JPH01254293A - Corrosion-resistant treatment of metal - Google Patents

Corrosion-resistant treatment of metal

Info

Publication number
JPH01254293A
JPH01254293A JP8044788A JP8044788A JPH01254293A JP H01254293 A JPH01254293 A JP H01254293A JP 8044788 A JP8044788 A JP 8044788A JP 8044788 A JP8044788 A JP 8044788A JP H01254293 A JPH01254293 A JP H01254293A
Authority
JP
Japan
Prior art keywords
corrosion
metal
aqueous solution
potential
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8044788A
Other languages
Japanese (ja)
Other versions
JP2617981B2 (en
Inventor
Keizo Hosoya
敬三 細谷
Kunio Sato
邦男 佐藤
Kazuo Sato
一夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP8044788A priority Critical patent/JP2617981B2/en
Publication of JPH01254293A publication Critical patent/JPH01254293A/en
Application granted granted Critical
Publication of JP2617981B2 publication Critical patent/JP2617981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To prevent the corrosion of a metal material, by adding a specific reducing agent to an aqueous solution containing an oxoacid salt of halogen to hold the redox potential thereof to the corrosion generating potential of a metal or less and allowing said aqueous solution to flow through a metal container or metal flow passage. CONSTITUTION:A reducing agent generating only one or more kind of carbon dioxide, water and nitrogen by decomposition or reaction is added to an aqueous solution containing an oxoacid salt of halogen to bring the redox potential of the aqueous solution to the corrosion generating potential of a high corrosion- resistant metal. This aqueous solution having the reducing agent added thereto is supplied to a metal container or metal flow passage to perform metal corrosion-resistant treatment. As the reducing agent, there are hydrazine, hydrogen peroxide and formalin. As mentioned above, by adding the reducing agent, the oxoacid salt of halogen is reduced to decrease the corrosion of the metal by the aqueous solution.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ハロゲンのオキソ酸塩を含む水溶液を金属製
の容器あるいは流路(以下、流路等という)に収容ある
いは流通(以下、単に流通という)させる際に、該水溶
液と接触する金属材料を防食するための金属防食処理方
法に関するものである。
Detailed Description of the Invention "Industrial Application Field" The present invention is directed to the storage or distribution (hereinafter simply referred to as a flow path) of an aqueous solution containing a halogen oxoacid salt in a metal container or channel (hereinafter referred to as a channel, etc.). The present invention relates to a metal corrosion prevention treatment method for preventing corrosion of metal materials that come into contact with the aqueous solution during distribution (referred to as distribution).

「従来の技術およびその課題」 従来より、例えば臭化メチル製造の際の臭素化プロセス
など、各種有機化合物あるいは無機化合物の製造プロセ
スから生じる次亜臭素酸塩、次亜塩素酸塩、臭素酸塩、
塩素酸塩などのハロゲンのオキソ酸塩を含む水溶液を、
高耐食性金属からなる流路等に流通させる場合、この水
溶液が接触する流路等の金属材料に腐食を生じ易い問題
があった。
"Prior art and its problems" Hypobromite, hypochlorite, and bromate produced from various organic or inorganic compound production processes, such as the bromination process in the production of methyl bromide, have traditionally been produced. ,
An aqueous solution containing a halogen oxoacid salt such as chlorate,
When flowing through a channel made of a highly corrosion-resistant metal, there is a problem in that the metal material of the channel or the like that comes into contact with this aqueous solution is likely to be corroded.

例えば、臭化メチル製造の際の臭素化プロセスにおいて
は、原料メタノールに臭素を加えて臭素化を行う際に、
排ガスの洗浄を行う。この洗浄により生じる洗浄液は、
次亜臭素酸塩を主体とする臭素のオキソ酸塩を含み、金
属に対する腐食性が強く、上記洗浄液を他部に輸送する
際などで、金属製の流路等に腐食を生じてしまう場合が
ある。
For example, in the bromination process for producing methyl bromide, when bromine is added to the raw methanol to perform bromination,
Clean exhaust gas. The cleaning liquid generated by this cleaning is
Contains bromine oxoacid salts, mainly hypobromite, which is highly corrosive to metals, and may cause corrosion to metal channels when the cleaning solution is transported to other parts. be.

このため、流路等の腐食防止策として、材料に5US3
29 J 2 Lなどの耐腐食性の優れたステンレス鋼
を用いる方法が試みられているが、このステンレス鋼に
おいても上記洗浄液による腐食の発生を完全に防止する
ことはできず、特に部分的に深い孔が発生して腐食が進
行する孔食(pittingcorrosion )や
、上記ステンレス屓の接合部分などに発生するすきま腐
食(crevice corrosion )が発生し
てしまう問題を有していた。この現象は特に洗浄液のア
ルカリ濃度が低くなるに従って著しくなる。
Therefore, as a measure to prevent corrosion of flow channels, etc., 5US3 is added to the material.
Attempts have been made to use stainless steel with excellent corrosion resistance, such as 29J2L, but even this stainless steel cannot completely prevent corrosion caused by the above cleaning solution, especially in partially deep areas. There have been problems in that pitting corrosion occurs in which holes are formed and corrosion progresses, and crevice corrosion occurs in the joints of the stainless steel plates. This phenomenon becomes particularly noticeable as the alkaline concentration of the cleaning solution decreases.

