JPH01253905A - Multiple-pole magnetizing permanent magnet - Google Patents

Multiple-pole magnetizing permanent magnet

Info

Publication number
JPH01253905A
JPH01253905A JP8163288A JP8163288A JPH01253905A JP H01253905 A JPH01253905 A JP H01253905A JP 8163288 A JP8163288 A JP 8163288A JP 8163288 A JP8163288 A JP 8163288A JP H01253905 A JPH01253905 A JP H01253905A
Authority
JP
Japan
Prior art keywords
pole
magnetization
magnetic field
magnet material
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8163288A
Other languages
Japanese (ja)
Inventor
Masami Oguriyama
小栗山 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
TDK Corp
Original Assignee
Nissan Motor Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, TDK Corp filed Critical Nissan Motor Co Ltd
Priority to JP8163288A priority Critical patent/JPH01253905A/en
Publication of JPH01253905A publication Critical patent/JPH01253905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic flux density by performing multiple-pole magnetization on the surface of a magnet material body after uniformly magnetizing entire surface of the magnet material body previously. CONSTITUTION:First of all, a straight-line plate magnet material body 10 such as a sintered ferrite is uniformly magnetized in the direction of thickness so that N and S poles may appear on the upper and lower surfaces requiring a reinforced magnetic field. Then, an upper surface 11 of the straight-line plate magnet material body 10 is subject to multiple-pole magnetization and the N and S poles are formed alternately with magnetic pole array spaces D. Thus, also after the multiple-pole magnetization, magnetized part due to initial magnetization in the direction of thickness generates bias magnetic field, which is superposed onto the magnetic field of N and S poles by the multiple-pole magnetization. It allows an even reinforced magnetic field to be obtained at the N-pole side.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、位置、回転検出のため1こ、ホール素子、ホ
ールIC等の感磁性素子と組み合わせて使用される磁気
センサー用の多極着磁永久磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to a multi-pole mounting for a magnetic sensor used in combination with a magnetically sensitive element such as a Hall element, Hall IC, etc. for position and rotation detection. Concerning magnetic permanent magnets.

(従来の技術) 磁気センサー用の多極着磁永久磁石は、磁石材斜体の表
面に多極の着磁をし、この表面から垂直に向かう成分の
磁界を利用してホール素子、ホールIC等の感磁性素子
を作動させるようにしている。この種の従来の多極着磁
永久磁石としては、Pt58図の直線板状多極着磁永久
磁石、19図のディスク状多極着磁永久磁石及び第10
図のリング状多極着磁永久磁石があり、第8図の直線板
状多極着磁永久磁石は磁石材料体の上面1にNiとS極
とを交互に多r&着磁したもの(図中りは磁極配列間隔
)、19図のディスク状多極着磁永久磁石は磁石材料体
の上面2にN極とS極とを交互に多数着磁したものであ
る。また、第10図のリング状多極着磁永久磁石は磁石
材料体の外周囲3にN極とS極とを交互に多数着磁して
いる(図中矢印は磁束の向きを示す)。これらの第8図
乃至第10図の従来の多極着磁永久磁石の表面磁束密度
は、第11図に示すように、N極側とS極側とが対称で
あり、N極側の最大磁束密度(磁束密度のピーク値)B
nとS極側の最大磁束密度Bsとは等しい。
(Prior art) A multi-polar magnetized permanent magnet for a magnetic sensor has multi-pole magnetization on the surface of a diagonal magnet material, and utilizes a magnetic field with a component directed perpendicular to the surface to generate a Hall element, a Hall IC, etc. The magnetically sensitive element is activated. Conventional multi-polar magnetized permanent magnets of this type include a linear plate-shaped multi-polar magnetized permanent magnet shown in Pt58, a disc-shaped multi-polar magnetized permanent magnet shown in Fig. 19, and a Pt 10
There is a ring-shaped multi-polar magnetized permanent magnet shown in the figure, and a straight plate-shaped multi-polar magnetized permanent magnet shown in Fig. 8 is one in which Ni and S poles are alternately magnetized on the upper surface 1 of the magnet material (Fig. The disk-shaped multi-pole magnetized permanent magnet shown in FIG. 19 has a large number of alternating north and south poles magnetized on the upper surface 2 of the magnet material. Further, the ring-shaped multipolar magnetized permanent magnet shown in FIG. 10 has a large number of N poles and S poles alternately magnetized around the outer periphery 3 of the magnet material body (arrows in the figure indicate the direction of magnetic flux). As shown in FIG. 11, the surface magnetic flux density of the conventional multi-pole magnetized permanent magnets shown in FIGS. 8 to 10 is symmetrical on the north and south pole sides, and the maximum Magnetic flux density (peak value of magnetic flux density) B
n and the maximum magnetic flux density Bs on the S pole side are equal.

