JPH0125388B2 - - Google Patents

Info

Publication number
JPH0125388B2
JPH0125388B2 JP1873587A JP1873587A JPH0125388B2 JP H0125388 B2 JPH0125388 B2 JP H0125388B2 JP 1873587 A JP1873587 A JP 1873587A JP 1873587 A JP1873587 A JP 1873587A JP H0125388 B2 JPH0125388 B2 JP H0125388B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
electrolytic plating
substrate
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1873587A
Other languages
Japanese (ja)
Other versions
JPS63186888A (en
Inventor
Takeshi Kanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiko Electronics Co Ltd
Original Assignee
Meiko Denshi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiko Denshi Kogyo Co Ltd filed Critical Meiko Denshi Kogyo Co Ltd
Priority to JP1873587A priority Critical patent/JPS63186888A/en
Publication of JPS63186888A publication Critical patent/JPS63186888A/en
Publication of JPH0125388B2 publication Critical patent/JPH0125388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は回路形成用の銅箔を製造する方法に関
する。 (従来の技術) 回路形成に使用される銅箔は、基板との密着性
を高める目的でその一側表面に粗面化処理が施さ
れていることが一般的である。 即ち、かかる銅箔を製造する場合、陰極として
の導電性材料よりなる基体と陽極とを対向させ、
両極間の間隙に電解液を流しつつ行う電解メツキ
法により前記基体表面に銅を析出させる方法が知
られている。この方法によると、第3図に示すよ
うに、銅箔1の一側表面に、表面粒子1aが形成
する凹凸によりある程度の粗面が形成される。し
かし、基板との高い密着性が要求される場合はこ
の粗面では充分とは言えない。 そこで、従来、第4図に示すように電解メツキ
法により形成された銅箔1の表面粒子1aに、更
に電解メツキ法を使用して粗面化処理(粗面化電
解メツキ)を施して密着性を向上させていた。こ
の粗面化電解メツキによれば、最初の電解メツキ
により形成された銅箔の表面粒子1a上に、銅の
微小な突起状析出物2が付着形成されるため、銅
箔1の実質的な表面積が増大して基板との密着性
が高められる。 (発明が解決しようとする問題点) ところが、上記した従来の銅箔の製造方法によ
ると、確かに当初は基板との密着性が向上するも
のの、例えば、はんだ付け工程などの高温工程を
経るに従い、密着性の熱劣化が生じるという問題
点がある。 本発明はかかる従来の問題を解決するためにな
されたもので、基板との密着性に優れるととも
に、該密着性の熱劣化が防止された銅箔の製造方
法を提供することを目的とする。 (問題点を解決するための手段および利用) 本発明は、上記したような問題は、従来の銅箔
の製造条件では銅箔の粗面の表面粒子の平均粒子
の平均粒径が大きく、その結果、該表面粒子に付
着形成される突起状析出物の粒子径も粗大化して
しまうために発生することを突き止めた。そし
て、最初の電解メツキ工程において、電流密度と
電解液の流速とを所定の条件にすることにより、
生成した銅層の表面粒子を極めて微細にすること
ができ、その結果、続く粗面化電解メツキ工程に
おいて形成される突起状析出物も極めて微細なも
のとすることができるとの知見に基づいてなされ
たものである。 即ち、上記目的を達成するために本発明によれ
ば、導電性材料よりなる基体表面に、銅イオンを
含有する電解液を用いて電流密度0.15〜3A/cm2
電解液流速4〜20m/秒の条件で電解メツキを施
して銅を析出させ、粗面化表面を有する銅箔層を
形成する第1の工程と、前記銅箔層の粗面に、銅
イオンを含有する電解液を用いて電流密度0.3〜
1A/cm2、電解液流速0.08〜1m/秒及び電極間
距離5〜50mmの条件で粗面化電解メツキを施すこ
とにより、前記粗面に銅の微小な突起状析出物を
形成する第2の工程とを有する構成としたもので
ある。 以下に、本発明に係る銅箔の製造工程を順に説
明する。 先ず、第1の工程即ち銅箔層を形成する電解メ
ツキ工程は、上記したように陰極となる導電性基
体と陽極とを対向させて配設し、これら陰極と陽
極との間の間隙に電解液を流すことにより行う。
この電解液としては、硫酸銅メツキ液、ピロリン
酸銅液など通常のメツキ液を使用すればよい。こ
の時の電解条件は、電流密度が0.15〜3A/cm2
電解液の流速が4〜20m/秒となるように夫々設
定する。上記電流密度及び電解液の流速の何れか
1つでも上記範囲を外れると、基体上に析出・形
成される銅箔層の表面粒子が微細にならず、その
結果、後段の粗面化メツキ工程において前記銅箔
層表面に形成される突起状析出物が粗大化してし
まい、得られた銅箔の実質的な表面積が小さくな
つてしまうという不都合が生じる。 かかる第1の工程により形成された銅箔層10
は第1図に示したように、その表面粒子10aが
従来のものに比べてはるかに小さくなる。この表
面粒子10aの平均粒径Dは3.0〜7.5μmとなる。 続く第2の工程、即ち上記により得られた銅箔
層10の表面を粗面化するための粗面化電解メツ
キ工程は次のようにして実施される。即ち、前記
銅箔層10を陰極とし、例えば図示しない銅陽極
を前記陰極と5〜50mm離隔させて対向・配設して
電解メツキを行う。この電極間距離が5mm未満で
あるか、もしくは50mmを超えると、メツキ液流速
のコントロールが困難になり、その結果突起状析
