴い単位画素面
積が縮小しても、取り扱う電荷量を低下させることなく
、しかも転送効率を向上することができる等の特長を有
するものである。
As described above, according to the present invention, it is possible to increase the amount of transferred charge and increase the transfer speed, so even if the unit pixel area decreases due to the increase in the number of pixels, the amount of charge handled does not decrease, and the transfer rate can be increased. It has features such as being able to improve efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構造断面の各部とそのポテンシャルを
示す図、 第2図は本発明の固体銀像素子の電荷転送説明図、 第3図はチャネル幅とポテンシャルの深さとの関係を説
明する概念図、 第4図は本発明の一実施例の構成図、 第5図は従来の固体躍像素子の一例の構成図、第6図は
第5図の電荷転送説明図である。 図において、 10は半導体基板、 12はゲート電極、 13a、13bは高11度拡散層(チャネルストップ)
、 2211〜2288は受光部、 2311〜2288はトランスファゲート、2418、
244bは垂直転送部、 25a、25bは水平転送部、 26a、26bは出力部 を示す。 (A)             (B)÷1キルt6
と許シシーレり舅葭之℃の軒電朔キるネηシ>a第3図 一−8 麩の頂ソ参オ1祠!:t−)/)−/Plり構ぺ図5t
l 竿5図がし百戦【髭明興 116図
Fig. 1 is a diagram showing each part of the structural cross section of the present invention and its potential. Fig. 2 is an explanatory diagram of charge transfer in the solid-state silver image element of the present invention. Fig. 3 is an illustration of the relationship between channel width and potential depth. FIG. 4 is a block diagram of an embodiment of the present invention, FIG. 5 is a block diagram of an example of a conventional solid-state image element, and FIG. 6 is an explanatory diagram of charge transfer in FIG. In the figure, 10 is a semiconductor substrate, 12 is a gate electrode, and 13a and 13b are high 11 degree diffusion layers (channel stop).
, 2211-2288 are light receiving parts, 2311-2288 are transfer gates, 2418,
244b is a vertical transfer section, 25a and 25b are horizontal transfer sections, and 26a and 26b are output sections. (A) (B)÷1 kill t6
And I'm going to go to the middle of the day, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to go to the middle of the day, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to have a good time, and I'm going to go to the middle of the day, and I'm going to have a good time, and I'm going to go to the middle of the day, and I'm going to go to the middle of the day, and I'm going to go to the middle of the day, and I'm going to go to the middle of the day, and I'm going to have a good time. :t-)/)-/Pl composition diagram 5t
l Rod 5 illustrations 100 battles [Hige Meikou 116 illustrations

Claims (1)

【特許請求の範囲】  規則的に配列された複数の受光部(22_1_1〜2
2_8_8)により光電変換して得られた電荷を垂直転
送部(24_1_a〜24_4_b)を介して水平転送
部(25a、25b)へ転送する固体撮像素子において
、 少なくとも該垂直転送部(24_1_a〜24_4_b
)の電荷転送チャネルの幅(W_1、W_2、W)を、
少なくとも同一電極下で電荷転送方向に沿って漸次広く
なるように形成したことを特徴とする固体撮像素子。
[Claims] A plurality of regularly arranged light receiving parts (22_1_1 to 2
In a solid-state image sensor that transfers the charges obtained by photoelectric conversion by 2_8_8) to horizontal transfer parts (25a, 25b) via vertical transfer parts (24_1_a to 24_4_b), at least the vertical transfer parts (24_1_a to 24_4_b)
) of the charge transfer channel width (W_1, W_2, W),
1. A solid-state image sensor, characterized in that the device is formed so as to gradually become wider along the charge transfer direction under at least the same electrode.
JP63083538A 1988-04-05 1988-04-05 Solid-state image sensor Pending JPH01255273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63083538A JPH01255273A (en) 1988-04-05 1988-04-05 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63083538A JPH01255273A (en) 1988-04-05 1988-04-05 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JPH01255273A true JPH01255273A (en) 1989-10-12

Family

ID=13805281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63083538A Pending JPH01255273A (en) 1988-04-05 1988-04-05 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JPH01255273A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309240A (en) * 1991-01-18 1994-05-03 Nec Corporation CCD linear image sensor including a CCD shift register on both sides of linearly arranged photosensor cells
JP2001077351A (en) * 1999-08-17 2001-03-23 Hyundai Electronics Ind Co Ltd Charge transfer device
JP2008053461A (en) * 2006-08-24 2008-03-06 Matsushita Electric Ind Co Ltd Signal charge-transfer device
WO2014141826A1 (en) * 2013-03-15 2014-09-18 浜松ホトニクス株式会社 Solid-state imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309240A (en) * 1991-01-18 1994-05-03 Nec Corporation CCD linear image sensor including a CCD shift register on both sides of linearly arranged photosensor cells
JP2001077351A (en) * 1999-08-17 2001-03-23 Hyundai Electronics Ind Co Ltd Charge transfer device
JP2008053461A (en) * 2006-08-24 2008-03-06 Matsushita Electric Ind Co Ltd Signal charge-transfer device
WO2014141826A1 (en) * 2013-03-15 2014-09-18 浜松ホトニクス株式会社 Solid-state imaging device
US9635293B2 (en) 2013-03-15 2017-04-25 Hamamatsu Photonics K.K. Solid-state imaging device

Similar Documents

Publication Publication Date Title
CN100424883C (en) Solid-state imaging device and imaging apparatus
US20050225655A1 (en) Solid-state color image pickup apparatus with a wide dynamic range, and digital camera on which the solid-state image pickup apparatus is mounted
EP0862219A2 (en) Active pixel sensor in which adjacent pixels share an integrated electrical element
JPS6369267A (en) Solid-state image sensing device
JPH09191099A (en) Solid state image pickup device and its reading method
US20060072026A1 (en) Solid-state image pickup device and method for driving the same
JPH01255273A (en) Solid-state image sensor
JPH06283704A (en) Ccd-type solid-state image sensing element
JP2554621B2 (en) Solid-state imaging device
JP3450413B2 (en) Solid-state imaging device
JP2855291B2 (en) Solid-state imaging device
JPH0767153B2 (en) Driving method for solid-state imaging device
JP3713863B2 (en) Solid-state image sensor
JP2853779B2 (en) Solid-state imaging device
JPS62206878A (en) Solid-state image pickup element
JPH07112059B2 (en) Solid-state imaging device
JP2892912B2 (en) Inspection method for solid-state imaging device
JPS60202962A (en) Charge coupled device
JP2739601B2 (en) Imaging device
JPS6350058A (en) Semiconductor image sensing device
JPS58209271A (en) Two-dimensional solid-state image pickup device
JPH04103169A (en) Charge transfer image sensing device
JP3018676B2 (en) Charge transfer device
JPH05183820A (en) Ccd solid-state image pickup device
JPS61127277A (en) Solid-state image pickup device