そして、この洗浄液による腐食を完全に防止する手段と
しては、流路等の材料としてインコネル625、ハステ
ロイC−275、Ni合金、Tiなどの高価な金属材料
を使用する方法や、流路等の洗浄液の接触面を耐腐食性
のライニング材で被覆する方法などが考えられるが、こ
れらの方法を用いても完全な腐食防止を行うことはでき
ず、かつこれらの方法ではいずれも製造装置の大幅なコ
ストアップを招いてしまう問題があった。
As a means to completely prevent corrosion caused by this cleaning liquid, there are methods to use expensive metal materials such as Inconel 625, Hastelloy C-275, Ni alloy, Ti, etc. as materials for the flow passages, and methods to completely prevent corrosion caused by the cleaning liquid for the flow passages. Methods such as coating the contact surfaces with corrosion-resistant lining materials are considered, but these methods cannot completely prevent corrosion, and all of these methods require a significant amount of production equipment. There was a problem that led to an increase in costs.

本発明は、上記事情に鑑みてなされたもので、高価な金
属を使用せずに、ハロゲンのオキソ酸塩を含む水溶液に
よる金属材料の腐食を防止する方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for preventing corrosion of metal materials by an aqueous solution containing a halogen oxoacid salt without using expensive metals.

「課題を解決するための手段」 上記目的を達成するために、本発明による金属防食処理
方法においては、ハロゲンのオキソ酸塩を含む水溶液中
に、分解もしくは反応により炭酸ガス、水および窒素の
うちの1種以上のみを生ずる還元剤を添加して、該水溶
液の酸化還元電位を上記金属の腐食発生電位以下に保ち
、流路等に供給するものである。
"Means for Solving the Problems" In order to achieve the above object, in the metal corrosion protection treatment method of the present invention, carbon dioxide, water and nitrogen are removed by decomposition or reaction into an aqueous solution containing a halogen oxoacid salt. A reducing agent that produces only one or more of the following is added to keep the oxidation-reduction potential of the aqueous solution below the corrosion potential of the metal, and the aqueous solution is supplied to a flow path or the like.

「作用」 上記水溶液中に上記還元剤を添加することにより、ハロ
ゲンのオキソ酸塩が還元され、水溶液の金属に対する腐
食性が減少する。
"Operation" By adding the reducing agent to the aqueous solution, the halogen oxoacid salt is reduced, and the corrosiveness of the aqueous solution to metals is reduced.

また、上記水溶液中のハロゲンのオキソ酸塩の量を測定
しつつ還元剤を添加し、水溶液の酸化還元電位を、流路
等の金属材料における腐食発生電位以下とした後に、流
路等に流路させることにより、還元材の添加量を必要最
小量に調節することができる。
In addition, a reducing agent is added while measuring the amount of the halogen oxoacid salt in the aqueous solution, and after the oxidation-reduction potential of the aqueous solution is lower than the corrosion potential of the metal material such as the flow path, it is poured into the flow path etc. The amount of reducing agent added can be adjusted to the required minimum amount by allowing the amount of reducing agent to be added to the amount of the reducing agent.

「実施例」 実施例について図面を参照して説明する。"Example" Examples will be described with reference to the drawings.

第1図は本発明方法の一実施例を説明するためのもので
あって、符号lは還元剤添加機構である。
FIG. 1 is for explaining one embodiment of the method of the present invention, and reference numeral 1 indicates a reducing agent addition mechanism.

なお、この例は本発明方法を、臭化メチル製造の際のメ
タノールの臭素化プロセスから排出される洗浄液などの
次亜臭素酸塩を含む洗浄液の還元処理に適用させた例を
示すものである。
This example shows an example in which the method of the present invention is applied to the reduction treatment of a cleaning solution containing hypobromite, such as a cleaning solution discharged from the methanol bromination process during the production of methyl bromide. .