出物の堆積径にバラツキが発生する場合がある。 更に、この粗面化電解メツキ工程における電解
条件は、電流密度が0.3〜1A/cm2、電解液の流速
が0.08〜1m/秒となるように夫々設定する。上
記電流密度及び電解液の流速の何れか1つでも上
記範囲を外れると、銅箔の粗面上に形成される突
起状析出物の粒径が大きくなつてしまい、銅箔の
実質的な表面積が小さくなる。 なお、この粗面化電解メツキ工程において使用
する電解液は特に限定されるものではないが、例
えば硫酸銅(CuSO4・5H2O):80〜150g/、
硫酸(H2SO4):40〜80g/、及び硝酸カリウ
ム(KNO3):25〜50g/よりなる混合溶液な
どを使用することができる。 第2の工程終了後に、銅箔10の粗面上には第
2図に示すように突起状析出物11が付着形成さ
れる。この突起状析出物11の平均粒径dは1〜
5μmとなる。 なお、第1の工程である銅箔を得るためのメツ
キ工程において、陰極を兼ねる基体としては、平
板状のものも、ドラム状のものも使用することが
できる。また、第2の工程である粗面化メツキ工
程は前記基体上に銅箔が形成された状態のまま行
つても、一旦該銅箔を基体から剥離した後行つて
もよい。 更に、上記第2の工程終了後に、銅箔の表面に
クロメート処理を施すと、該銅箔の機械的強度を
高める上でより効果的である。このクロメート処
理は、具体的には、0.7〜12g/濃度の重クロ
ム酸カリウム溶液に常温で5〜45秒間浸漬する
か、市販の電解クロメート処理条件により加工す
る。 (実施例) 電解液として硫酸銅を使用し、電流密度
1.0A/cm2、電解液流速5m/秒の各条件で電解
メツキを行い。第1図に示すような銅箔層10を
図示しない基体上に析出形成した。この銅箔層1
0の表面粒子10aの平均粒径Dは約5.5μmであ
つた。 次いで、かかる銅箔10の表面に以下の各条件
で粗面化電解メツキを施した。 メツキ液組成 CuSO4・5H2O:120g/ H2SO4:60g/ KNO3:24g/ 電流密度 0.8A/cm2 電解液流速 0.10m/秒 電極間距離 20mm 処理時間 0.4分間 この粗面化電解メツキ終了後、銅箔層10の表
面粒子10aには突起状析出物11が付着形成さ
れた。突起状析出物11を1個の粒子としてみた
場合の平均粒径dは約2μmであつた。 以上のようにして得られた銅箔層を基体から剥
離したのち、この銅箔について次の評価試験を行
つて、その密着性を評価した。 即ち、上記工程により作製された銅箔をエポキ
シ系プリプレグに積層し、1.6mm厚さの銅張積層
板を製造した。この積層板の銅表面に電解銅を純
膜厚3.5〜5.0μmとなるように電気メツキを施し、
その後前記銅箔を10mm幅に切断してピーリング
(引き剥がし)テスト用試験片を作製した。引き
剥がし試験は、引張速度50mm/分で引き剥がした
時の引張力を測定することとし、製造直後或いは
第1表に示した様々な処理条件後に行つて、結果
を表中に示した。なお、第1表には、従来法によ
り製造された銅箔に対して上記と同様な評価試験
を行つた結果も併せて示した。 第1表からも明らかなように、本発明の製造方
法により得られた銅箔は、その密着強度の初期値
並びに薬品浸漬後の値は従来法により得られたも
のと略同等であるが、熱処理後、特に長時間の熱
処理後にも密着強度が殆ど劣化せず、従来のもの
に比べて密着強度の熱劣化性が極めて小さいこと
が確認された。
(Industrial Application Field) The present invention relates to a method of manufacturing copper foil for circuit formation. (Prior Art) Copper foil used for circuit formation generally has one surface roughened for the purpose of improving adhesion to a substrate. That is, when manufacturing such a copper foil, a base made of a conductive material as a cathode and an anode are opposed to each other,
A method is known in which copper is deposited on the surface of the substrate by electrolytic plating, which is performed while flowing an electrolytic solution into the gap between the two electrodes. According to this method, as shown in FIG. 3, a certain degree of roughness is formed on one side surface of the copper foil 1 due to the unevenness formed by the surface particles 1a. However, this rough surface is not sufficient when high adhesion to the substrate is required. Therefore, conventionally, as shown in FIG. 4, the surface particles 1a of the copper foil 1 formed by the electrolytic plating method are further subjected to surface roughening treatment (roughening electrolytic plating) using the electrolytic plating method to adhere. It was improving sex. According to this surface roughening electrolytic plating, minute copper protrusion-like precipitates 2 are deposited and formed on the surface particles 1a of the copper foil formed by the first electrolytic