このような多極着磁永久磁石の表面の磁束密度を大きく
するためには、直線板状やディスク状の磁石材p[の表
面を利用する場合、厚み方向に異方性配向を行ったり、
リング状のものの外周面を利用する場合は、外周面に沿
った極異方性配向を行っている。また、高エネルギー積
の希土類磁石等に磁石材質を変えることにより、所望の
磁束密度を得ていた。
In order to increase the magnetic flux density on the surface of such a multipolar magnetized permanent magnet, when using the surface of a linear plate-shaped or disk-shaped magnet material p[, it is necessary to perform anisotropic orientation in the thickness direction,
When the outer circumferential surface of a ring-shaped object is used, polar anisotropic orientation is performed along the outer circumferential surface. In addition, the desired magnetic flux density was obtained by changing the magnet material to a rare earth magnet or the like with a high energy product.

(発明が解決しようとする課題) ところで、ホール素子やホールIC?を動作させる場合
、感磁性部と磁石表面間には両者が相対運動を行い得る
ように機構上クリアランス(間隙)が必要となる。磁気
センサーの設計の際、このクリアランスを大きくできれ
ば、磁気センサーの応用範囲が広がる等の利点を生ずる
。しかし、磁束密度はクリアランス距離の2末に反比例
して小さくなるから、クリアランスが大きすぎると感磁
性素子を動作させることができなくなる。
(Problem to be solved by the invention) By the way, what about Hall elements and Hall ICs? When operating the magnet, a mechanical clearance (gap) is required between the magnetically sensitive part and the magnet surface so that both can perform relative movement. When designing a magnetic sensor, if this clearance can be increased, the range of applications of the magnetic sensor will be expanded. However, since the magnetic flux density decreases in inverse proportion to the clearance distance, if the clearance is too large, the magnetically sensitive element cannot be operated.

例えば、焼結7工ライト磁石や希土類磁石は、機械的強
度が脆いため、機能上強度対策が必要となる処に配置す
る際、磁石表面に樹脂モールドや非磁性材料で保護カバ
ーを設ける場合がある。この保護層の肉厚分によりクリ
アランスが大き(なって磁気特性が低下することになる
For example, sintered light magnets and rare earth magnets have weak mechanical strength, so when placed in places where functional strength measures are required, a protective cover is sometimes provided on the magnet surface using a resin mold or non-magnetic material. be. The thickness of this protective layer increases the clearance (which results in a decrease in magnetic properties).

また、フェライト磁石は、磁束密度の温度特性が−0,
18%/gauss/’Cのために、高温になるに従っ
て磁束密度が低下する。例えば、自動車用磁気センサー
に使用する場合には、150℃の耐熱性が要求されるこ
ともあるが、2゛0℃で磁気センサーが動作しても、磁
束密度が150℃では約20%低下するため、°磁気セ
ンサーが動作不能となる場合が発生する。
In addition, ferrite magnets have a temperature characteristic of magnetic flux density of -0,
Because of 18%/gauss/'C, the magnetic flux density decreases as the temperature increases. For example, when used in magnetic sensors for automobiles, heat resistance of 150°C may be required, but even if the magnetic sensor operates at 20°C, the magnetic flux density decreases by approximately 20% at 150°C. As a result, the magnetic sensor may become inoperable.

従って、これらの条件での磁束密度の減少を補うために
は、使用する用途に応じて磁石の選択が必要であり、極
異方性配向等の特殊な製造方法や、高エネルギー積を持
つ希土類磁石等を用いることになるが、いずれにしても
コスト面で問題となる。
Therefore, in order to compensate for the decrease in magnetic flux density under these conditions, it is necessary to select a magnet depending on the intended use. A magnet or the like will be used, but in any case this poses a problem in terms of cost.

本発明は、上記の点に鑑み、エネルギー積の高い磁石材
料を使用することな(、また極異方性配向という特殊な
製造方法を用いることなく磁束密度を向上させ得る高性
能、低コストの多極着磁永久磁石を提供することを目的
とする。
In view of the above points, the present invention aims to provide a high-performance, low-cost method that can improve magnetic flux density without using magnetic materials with a high energy product (and without using a special manufacturing method such as polar anisotropic orientation). The purpose is to provide a multipolar magnetized permanent magnet.

(課題を解決するための手段) 上記目的を達成するために、本発明は、磁石材料体の全
体に予め−様で均一に着磁した後、該磁石材料体の表面
に多極の着磁を行っている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides that after the entire magnet material body is magnetized uniformly in a -like manner in advance, multipolar magnetization is applied to the surface of the magnet material body. It is carried out.