この還元剤添加機構1は、撹拌装置を備え、上記臭素化
プロセスなどから送られる次亜臭素酸塩を含む洗浄液2
を一定量貯水する還元タンク3と、この還元タンク3内
の洗浄液2の酸化還元電位あるいは洗浄液2中のBr0
−の濃度を測定する測定装置4と、この測定装置4によ
り測定された洗浄液2の酸化還元電位あるいはBr0−
濃度によって、洗浄液2の還元に必要な量のヒドラジン
を還元タンク3内に添加する自動添加装置5を備えた構
成1こなっている。また符号6は、上記自動添加装置5
から添加されるヒドラジンを貯えるためのヒドラジンタ
ンクである。
This reducing agent addition mechanism 1 is equipped with a stirring device and includes a cleaning liquid 2 containing hypobromite sent from the bromination process etc.
A reduction tank 3 stores a certain amount of water, and the oxidation-reduction potential of the cleaning liquid 2 in this reduction tank 3 or the Br0 in the cleaning liquid 2.
A measuring device 4 for measuring the concentration of - and the oxidation-reduction potential of the cleaning liquid 2 measured by this measuring device 4
The configuration 1 includes an automatic addition device 5 for adding the amount of hydrazine necessary for reducing the cleaning liquid 2 into the reduction tank 3 depending on the concentration. Further, reference numeral 6 indicates the automatic addition device 5.
This is a hydrazine tank for storing hydrazine added from.

上記測定装置4としては、波長331nmの近紫外部に
吸収を有するBr0−の吸光度を測定可能な紫外吸光光
度計や、参照電極と白金電極などの指示電極との電位差
を測定する酸化還元電位測定計などが用いられる。なお
、酸化還元電位を測定する際の参照電極としては、規定
水素電極(N HE )や飽和カロメル電極(SCE)
が好適に使用される。
The measuring device 4 includes an ultraviolet absorption photometer that can measure the absorbance of Br0-, which has absorption in the near-ultraviolet region with a wavelength of 331 nm, and an oxidation-reduction potential measurement device that measures the potential difference between a reference electrode and an indicator electrode such as a platinum electrode. A meter is used. Note that the reference electrode when measuring the redox potential is a normal hydrogen electrode (NHE) or a saturated calomel electrode (SCE).
is preferably used.

また指示電極としては白金電極の代わりに種々の金属、
合金を用いた電極を使用することかできるが、白金電極
は他の金属、例えばステンレス鋼の電極に比べて電位の
応答が速く、かつ検出感度が高< ppmオーダーのB
r0−の存在も敏感に検出できることから、洗浄液中の
Br0−を直接測定する場合に特に好適に使用される。
In addition, as an indicator electrode, various metals can be used instead of platinum electrodes.
Although electrodes made of alloys can be used, platinum electrodes have a faster potential response than electrodes made of other metals, such as stainless steel, and have a high detection sensitivity of B on the order of ppm.
Since the presence of r0- can also be detected sensitively, it is particularly suitable for use when directly measuring Br0- in the cleaning solution.

上述の還元剤添加機構1によって洗浄液2は次のように
連続的に還元処理される。まず、洗浄液2は、還元タン
ク3内に連続的に供給される。この還元タンク3では常
時、液中のB ro−a度あるいは液の酸化還元電位を
測定装置4によって測定し、かつ液中のB ro−a度
あるいは液の酸化還元電位が所定のレベル以下となるよ
うに、自動添加装置5によって液中にヒドラジンが添加
されている。この液中に添加されるヒドラジンによって
洗浄液2中のBr0−は還元されてBr−となり、液の
酸化還元電位は低下する。したがって、還元タンク3内
の液は、例えばBr0−濃度が10 ppm以下、酸化
還元電位がステンレス鋼の腐食電位以下など所定のレベ
ル以下に還元処理されて処理液7となり、還元タンク3
から排出される。なお、自動添加装置5によるヒドラジ
ン添加量は、測定装置4による液中のB ro−量ある
いは液の酸化還元電位の測定結果によって自動的に調節
され、還元タンク3内の液中のB ro−Nあるいは液
の酸化還元電位が所定のレベル以上となった時点で還元
タンク3内にヒドラジンを供給し、一方、還元タンク3
内の液中のBr0−量あるいは液の酸化還元電位が所定
のレベル以下となった時点でヒドラジンの添加量を減少
させるか又はヒドラジン添加を中止するように自動調整
されることが望ましい。
The cleaning liquid 2 is continuously reduced by the above-mentioned reducing agent addition mechanism 1 as follows. First, the cleaning liquid 2 is continuously supplied into the reduction tank 3. In this reduction tank 3, the B ro-a degree in the liquid or the oxidation-reduction potential of the liquid is constantly measured by the measuring device 4, and the B ro-a degree in the liquid or the oxidation-reduction potential of the liquid is below a predetermined level. As shown, hydrazine is added to the liquid by the automatic addition device 5. Br0- in the cleaning liquid 2 is reduced to Br- by the hydrazine added to this liquid, and the redox potential of the liquid decreases. Therefore, the liquid in the reduction tank 3 is reduced to a predetermined level or lower, such as a Br0- concentration of 10 ppm or less and an oxidation-reduction potential of less than the corrosion potential of stainless steel, and becomes the treated liquid 7.
is discharged from. The amount of hydrazine added by the automatic addition device 5 is automatically adjusted based on the measurement result of the amount of Bro- in the liquid or the oxidation-reduction potential of the liquid by the measuring device 4. When the oxidation-reduction potential of N or the liquid reaches a predetermined level or higher, hydrazine is supplied into the reduction tank 3.
It is desirable to automatically adjust the amount of hydrazine added or stop adding hydrazine when the amount of Br0- in the liquid or the oxidation-reduction potential of the liquid falls below a predetermined level.