plating. The surface area increases and the adhesion to the substrate is improved. (Problems to be Solved by the Invention) However, according to the conventional copper foil manufacturing method described above, although the adhesion to the substrate is certainly improved at the beginning, as it passes through high-temperature processes such as soldering, However, there is a problem that thermal deterioration of adhesion occurs. The present invention was made in order to solve such conventional problems, and an object of the present invention is to provide a method for manufacturing a copper foil that has excellent adhesion to a substrate and prevents thermal deterioration of the adhesion. (Means and Utilization for Solving the Problems) The present invention solves the above-mentioned problems because under conventional copper foil manufacturing conditions, the average particle diameter of the surface particles on the rough surface of the copper foil is large; As a result, it was found that this occurs because the particle size of the protruding precipitates that adhere to and form on the surface particles also becomes coarse. Then, in the first electrolytic plating process, by setting the current density and the flow rate of the electrolyte to predetermined conditions,
Based on the knowledge that the surface particles of the produced copper layer can be made extremely fine, and as a result, the protruding precipitates formed in the subsequent surface roughening electrolytic plating process can also be made extremely fine. It has been done. That is, in order to achieve the above object, according to the present invention, an electrolytic solution containing copper ions is applied to the surface of a substrate made of a conductive material at a current density of 0.15 to 3 A/cm 2 ,
A first step of depositing copper by electrolytic plating at an electrolyte flow rate of 4 to 20 m/sec to form a copper foil layer having a roughened surface, and adding copper ions to the rough surface of the copper foil layer. A current density of 0.3~ using an electrolyte containing
A second process in which fine protrusive deposits of copper are formed on the rough surface by performing surface roughening electrolytic plating under the conditions of 1 A/cm 2 , an electrolyte flow rate of 0.08 to 1 m/sec, and a distance between electrodes of 5 to 50 mm. The structure includes the following steps. Below, the manufacturing process of the copper foil according to the present invention will be explained in order. First, in the first step, that is, the electrolytic plating step for forming the copper foil layer, as described above, the conductive substrate that will become the cathode and the anode are placed facing each other, and electrolytic plating is applied in the gap between the cathode and the anode. This is done by flowing the liquid.