(作用) 永久磁石の表面にN極とS極を交互に着磁する場合は、
両極の磁化の強さは均等であるが、感磁性素子の動作の
際に、N極側もしくはS極側の片方の磁界だけを使用す
る磁気センサーにおいては、N極とS極が均等に磁化さ
れていなくとも使用可能である。従って、感磁性素子を
動作させるべき磁極側だけを、より強力に磁化させるこ
とができれば、高エネルギー積の磁石材料を用いなくと
もよい。しかし、これを1回の多極着磁工程だけで実施
する場合は、一方の磁極の磁化の強さを弱く着磁するこ
とは可能であるが、よりいっそう強く着磁することは不
可能である。
(Function) When magnetizing the surface of a permanent magnet with N and S poles alternately,
The magnetization strength of both poles is equal, but in a magnetic sensor that uses only one magnetic field on the north or south pole side when operating a magnetically sensitive element, the north and south poles are equally magnetized. It can be used even if it is not. Therefore, if only the magnetic pole side on which the magnetically sensitive element is to be operated can be more strongly magnetized, it is not necessary to use a magnetic material with a high energy product. However, if this is carried out with only one multi-pole magnetization process, it is possible to weaken the magnetization strength of one of the magnetic poles, but it is impossible to magnetize it even more strongly. be.

一方、第12図のように、多極に着磁されたN極とS極
の磁化の大きさを+M、−Mとし、外部磁界を■4とす
るならば、磁石内部の磁界の強さは、+ M 、 −M
とHとの合成磁界となり、N極とS極の磁化方向が正反
対であることから、磁界Hとの間に順逆の関係が生じ、
バイアス磁界の効果がかかり、磁石表面では磁束密度が
不均等になり、結果的にはN極とS極の磁化の強さを可
変したようになる。すなわち、第12図の磁石上面のN
極上では磁束密度Bn−H+M、S極上では磁束密度B
s=H−Mとなり、この結果、表面磁束密度は第13図
のようにバイアス磁界の加わったN極側とS極側とが非
対称の波形となる。
On the other hand, as shown in Figure 12, if the magnetization magnitudes of the multi-pole N and S poles are +M and -M, and the external magnetic field is 4, then the strength of the magnetic field inside the magnet is are +M, -M
It becomes a composite magnetic field of H and H, and since the magnetization directions of the N and S poles are opposite, a forward-reverse relationship occurs between the magnetic field H and
Due to the effect of the bias magnetic field, the magnetic flux density becomes uneven on the magnet surface, and as a result, the magnetization strength of the north and south poles becomes variable. That is, N on the top surface of the magnet in FIG.
Magnetic flux density Bn-H+M at the pole, magnetic flux density B at the S pole
s=HM, and as a result, the surface magnetic flux density has an asymmetrical waveform on the north pole side and the south pole side to which the bias magnetic field is applied, as shown in FIG.

本発明は、上述の外部磁界Hの代わりに、磁石材料体の
全体に対し、予め強力磁界を必要とする方向に−様で均
一に着磁しておき、この後に磁石材料体表面に多極着磁
を施し、当初の−様な着磁による磁化部分によりバイア
ス磁界を発生させ、後工程の多極着磁による磁界に重畳
し、これによってN極又はS極側の一方に強力な磁界を
得るようにしている。
In the present invention, instead of the above-mentioned external magnetic field H, the entire magnet material is uniformly magnetized in advance in a direction that requires a strong magnetic field, and then the surface of the magnet material is multi-poled. After magnetization, a bias magnetic field is generated by the magnetized part due to initial magnetization, which is superimposed on the magnetic field generated by multi-pole magnetization in the subsequent process, thereby creating a strong magnetic field on either the N pole or S pole side. I'm trying to get it.

(実施例) 以下、本発明に係る多極着磁永久磁石の実施例を図面に
従って説明する。
(Example) Hereinafter, an example of a multipolar magnetized permanent magnet according to the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例であって直線板状多極着磁
永久磁石を構成する場合を示す。まず、同図(A)のよ
うに、焼結フェライト等の直線板状磁石材料体10に対
して1γみ方向に−様な着磁を施す。図示の場合、強力
な磁界を必要とする上面にN極が、下面にS極が現れる
向きとした。
FIG. 1 shows a first embodiment of the present invention, in which a linear plate-shaped multipolar magnetized permanent magnet is constructed. First, as shown in FIG. 2A, a linear plate-shaped magnet material body 10 made of sintered ferrite or the like is magnetized in a negative direction in the 1γ direction. In the illustrated case, the orientation is such that the north pole appears on the top surface, which requires a strong magnetic field, and the south pole appears on the bottom surface.

次に第1図(B)のように直線板状磁石材料体の上面1
1に多極着磁して磁極配列間隔D″cN極とS極とを交
互に形成する(図中矢印は磁束の向きを示す)。
Next, as shown in Fig. 1(B), the upper surface 1 of the linear plate-shaped magnet material body is
1, and the magnetic pole arrangement interval D''c is formed to alternately form N poles and S poles (arrows in the figure indicate the direction of magnetic flux).

この11実施例の場合、多極着磁後ら残存する当初の厚
さ方向の着磁による磁化部分(直線板状磁石材料体の中
間乃至下面寄り部分)がバイアス磁界を発生し、これが
多極着磁によるN極及びS極の磁界に重畳し、この結果
、図示の場合N極側にいっそう強力な磁界が得られる。
In the case of this 11th embodiment, the magnetized portion due to the initial magnetization in the thickness direction (portion near the middle or bottom of the linear plate-shaped magnet material body) remaining after multipolar magnetization generates a bias magnetic field, which is generated by the multipolar magnetization. The magnetic field is superimposed on the N-pole and S-pole magnetic fields due to magnetization, and as a result, a stronger magnetic field is obtained on the N-pole side in the case shown.