この実施例によれば、ステンレス鋼の腐食に関与するB
r0−を含む洗浄液中にヒドラジンを添加してBr0−
をBr−に還元した後に流路等に排出するので、この処
理液7は流路等に使用されるステンレス鋼などの金属材
料を腐食さけることがないなど優れた効果か得られる他
、ヒドラジンを添加する手段として還元剤添加機構Iを
用いたので、洗浄液2中のBr0−量あるいは洗浄液2
の酸化還元電位を測定しつつ、例えば、Br0−濃度を
10ppm以下となるように調整するか、酸化還元電位
をステンレス鋼の腐食電位以下とするなど予め設定した
レベル以下とするに必要な量のヒドラジンを添加して洗
浄液2の還元処理を連続的に行うことができるので、流
路等の防食処理を省力化することができ、防食処理のラ
ンニングコストを低下させることができる。
According to this example, B, which is involved in corrosion of stainless steel,
Adding hydrazine to the washing solution containing r0-
Since this treatment liquid 7 is discharged into the flow path etc. after reducing it to Br-, this treatment liquid 7 has excellent effects such as not corroding the metal materials such as stainless steel used in the flow path etc. Since reducing agent addition mechanism I was used as a means for adding, the amount of Br0- in cleaning liquid 2 or cleaning liquid 2
While measuring the oxidation-reduction potential of Since the reduction treatment of the cleaning liquid 2 can be performed continuously by adding hydrazine, it is possible to save labor in the anticorrosion treatment of the flow path, etc., and the running cost of the anticorrosion treatment can be reduced.

なお、この例においては還元剤としてヒドラジンを用い
たが、本発明方法に用いられる還元剤はこれに限定され
ることなく、過酸化水素、ホルマリンなどの分解もしく
は反応によって炭酸ガス、水および窒素のうちの1種以
上のみを生じる還元剤を使用することができる。上記ヒ
ドラジン、過酸化水素、ホルマリン等の還元剤は、いず
れもアルカリ性においても還元性を有しており、また酸
素を与えられて分解する際に水や窒素、炭酸ガスなどの
気体成分となって処理液中に残存することがないので、
処理液を再使用する際にプロセス反応に影響を及ぼすこ
とがなく、また、スケール発生等の不都合を生じること
がない。
In this example, hydrazine was used as the reducing agent, but the reducing agent used in the method of the present invention is not limited to this, and carbon dioxide, water, and nitrogen can be removed by decomposition or reaction of hydrogen peroxide, formalin, etc. Reducing agents that produce only one or more of the following can be used. The above-mentioned reducing agents such as hydrazine, hydrogen peroxide, and formalin all have reducing properties even in alkaline conditions, and when decomposed in the presence of oxygen, they become gaseous components such as water, nitrogen, and carbon dioxide gas. Since it does not remain in the processing solution,
When the treatment liquid is reused, it does not affect the process reaction and does not cause problems such as scale formation.

また、上述の実施例においては、流路等を形成する金属
材料として5US329 J 2 Lなどのステンレス
鋼を用いたが、防食処理の対象となる金属材料はステン
レス鋼に限定されることなく、例えばインコネル等のN
i基合金、Tiなどの他の金属材料であっても、対象金
属の腐食発生の下限界電位を調べ、その下限界電位以下
となるように還元剤を添加することにより防食処理を行
うことができる。
Further, in the above-mentioned embodiment, stainless steel such as 5US329 J 2 L was used as the metal material forming the flow path etc., but the metal material to be subjected to anti-corrosion treatment is not limited to stainless steel, and may be, for example, N of inconel etc.
Even with other metal materials such as i-based alloys and Ti, corrosion prevention treatment can be performed by checking the lower limit potential of corrosion of the target metal and adding a reducing agent to keep the potential below that lower limit. can.

また、上述の実施例では、処理対象水溶液として、メタ
ノールの臭素化による臭化メチル製造プロセスから排出
されるBr0−を含む洗浄液を用いたが、処理対象水溶
液中に含まれるハロゲンのオキソ酸塩はこれに限定され
ることなく、例えばホスゲン製造プロセス等、塩素ガス
を含乙゛廃ガス洗浄の際発生するCl0−などのハロゲ
ンのオキソ酸塩の1種または2種以上を含む水溶液であ
っても良い。
In addition, in the above-mentioned example, the cleaning solution containing Br0- discharged from the methyl bromide production process by bromination of methanol was used as the aqueous solution to be treated. Without being limited to this, for example, an aqueous solution containing one or more halogen oxoacid salts such as Cl0- generated during cleaning of waste gas containing chlorine gas such as in the phosgene production process may be used. good.

(実験例) まず、流路等の金属材料として使用されるステンレス鋼
の腐食電位を測定した。ステンレス鋼としては5US3
29J2Lを用い、このステンレス板2枚を部分的に接
合してすきま部分を形成して試料とし、この試料をIO
oooppmのCI4たはBr−を含む、pi−(9、
温度90℃の液中において定電位すきま腐食試験(保持
時間は16時間)を行った。この試験の結果、上記試料
は、高濃度の01−またはBr−の存在条件下では、第
2図に示すように+〇、15V以上の電位ですきま腐食
を生じることが確認された。なお、第2図の図中に示す
○Xは、上記ステンレス鋼の試料に、すきま腐食が発生
した電位を×、すきま腐食が発生しながった電位をOと
して表わしたものである。
(Experimental Example) First, the corrosion potential of stainless steel used as a metal material for flow channels and the like was measured. 5US3 for stainless steel
Using 29J2L, the two stainless steel plates are partially joined to form a gap and used as a sample.
pi-(9,
A constant potential crevice corrosion test (holding time: 16 hours) was conducted in a liquid at a temperature of 90°C. As a result of this test, it was confirmed that in the presence of a high concentration of 01- or Br-, crevice corrosion occurs in the above sample at a potential of +0,15V or higher, as shown in FIG. Note that the ○X shown in FIG. 2 represents the potential at which crevice corrosion occurred in the stainless steel sample, and O indicates the potential at which crevice corrosion did not occur.

また、第2図の図中右側に示す3種類の濃度のBr0−
が各々示す電位の範囲は、10000 ppmのBr−
を含む水溶液をBr0−;Oppmとし、この水溶液中
に次亜臭素酸塩をBr0−が620 ppmおよび31
0  ppmとなるように添加し、pH12,5、温度
90℃に調節した各溶液中に、上述の試料を浸漬してそ
の腐食電位(自然浸漬電位)を測定した結果を示すもの
である。なお、この腐食電位測定の際には、参照電極に
飽和カロメル電極を用い、上記試料を指示電極とした。
In addition, the three concentrations of Br0− shown on the right side of FIG.
The potential range shown by 10000 ppm Br-
The aqueous solution containing Br0-;Oppm is defined as Br0-;
The results show the results of measuring the corrosion potential (natural immersion potential) of the above-mentioned sample by immersing it in each solution which was added so as to have a concentration of 0 ppm, pH 12.5, and temperature 90°C. In addition, when measuring this corrosion potential, a saturated calomel electrode was used as a reference electrode, and the above sample was used as an indicator electrode.

上記各試験の結果から、試料のステンレス鋼(SUS 
329 J 2L)は高濃度のBr”やCI−を含む溶
液中において、O,I5V以上の電位ですきま腐食を生
じること、及び該ステンレス鋼の腐食電位はBr0−の
濃度が高くなるにつれて高電位側にシフトし、Br0−
濃度が310 ppmや620 ppmの条件下では腐
食電位が0.15V以上を示すことから、水溶液中のB
r0−濃度が数100 ppm程度の洗浄液によって該
ステンレス鋼にすきま腐食を生じる可能性があることが
確認された。
From the results of each of the above tests, the stainless steel sample (SUS
329 J 2L) in a solution containing a high concentration of Br" or CI-, crevice corrosion occurs at a potential of O,I5V or more, and the corrosion potential of the stainless steel increases as the concentration of Br0- increases. Shift to the side, Br0-
The corrosion potential of B in an aqueous solution is 0.15 V or higher under conditions of a concentration of 310 ppm or 620 ppm.
It was confirmed that a cleaning solution with an r0- concentration of about several 100 ppm could cause crevice corrosion in the stainless steel.

また、Br0−がOppmの条件下ではステンレス鋼の
腐食電位が0.15V以下であることから、洗浄液のよ
うに高濃度のBr−およびBr0−を含む水溶液であっ
ても、Br0−を還元して水溶液中のB ro−8度を
減少させ、対象金属の腐食発生の下限電位以下の電位と
することにより、ステンレス鋼の防食処理が可能である
ことが確認された。
In addition, since the corrosion potential of stainless steel is 0.15 V or less under conditions where Br0- is Oppm, even an aqueous solution containing high concentrations of Br- and Br0-, such as a cleaning solution, cannot reduce Br0-. It was confirmed that corrosion prevention treatment of stainless steel is possible by reducing the B ro -8 degrees in the aqueous solution and bringing the potential below the lower limit potential for corrosion of the target metal.