なお、直線板状磁石材料体の厚みLが磁極配列間隔りの
1/3以下であれば、多極着磁の際の着磁磁界により最
初に行った厚さ方向の磁化が打ち消されてしまい、磁気
バイアスの効果は得られなり)a 第2図は本発明の第2実施例であってディスク状多極着
磁永久磁石を構成する場合を示す。まず、同図(A)の
ように、焼結フェライト等のディスク状磁石材料体12
に対して厚み方向に−様な着磁を施す。図示の場合、強
力な磁界を必要とする上面にN極が、下面にS極が現れ
る向きとした。
Note that if the thickness L of the linear plate-shaped magnet material is less than 1/3 of the magnetic pole arrangement interval, the magnetization in the thickness direction initially performed will be canceled by the magnetizing magnetic field during multi-pole magnetization. , the effect of magnetic bias cannot be obtained)a FIG. 2 shows a second embodiment of the present invention, in which a disk-shaped multipolar magnetized permanent magnet is constructed. First, as shown in FIG.
A negative magnetization is applied to the material in the thickness direction. In the illustrated case, the orientation is such that the north pole appears on the top surface, which requires a strong magnetic field, and the south pole appears on the bottom surface.

次に第2図(B)のようにディスク状磁石材料体の表面
13に多極着磁してN極とS極とを交互に形成する。
Next, as shown in FIG. 2(B), the surface 13 of the disc-shaped magnet material body is magnetized with multiple poles to form alternating north and south poles.

この第2実施例の場合、多極着磁後も残存する当初の厚
さ方向の着磁による磁化部分(ディスク状磁石材料体の
中間乃至下面寄り部分)がバイアス磁界を発生し、これ
が多極着磁によるN極及びS極の磁界に重畳し、この結
果、図示の場合N極側にいっそう強力な磁界が得られる
。但し、この場合もディスク状磁石材料体の厚みtが磁
極配列間隔りの1/3以下であれば、多極着磁の際の着
磁磁界により最初に行った厚さ方向の磁化が打ち消され
てしまい、磁気バイアスの効果は得られなり1゜ 第3図は本発明の第3実施例であってリング状多極着磁
永久磁石を構成する場合を示す。まず、同図(A)のよ
うに、焼結7エライト等のリング状磁石材料体1・1に
対して半径方向に−様な着磁を施す。図示の場合、強力
な磁界を必要とする外周面にN極が、内周面にS極が現
れる向きとした。
In the case of this second embodiment, the magnetized portion due to the initial magnetization in the thickness direction (portion near the middle or lower surface of the disk-shaped magnet material body) that remains after multipole magnetization generates a bias magnetic field, which causes the multipolar magnetization. The magnetic field is superimposed on the N-pole and S-pole magnetic fields due to magnetization, and as a result, a stronger magnetic field is obtained on the N-pole side in the case shown. However, in this case as well, if the thickness t of the disk-shaped magnet material is 1/3 or less of the magnetic pole arrangement interval, the initial magnetization in the thickness direction is canceled by the magnetizing magnetic field during multi-pole magnetization. Figure 3 shows a third embodiment of the present invention, in which a ring-shaped multipolar magnetized permanent magnet is constructed. First, as shown in FIG. 2A, a ring-shaped magnet material body 1.1 made of sintered 7-elite or the like is magnetized in a negative manner in the radial direction. In the illustrated case, the direction is such that the north pole appears on the outer peripheral surface, which requires a strong magnetic field, and the south pole appears on the inner peripheral surface.

次に第3図(B)のようにリング状磁石材料体の外周面
15に多極着磁してN極とS極とを交互に形成する。
Next, as shown in FIG. 3(B), the outer circumferential surface 15 of the ring-shaped magnet material body is magnetized with multiple poles to alternately form N and S poles.

この第3実施例の場合、多極着磁後も残存する当初の半
径方向の着磁による磁化部分(リング状磁石材料体の中
間乃至内周面寄り部分)がバイアス磁界を発生し、これ
が多極着磁による外周面のN極及びS極の磁界に重畳し
、この結果、図示の場合N極側にいっそう強力な磁界が
得られる。但し、この場合もリング状磁石材料体の半径
方向の厚みLrが磁極配列間隔りの1/3以下であれば
、多極着磁の際の着磁磁界により最初に行った半径方向
の磁化が打ち消されてしまい、磁気バイアスの効果は得
られない。
In the case of this third embodiment, the magnetized portion due to the initial radial magnetization that remains even after multi-pole magnetization (the middle or inner peripheral surface portion of the ring-shaped magnet material body) generates a bias magnetic field, and this The magnetic field is superimposed on the N-pole and S-pole magnetic fields on the outer peripheral surface due to polar magnetization, and as a result, a stronger magnetic field is obtained on the N-pole side in the illustrated case. However, in this case as well, if the radial thickness Lr of the ring-shaped magnet material body is 1/3 or less of the magnetic pole arrangement interval, the initial radial magnetization due to the magnetizing magnetic field during multi-pole magnetization will be They are canceled out, and the effect of magnetic bias cannot be obtained.