次に、メタノールの臭素化プロセスから採取した洗浄液
を用い、紫外吸光光度計によって洗浄液中のB to−
@を測定し、あるいはこの液の酸化還元電位を飽和カロ
メル電極と白金電極を用いて測定しながら、この洗浄液
中にヒドラジンを添加し、ヒドラジン添加量とBr0−
濃度あるいは酸化還元電位の関係を調べた。なおこの洗
浄液中のBr0−濃度はI 2 、 5m mol/ρ
、Br−濃度は100 m mol/12 、 pH1
2,5テアツタ。
Next, using the cleaning solution collected from the methanol bromination process, B to -
While measuring @ or the redox potential of this solution using a saturated calomel electrode and a platinum electrode, hydrazine is added to this cleaning solution, and the amount of hydrazine added and Br0-
The relationship between concentration or redox potential was investigated. Note that the Br0− concentration in this cleaning solution is I 2 , 5 mmol/ρ
, Br concentration is 100 mmol/12, pH 1
2.5 tears.

そして、紫外吸光光度計を用いて測定波長33Inmに
て洗浄液中のBr0−の濃度を測定しつつ、この洗浄液
中にヒドラジンを添加し、ヒドラジンの添加量とBr0
−濃度の関係を調べた。結果を表1に示す。
Then, while measuring the concentration of Br0− in the cleaning solution using an ultraviolet absorption photometer at a measurement wavelength of 33 nm, hydrazine was added to the cleaning solution, and the amount of hydrazine added and Br0− were measured.
-The relationship between concentrations was investigated. The results are shown in Table 1.

表  ! 表1に示すように、洗浄液中にヒドラジンを添加するに
従ってBr0−が減少し、かつこのBr0−0度を正確
にモニターすることができ、したがって洗浄液を流通さ
せる流路等の金属材料に対する防食に十分適用できるこ
とが確認された。
table ! As shown in Table 1, as hydrazine is added to the cleaning solution, Br0- decreases, and this Br0-0 degree can be accurately monitored. It was confirmed that it is fully applicable.

次に、水溶液の酸化還元電位を測定する酸化還元電位法
によって上述の洗浄液の酸化還元電位を測定しつつ、洗
浄液中にヒドラジンを添加して、ヒドラジン添加量と洗
浄液の酸化還元電位の関係を調べた。なお、電極には参
照電極として飽和カロメル電極を用い、指示電極として
白金電極を使用した。結果を表2および第3図に示す。
Next, while measuring the redox potential of the cleaning solution mentioned above using the redox potential method that measures the redox potential of an aqueous solution, hydrazine was added to the cleaning fluid to investigate the relationship between the amount of hydrazine added and the redox potential of the cleaning fluid. Ta. Note that a saturated calomel electrode was used as a reference electrode, and a platinum electrode was used as an indicator electrode. The results are shown in Table 2 and Figure 3.

表  2 (※Br0−濃度とBr0−除去率は表1に示す紫外吸
光光度法により測定。) 表2および第3図から明らかなように、洗浄液中にヒド
ラジンを添加するに従って、洗浄液の酸化還元電位が低
下し、十ωすから一例に変動する際に特に鋭敏な電位変
化を示している。したがって、洗浄液の酸化還元電位の
変化を極めて正確にモニターすることができ、洗浄液を
流通させる流路等の金属材料に対する防食に十分適用で
きることが確認された。
Table 2 (*Br0-concentration and Br0-removal rate are measured by ultraviolet absorption spectrophotometry shown in Table 1.) As is clear from Table 2 and Figure 3, as hydrazine is added to the cleaning solution, the oxidation-reduction rate of the cleaning solution increases. When the potential decreases and fluctuates from 10Ω, for example, a particularly sharp potential change is shown. Therefore, it has been confirmed that changes in the oxidation-reduction potential of the cleaning liquid can be monitored extremely accurately, and that the method can be sufficiently applied to corrosion protection for metal materials such as channels through which the cleaning liquid flows.

また、還元剤として上記ヒドラノンの代わりに過酸化水
素およびホルマリンの各々を用いて、上述と同様の洗浄
液の還元処理試験を行った結果、いずれの還元剤を用い
ても上述のヒドラジンと同様に、洗浄液中のBr0−を
還元することができ、かつ液中のBr0−濃度あるいは
液の酸化還元電位の変動を正確にモニターすることがで
きた。したがって、上記ヒドラジン以外の還元剤を用い
ても、上述のヒドラジンを用いた場合と同様に洗浄液を
流通させる流路等の金属材料に対する防食に十分適用で
きろことが確認された。
In addition, as a result of conducting a reduction treatment test of a cleaning solution similar to that described above using each of hydrogen peroxide and formalin instead of the above-mentioned hydranone as a reducing agent, it was found that no matter which reducing agent was used, the same results as with the above-mentioned hydrazine were obtained. It was possible to reduce Br0- in the cleaning solution, and to accurately monitor changes in the Br0- concentration in the solution or the redox potential of the solution. Therefore, it was confirmed that even if a reducing agent other than the above-mentioned hydrazine is used, it can be sufficiently applied to the corrosion protection of metal materials such as channels through which cleaning liquid flows, in the same way as when the above-mentioned hydrazine is used.