第4図は第2実施例のディスク状多極着磁永久磁石を構
成した場合のクリアランスと磁束密度との関係を示す。
FIG. 4 shows the relationship between the clearance and the magnetic flux density when the disk-shaped multipolar magnetized permanent magnet of the second embodiment is constructed.

但し、使用した磁石材料のディスク状磁石材料体はB 
r(4200Hauss)、t、Hc(29500e)
の特性を有し、外径90+am、内径60mm、厚さ4
alI11であり、厚さ方向が容易磁化方向である。こ
こで、同図(A)はディスク状磁石材料体の厚み方向に
−様なm1段階着磁を行つたときの上下面の磁束密度で
あり、クリアランスOmlで測定したものである。同図
(B)はディスク状磁石材料体の上下面のいずれか一方
の面にtiS2段Vf1着磁、すなわち多極着磁(極数
72)を施した場合の磁束密度であり、クリアランスO
mm、0.5mm。
However, the disk-shaped magnet material body used is B.
r (4200 Hauss), t, Hc (29500e)
It has the following characteristics, outer diameter 90+am, inner diameter 60mm, thickness 4
alI11, and the thickness direction is the easy magnetization direction. Here, (A) in the same figure shows the magnetic flux density on the upper and lower surfaces when the disk-shaped magnet material body is magnetized in -like m1 steps in the thickness direction, and is measured at a clearance of Oml. Figure (B) shows the magnetic flux density when one of the upper and lower surfaces of the disc-shaped magnet material body is subjected to tiS two-stage Vf1 magnetization, that is, multi-pole magnetization (72 poles), and the clearance O
mm, 0.5mm.

1.0IIII11.2.01の場合をそれぞれ示す。The cases of 1.0III11.2.01 are shown respectively.

第・1゜図(B)のように、クリアランスの大小にかか
わらずPt51 段階着磁による磁化に起因するバイア
ス磁界の効果が現れ、N極側に強力な磁界が得られるこ
とが判り、クリアランス2,0m16でもN極の最大磁
束密度は約300 gauss程度となり、感磁性素子
を充分作動させ得る。
As shown in Fig. 1 (B), regardless of the size of the clearance, the effect of the bias magnetic field caused by the magnetization due to the stepwise magnetization of Pt51 appears, and a strong magnetic field is obtained on the N pole side. , 0m16, the maximum magnetic flux density of the north pole is about 300 gauss, which is sufficient to operate the magnetically sensitive element.

一方、第5図は、Pt44図の場合と同じ特性、寸法の
磁石材料のディスク状磁石材料体を用いて多極着磁(極
数72)のみを実施してディスク状多極着磁永久磁石を
構成した場合のクリアランスと磁束密度との関係を示す
。この場合には、バイアス磁界の効果は得られず、クリ
アランス2.0LIIIII七は最大磁束密度は200
 gaussをがなり下まわり、感磁性素子を作動させ
ることができない。
On the other hand, Fig. 5 shows a disc-shaped multi-pole magnetized permanent magnet obtained by performing only multi-pole magnetization (72 poles) using a disc-shaped magnet material body having the same characteristics and dimensions as the Pt44 magnet material. The relationship between clearance and magnetic flux density is shown below. In this case, the effect of the bias magnetic field cannot be obtained, and the clearance 2.0LIII7 has a maximum magnetic flux density of 200
gauss and cannot operate the magnetically sensitive element.

ttS6図はj@2実施例のディスク状多極着磁永久磁
石を構成した場合のクリアランスと磁束密度との関係で
あり、ディスク状磁石材料体の厚みを第4図の4111
111から811II11に変更した場合である。厚さ
以外の磁石材料体の特性、寸法には変更はない。
Figure ttS6 shows the relationship between the clearance and magnetic flux density when a disc-shaped multipolar magnetized permanent magnet of the j@2 embodiment is constructed, and the thickness of the disc-shaped magnet material body is 4111 in Figure 4.
This is a case of changing from 111 to 811II11. There are no changes to the properties or dimensions of the magnet material other than the thickness.

ここで同図(A)はディスク状磁石材料体の厚み方向に
一様な#IJ1段階着磁を行ったときの上下面の磁束密
度であり、クリアランスOwmで測定したものである。
Here, (A) in the same figure shows the magnetic flux density on the upper and lower surfaces when #IJ1 step magnetization is performed uniformly in the thickness direction of the disk-shaped magnet material body, and is measured at a clearance Owm.