「発明の効果」 以上説明したように、本発明の金属防食処理方法では、
ハロゲンのオキソ酸塩を含む水溶液中に、分解もしくは
反応により炭酸ガス、水および窒素のうちの1種以上の
みを生ずる還元剤を添加して、流路の金属材料の腐食に
関与するハロゲンのオキソ酸塩を分解した後に流路等に
供給するので、この処理液を流路等に流通させてら流路
等の金属材料に腐食を生じさせろことがない。従って流
路等の金属材料にTiやNi基合金など高価なものを使
用することなく流路等の防食を行うことができ、上記水
溶液を流路等に流通させる必要のある種々の製造装置に
おける流路等の防食を確実に行うことができるとともに
、製造装置のコストダウンを計ることができる。
"Effects of the Invention" As explained above, in the metal corrosion protection treatment method of the present invention,
A reducing agent that generates only one or more of carbon dioxide gas, water, and nitrogen through decomposition or reaction is added to an aqueous solution containing a halogen oxoacid salt to remove halogen oxoacids that are involved in corrosion of metal materials in the flow path. Since the acid salt is decomposed and then supplied to the flow path, there is no possibility of corrosion of the metal materials of the flow path etc. when this treatment liquid is circulated through the flow path. Therefore, it is possible to prevent corrosion of the flow path, etc. without using expensive metal materials such as Ti or Ni-based alloys for the metal material of the flow path, etc., and it can be used in various manufacturing equipment that requires the above-mentioned aqueous solution to flow through the flow path. It is possible to reliably protect the flow path, etc. from corrosion, and also to reduce the cost of the manufacturing equipment.

また、この金属防食処理方法では、水溶液中に上記還元
剤を添加することによって、ハロゲンのオキソ酸塩をそ
の濃度にかかわらず分解除去することができ、ハロゲン
のすキソ酸塩濃度が大きく変動する場合であっても水溶
液の還元処理を行うことができる。また、これらの還元
剤は、酸化分解して水や気体を生成して処理液中に残存
することがなく、還元剤添加後の処理液を再び製造プロ
セス内に供給してもプロセス反応に影響を及ぼすことが
ないので、処理液を再び製造プロセス内で使用する場合
など処理条件の異なる種々の製造プロセスに適用するこ
とができろ。
In addition, in this metal corrosion prevention treatment method, by adding the above-mentioned reducing agent to the aqueous solution, the halogen oxo acid salt can be decomposed and removed regardless of its concentration, and the concentration of the halogen oxo acid salt fluctuates greatly. Even in this case, the aqueous solution can be reduced. In addition, these reducing agents do not oxidize and decompose to produce water or gas that remains in the processing solution, so even if the processing solution is re-supplied into the manufacturing process after adding the reducing agent, it will not affect the process reaction. Therefore, it can be applied to various manufacturing processes with different processing conditions, such as when the treatment liquid is used again in the manufacturing process.

また、処理液を再び製造プロセス内で利用するような場
合には、処理液を流通させる流路等のみでなく、処理液
を再使用するプロセス全体の金属防食処理を行うことが
できる。
Further, when the treatment liquid is to be used again in the manufacturing process, metal corrosion prevention treatment can be performed not only on the flow path through which the treatment liquid flows, but also on the entire process in which the treatment liquid is reused.

また、上記水溶液中に上記還元剤を添加する際に、水薄
液中のハロゲンのオキソ酸塩の量を測定しつつ還元剤を
添加して、該水溶液の酸化還元電位を上記金属の腐食発
生電位以下とした後に流路等に供給することにより、水
溶液の還元処理を自動化、連続化することができるので
、流路等の防食処理を省力化することができ、防食処理
のランニングコストを低下させることができろ。
Furthermore, when adding the reducing agent to the aqueous solution, the reducing agent is added while measuring the amount of the halogen oxoacid salt in the aqueous solution, and the oxidation-reduction potential of the aqueous solution is measured to prevent corrosion of the metal. By supplying the aqueous solution to the flow path after reducing the potential to below the potential, the reduction process of the aqueous solution can be automated and continuous, making it possible to save labor in the corrosion prevention treatment of the flow path, etc., and reduce the running cost of the corrosion prevention treatment. You can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための図であって
、還元処理機構の1例を示す概略構成図、第2図および
第3図は本発明の詳細な説明するための図である。 l・・・還元剤添加機構 2・・・洗浄液(水溶液) 7・・・処理液。
FIG. 1 is a diagram for explaining one embodiment of the present invention, and is a schematic configuration diagram showing one example of a reduction processing mechanism, and FIGS. 2 and 3 are diagrams for explaining the present invention in detail. It is. l... Reducing agent addition mechanism 2... Cleaning liquid (aqueous solution) 7... Processing liquid.