同図(B)はディスク状磁石材料体の上下面のいずれか
一方の面にf52段階着磁、すなわち多極着磁(極数7
2)を施した場合の磁束密度であり、クリアランス0a
oo、 0.5111111%  1 、0mm。
In the same figure (B), one of the upper and lower surfaces of the disk-shaped magnet material body is magnetized in f52 steps, that is, multi-pole magnetized (7 poles).
2) is applied, and the clearance is 0a.
oo, 0.5111111% 1, 0mm.

2.0+n+oの場合をそれぞれ示す。第6図(B)の
ように、磁石材料体の厚みを増加することによって、f
i1段階着磁による磁化に起因するバイアス磁界を増大
させることができることが判る。さらに、ディスク状磁
石材料体の厚みtを磁極配列間隔りの1/3より大きな
寸法範囲で変化させることにより、バイアス磁界の大き
さを自由に調整することが可能である。
The case of 2.0+n+o is shown respectively. As shown in FIG. 6(B), by increasing the thickness of the magnet material body, f
It can be seen that the bias magnetic field caused by magnetization by the i1 stage magnetization can be increased. Further, by changing the thickness t of the disk-shaped magnet material in a size range larger than ⅓ of the magnetic pole arrangement interval, it is possible to freely adjust the magnitude of the bias magnetic field.

第7図は各種の磁石材料や製造方法で得られた多極着磁
永久磁石と本発明の多極着磁永久磁石の特性を比較する
ために磁石表面がらのクリアランス距離と最大磁束密度
(磁束密度のピーク値)との関係を示す。図中、曲線イ
は等方性焼結7工ライト磁石を用いて従来の多極着磁の
みを施したもので、外径40mm、内径30mm、厚さ
6m+aのリング状磁石の外周面に磁極配列間隔3.5
■のピッチで36極の着磁をしたものである0曲線口は
半径方向異方性焼結7エライト磁石を用いて従来の多極
着磁のみを施したもので、磁石形状、極数は曲線イの場
合と同じである。これらの曲線イ、口の多極着磁永久磁
石の場合、磁石材料は安価で製造容易であるが、クリア
ランスが2.0IIII1以上では感磁性素子の想定さ
れる動作レベル(230gauss)を下回り、感磁性
素子を作動させ得ない。
Figure 7 shows the clearance distance from the magnet surface and the maximum magnetic flux density (magnetic flux (peak value of density). In the figure, curve A is an isotropic sintered 7-magnitude light magnet that has been subjected to conventional multi-pole magnetization. Array interval 3.5
The 0 curve opening, which is magnetized with 36 poles at a pitch of The same is true for curve A. In the case of multi-pole magnetized permanent magnets with these curves A and 1, the magnet material is cheap and easy to manufacture, but if the clearance is 2.0III1 or more, it will fall below the expected operating level (230 gauss) of the magnetically sensitive element and will not be sensitive. The magnetic element cannot be activated.

また、曲線ハは極異方性配向焼結フェライト磁石を用い
て従来の多極着磁のみを施したもので、磁石形状、極数
は曲線イの場合と同じであろ0曲線二は等方性ネオジウ
ム・鉄・ボロン系プラスチック磁石を用いて従来の多極
着磁のみを施したもので、磁石形状、極数は曲線イの場
合と同じである。
In addition, curve C is a polar-anisotropic oriented sintered ferrite magnet that has been subjected to conventional multi-pole magnetization, and the magnet shape and number of poles are the same as curve A. This magnet uses only conventional neodymium/iron/boron plastic magnets with conventional multi-pole magnetization, and the magnet shape and number of poles are the same as those for curve A.

これらの曲線ハ、二の多極着磁永久磁石の場合、クリア
ランスが2.0++mでも感磁性素子の想定される動作
レベル(230Hauss)を上回り、感磁性素子を作
動させ得るが、特殊な製造方法となったり、高価な磁石
材料を必要としたりして、いずれにしてもコスト高とな
る。
In the case of the multi-pole magnetized permanent magnet shown in curve C and II, even if the clearance is 2.0++ m, it exceeds the expected operating level of the magnetically sensitive element (230 Hauss) and the magnetically sensitive element can be activated, but a special manufacturing method is required. In either case, the cost is high because it requires expensive magnet materials.

曲線ホは等方性焼結7工ライト磁石を用いて本発明によ
る多極着磁永久磁石を構成したもので、磁石形状、極数
は曲線イの場合と同じである。曲線へは半径方向異方性
焼結フェライト磁石を用いて本発明による多極着磁永久
磁石を構成したもので、磁石形状、極数は曲線イの場合
と同じである。
Curve E shows a multi-polar magnetized permanent magnet according to the present invention using isotropic sintered 7-magnitude light magnets, and the magnet shape and number of poles are the same as curve A. The multi-pole magnetized permanent magnet according to the present invention is constructed using a radially anisotropic sintered ferrite magnet for curve A, and the magnet shape and number of poles are the same as for curve A.

本発明による多極着磁永久磁石は、曲線ホ、へのように
、クリアランスが2.0IIIIIlでも感磁性素子の
想定される動作レベル(230gauss) ヲ上[j
lす、感磁性素子を作動させることができ、しがも磁石
材料は安価で製造も容易である。
The multi-polar magnetized permanent magnet according to the present invention has the expected operating level (230 gauss) of the magnetically sensitive element even when the clearance is 2.0IIII as shown in curves E and I.
However, the magnet material is inexpensive and easy to manufacture.

なお、第7図では本発明を焼結フェライト磁石に適用し
た場合を例示したが、これ以外の磁石材料体(プラスチ
ックにフェライト粉末を混入した腹合7エライト等)に
も本発明が適用可能であることは明らかである。
Although FIG. 7 shows an example in which the present invention is applied to a sintered ferrite magnet, the present invention can also be applied to other magnet materials (such as ferrite powder mixed with plastic). It is clear that there is.

(発明の効果) 以上説明したように、本発明の多極着磁永久磁石によれ
ば、磁石材料体の全体に予め一様で均一に着磁した後、
該磁石材料体の表面に多極の着磁を行うことによって、
エネルギー積の高い高価な磁石材料を使用することなく
、また極異方性配向磁石という特殊な製造方法を用いな
くとも、磁束密度の向上が図れる。また、各磁極の最大
磁束密度の安定性についても、第1段階での磁化を均一
に行い、第2段階の多極着磁を飽和磁化することにより
、比較的容易にばらつきの少ない均一な磁束密度とする
ことができる。さらに、第1段階で磁化rる磁石肉厚を
磁極配列間隔の1/3より大きくなる寸法の範囲で変更
することにより、第4図及びvJ6図の比較からも1′
するように、バイアス磁界の大きさを自由に調整するこ
とかり能である。
(Effects of the Invention) As explained above, according to the multipolar magnetized permanent magnet of the present invention, after uniformly magnetizing the entire magnet material in advance,
By magnetizing the surface of the magnetic material with multiple poles,
Magnetic flux density can be improved without using expensive magnetic materials with a high energy product, or without using a special manufacturing method for polar anisotropically oriented magnets. In addition, regarding the stability of the maximum magnetic flux density of each magnetic pole, by uniformly magnetizing in the first stage and saturating the multi-pole magnetization in the second stage, it is relatively easy to achieve a uniform magnetic flux with little variation. It can be the density. Furthermore, by changing the thickness of the magnet that is magnetized in the first stage within a range that is larger than 1/3 of the magnetic pole arrangement interval, it is possible to increase the
It is possible to freely adjust the magnitude of the bias magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明に係る多極着磁永久磁石の第1実
施例であって第1段階着磁を示す斜視図、同図(B)は
第1実施例における第2段階着磁を示す斜視図、第2図
(A)は本発明のPt52実施例であって第1段階着磁
を示す斜視図、同図(B)は第2実施例における第2段
階着磁を示す斜視図、第3図(A)は本発明の第3実施
例であって第1段階着磁を示す斜視図、同図(B)はP
t43実施例における第2段階着磁を示す斜視図、fX
S4図は本発明の!52実施例の場合のクリアランスと
磁束密度との関係を示す波形図、Pt5s図は従来の多
極着磁永久磁石の場合のクリアランスと磁束密度との関
係を示す波形図、PIS6図は本発明の第2実施例にお
いて磁石材料体の厚みを増加した場合のクリアランスと
磁束密度との関係を示す波形図、第7図は各種磁石材料
及び製造方法の場合のクリアランスと最大磁束密度との
関係を示すグラフ、第8図は多極着磁永久磁石の第1従
来例を示す斜視図、第9図は石の場合における磁石表面
の磁束密度の波形図、第12図は外部磁界が存在したと
きの外部磁界と磁石内の磁化との関係を示す説明図、第
13図は第12図の場合における磁石表面の磁束密度の
波形図である。 10・・・直線板状磁石材料体、12・・・ディスク状
磁石材料体、14・・・リング状磁石材料体、D・・・
磁極配列間隔、t、tr・・・厚み。 第3図 @緩楓藝 柑@掘夜 刈堰刃・紹 一 クリアランス(素気) 第8図 第9図 第10図 第11図 I 第12図 第13図
FIG. 1(A) is a perspective view showing the first embodiment of a multipolar magnetized permanent magnet according to the present invention, and shows the first stage of magnetization, and FIG. 1(B) is a perspective view of the second stage of magnetization in the first embodiment. Figure 2 (A) is a perspective view showing the Pt52 embodiment of the present invention and shows the first stage magnetization, and Figure 2 (B) shows the second stage magnetization in the second embodiment. FIG. 3(A) is a perspective view showing the third embodiment of the present invention and shows the first stage magnetization, and FIG. 3(B) is a perspective view of the third embodiment of the present invention.
A perspective view showing the second stage magnetization in the t43 example, fX
Figure S4 is of the present invention! The Pt5s diagram is a waveform diagram showing the relationship between clearance and magnetic flux density in the case of Example 52, the Pt5s diagram is a waveform diagram showing the relationship between clearance and magnetic flux density in the case of a conventional multipolar magnetized permanent magnet, and the PIS6 diagram is a waveform diagram showing the relationship between the clearance and magnetic flux density in the case of the conventional multipolar magnetized permanent magnet. A waveform diagram showing the relationship between the clearance and the magnetic flux density when the thickness of the magnet material body is increased in the second embodiment. Figure 7 shows the relationship between the clearance and the maximum magnetic flux density in the case of various magnet materials and manufacturing methods. Graphs, Figure 8 is a perspective view showing the first conventional example of a multipolar magnetized permanent magnet, Figure 9 is a waveform diagram of magnetic flux density on the magnet surface in the case of a stone, and Figure 12 is a waveform diagram of the magnetic flux density when an external magnetic field is present. FIG. 13, which is an explanatory diagram showing the relationship between the external magnetic field and the magnetization within the magnet, is a waveform diagram of the magnetic flux density on the magnet surface in the case of FIG. 12. DESCRIPTION OF SYMBOLS 10... Straight plate-shaped magnet material body, 12... Disc-shaped magnet material body, 14... Ring-shaped magnet material body, D...
Magnetic pole arrangement spacing, t, tr...thickness. Figure 3 @Yurufuugeikan @Horiyakariiba/Shoichi Clearance (Saki) Figure 8 Figure 9 Figure 10 Figure 11 Figure I Figure 12 Figure 13