Claims (1)

【特許請求の範囲】 ハロゲンのオキソ酸塩を含む水溶液を高耐食性金属から
なる容器あるいは流路に収容あるいは流通させる際の金
属防食処理方法であって、 上記水溶液中に、分解もしくは反応により炭酸ガス、水
、および窒素のうちの1種以上のみを生ずる還元剤を添
加して、該水溶液の酸化還元電位を上記金属の腐食発生
電位以下に保ち、上記容器あるいは流路に供給すること
を特徴とする金属防食処理方法。
[Scope of Claims] A metal corrosion prevention treatment method when an aqueous solution containing a halogen oxoacid salt is accommodated or distributed in a container or flow path made of a highly corrosion-resistant metal, wherein carbon dioxide gas is generated in the aqueous solution by decomposition or reaction. , water, and nitrogen, to maintain the redox potential of the aqueous solution below the corrosion potential of the metal, and supply the aqueous solution to the container or flow path. Metal corrosion protection treatment method.
JP8044788A 1988-04-01 1988-04-01 Metal corrosion protection method Expired - Lifetime JP2617981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8044788A JP2617981B2 (en) 1988-04-01 1988-04-01 Metal corrosion protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8044788A JP2617981B2 (en) 1988-04-01 1988-04-01 Metal corrosion protection method

Publications (2)

Publication Number Publication Date
JPH01254293A true JPH01254293A (en) 1989-10-11
JP2617981B2 JP2617981B2 (en) 1997-06-11

Family

ID=13718514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8044788A Expired - Lifetime JP2617981B2 (en) 1988-04-01 1988-04-01 Metal corrosion protection method

Country Status (1)

Country Link
JP (1) JP2617981B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221483A (en) * 2001-01-25 2002-08-09 Nippon Steel Corp Testing liquid and method for evaluating corrosion resistance of stainless steel
JP2004050009A (en) * 2002-07-18 2004-02-19 Kurita Water Ind Ltd Method of removing bromate ion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221483A (en) * 2001-01-25 2002-08-09 Nippon Steel Corp Testing liquid and method for evaluating corrosion resistance of stainless steel
JP4549547B2 (en) * 2001-01-25 2010-09-22 新日鐵住金ステンレス株式会社 Test liquid and evaluation method for evaluating corrosion resistance of stainless steel
JP2004050009A (en) * 2002-07-18 2004-02-19 Kurita Water Ind Ltd Method of removing bromate ion

Also Published As

Publication number Publication date
JP2617981B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
EP1292820B1 (en) Dynamic optimization of chemical additives in a water treatment system
George et al. Investigation of carbon dioxide corrosion of mild steel in the presence of acetic acid—part 1: basic mechanisms
AU2006247413B2 (en) Process for corrosion control in boilers
AU2001272969A1 (en) Dynamic optimization of chemical additives in a water treatment system
US20100163469A1 (en) Control system for monitoring localized corrosion in an industrial water system
Kahyarian et al. Mechanism of CO2 corrosion of mild steel: A new narrative
KR102476240B1 (en) Apparatus, system and method for maintaining sensor accuracy
TW552319B (en) Composition, apparatus, and method of conditioning scale on a metal surface
Singh et al. Electrochemical studies of stainless steel corrosion in peroxide solutions
Okonkwo et al. Effect of muscat oilfield brine on the stressed X-70 pipeline steel
Zhang et al. Pitting mechanism of mild steel in marginally sour environments–part ii: pit initiation based on the oxidation of the chemisorbed iron sulfide layers
JPH01254293A (en) Corrosion-resistant treatment of metal
Chasse et al. Hydrogen embrittlement of a duplex stainless steel in alkaline sulfide solution
JP3867357B2 (en) Metal corrosion monitoring method
Abbas et al. Corrosion of carbon steel in formic acid as an organic pollutant under the influence of concentration cell
Craig et al. Corrosive amine characterization
Rogne et al. Testing of stainless steel welds for various applications
CN111473916A (en) Monitoring method for crystallizer corrosion leakage condition
RU2375498C1 (en) Anticorrosion method
Renner Corrosion engineering aspects regarding MIC related failures on stainless steels
McIntyre et al. Impact of Corrosion Inhibition on the Mitigation of Preferential Weld Attack in Sea Water Injection Pipelines.
Harjac et al. Influence of solution chemistry and surface condition on the critical inhibitor concentration for solutions typical of hot potassium carbonate CO 2 removal plant
Kish et al. Corrosion control of type 316L stainless steel in sulfamic acid cleaning solutions
Gómez et al. Evaluation of corrosion inhibitor simulating conditions of operation
Sholihin et al. Analysis of the remaining life of API 5L grade B gas pipeline in the flare gas recovery unit