Claims (3)

【特許請求の範囲】[Claims] (1)磁石材料体の全体に予め一様で均一に着磁した後
、該磁石材料体の表面に多極の着磁を行うことを特徴と
する多極着磁永久磁石。
(1) A multipolar magnetized permanent magnet characterized in that after the entire magnetic material body is uniformly magnetized in advance, the surface of the magnetic material body is magnetized with multiple poles.
(2)前記磁石材料体が焼結フェライトである請求項1
記載の多極着磁永久磁石。
(2) Claim 1, wherein the magnet material body is sintered ferrite.
Multipolar magnetized permanent magnet as described.
(3)前記磁石材料体がプラスチックにフェライト粉末
を混入した複合フェライトである請求項1記載の多極着
磁永久磁石。
(3) The multipolar magnetized permanent magnet according to claim 1, wherein the magnet material is a composite ferrite obtained by mixing ferrite powder into plastic.
JP8163288A 1988-04-02 1988-04-02 Multiple-pole magnetizing permanent magnet Pending JPH01253905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8163288A JPH01253905A (en) 1988-04-02 1988-04-02 Multiple-pole magnetizing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8163288A JPH01253905A (en) 1988-04-02 1988-04-02 Multiple-pole magnetizing permanent magnet

Publications (1)

Publication Number Publication Date
JPH01253905A true JPH01253905A (en) 1989-10-11

Family

ID=13751710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8163288A Pending JPH01253905A (en) 1988-04-02 1988-04-02 Multiple-pole magnetizing permanent magnet

Country Status (1)

Country Link
JP (1) JPH01253905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222131A (en) * 2005-02-08 2006-08-24 Neomax Co Ltd Permanent magnet body
JP2010259613A (en) * 2009-05-07 2010-11-18 Liberal:Kk Block toy using multipolar-magnetized magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222131A (en) * 2005-02-08 2006-08-24 Neomax Co Ltd Permanent magnet body
JP2010259613A (en) * 2009-05-07 2010-11-18 Liberal:Kk Block toy using multipolar-magnetized magnet

Similar Documents

Publication Publication Date Title
US7166996B2 (en) Position sensor utilizing a linear hall-effect sensor
TWI289967B (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
US4998084A (en) Multipolar magnetic ring
US6614223B2 (en) Analog angle encoder having a single piece magnet assembly surrounding an air gap
JP2003199274A (en) Rotor, its manufacturing method, and rotating electric machine
JPH01253905A (en) Multiple-pole magnetizing permanent magnet
JP4304869B2 (en) Magnetic encoder
JP4556439B2 (en) Mold for forming polar anisotropic cylindrical magnet for motor
JP5012130B2 (en) Angle sensor
JPS61116956A (en) Rotor for motor of magnet rotation type
JPS628506A (en) Radial direction bipolar magnet and apparatus for manufacturing same
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
Ausserlechner The maximum torque of synchronous axial permanent magnetic coupling
Pawlak Magnets in modern rotary actuators
KR20040073354A (en) Circular pole piece and mri system
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JPS6211209A (en) Magnet and manufacture thereof
JP2520563Y2 (en) Three-phase synchronous motor rotor
JP2004207430A (en) Pole anisotropic ring magnet and rotary machine using it
Martinek et al. Optimizing magnetic effects through shaped field magnets
JPS60176206A (en) Radial direction bipolar magnet and manufacturing device thereof
JPH04304156A (en) Shifted anisotropic magnet, fabricating system therefor and dc linear motor
JPS6239003A (en) Manufacture of multipolar magnet
JP2000245117A (en) Rotor magnet
JPS636823A (en) Manufacture of plastic magnet