As this electrolyte, a common plating solution such as a copper sulfate plating solution or a copper pyrophosphate solution may be used. The electrolytic conditions at this time were a current density of 0.15 to 3 A/cm 2 ,
The flow velocity of the electrolytic solution is set to be 4 to 20 m/sec. If either the current density or the flow rate of the electrolytic solution is out of the above range, the surface particles of the copper foil layer deposited and formed on the substrate will not become fine, and as a result, the subsequent roughening plating process will occur. In this case, the protruding precipitates formed on the surface of the copper foil layer become coarse, resulting in a disadvantage that the substantial surface area of the obtained copper foil becomes small. Copper foil layer 10 formed by this first step
As shown in FIG. 1, the surface particles 10a are much smaller than those of the conventional method. The average particle diameter D of the surface particles 10a is 3.0 to 7.5 μm. The subsequent second step, that is, the roughening electrolytic plating step for roughening the surface of the copper foil layer 10 obtained above, is carried out as follows. That is, electrolytic plating is performed by using the copper foil layer 10 as a cathode and, for example, disposing a copper anode (not shown) facing the cathode at a distance of 5 to 50 mm. If the distance between the electrodes is less than 5 mm or more than 50 mm, it becomes difficult to control the flow rate of the plating solution, and as a result, variations may occur in the deposited diameter of the protruding precipitates. Further, the electrolytic conditions in this surface roughening electrolytic plating step are set such that the current density is 0.3 to 1 A/cm 2 and the flow rate of the electrolytic solution is 0.08 to 1 m/sec. If either the current density or the flow rate of the electrolytic solution is out of the above range, the particle size of the protruding precipitates formed on the rough surface of the copper foil will increase, and the substantial surface area of the copper foil will increase. becomes smaller. Note that the electrolytic solution used in this surface roughening electrolytic plating process is not particularly limited, but for example, copper sulfate (CuSO 4 .5H 2 O): 80 to 150 g/,
A mixed solution consisting of sulfuric acid (H 2 SO 4 ): 40 to 80 g/and potassium nitrate (KNO 3 ): 25 to 50 g/or the like can be used. After the second step is completed, protruding precipitates 11 are formed on the rough surface of the copper foil 10 as shown in FIG. The average particle diameter d of this protruding precipitate 11 is 1 to
It becomes 5μm. In addition, in the plating step for obtaining the copper foil, which is the first step, as the substrate that also serves as a cathode, either a flat plate-shaped substrate or a drum-shaped substrate can be used. Further, the second step, the roughening plating step, may be carried out with the copper foil formed on the substrate, or may be carried out after the copper foil is once peeled off from the substrate. Furthermore, it is more effective to perform chromate treatment on the surface of the copper foil after the second step is completed in order to increase the mechanical strength of the copper foil. Specifically, this chromate treatment is performed by immersing the product in a potassium dichromate solution having a concentration of 0.7 to 12 g/concentration for 5 to 45 seconds at room temperature, or by using commercially available electrolytic chromate treatment conditions. (Example) Using copper sulfate as the electrolyte, the current density
Electrolytic plating was performed under the following conditions: 1.0 A/cm 2 and an electrolyte flow rate of 5 m/sec. A copper foil layer 10 as shown in FIG. 1 was deposited on a substrate (not shown). This copper foil layer 1
The average particle diameter D of the surface particles 10a of No. 0 was approximately 5.5 μm. Next, the surface of the copper foil 10 was subjected to roughening electrolytic plating under the following conditions. Plating liquid composition CuSO 4・5H 2 O: 120 g / H 2 SO 4 : 60 g / KNO 3 : 24 g / Current density 0.8 A/cm 2 Electrolyte flow rate 0.10 m/sec Inter-electrode distance 20 mm Processing time 0.4 minutes This roughening After the electrolytic plating was completed, protruding precipitates 11 were formed on the surface particles 10a of the copper foil layer 10. The average particle diameter d of the protruding precipitates 11 as one particle was about 2 μm. After the copper foil layer obtained as described above was peeled off from the substrate, the following evaluation test was conducted on this copper foil to evaluate its adhesion. That is, the copper foil produced by the above process was laminated on an epoxy prepreg to produce a 1.6 mm thick copper-clad laminate. The copper surface of this laminate is electroplated with electrolytic copper to a pure film thickness of 3.5 to 5.0 μm.
Thereafter, the copper foil was cut to a width of 10 mm to prepare a test piece for a peeling test. The peel test measured the tensile force when peeled off at a pulling speed of 50 mm/min, and was carried out immediately after production or after various processing conditions shown in Table 1, and the results are shown in the table. Table 1 also shows the results of the same evaluation test as above performed on copper foil manufactured by the conventional method. As is clear from Table 1, the initial value of adhesion strength and the value after immersion in chemicals of the copper foil obtained by the manufacturing method of the present invention are approximately the same as those obtained by the conventional method. It was confirmed that the adhesion strength hardly deteriorated even after heat treatment, especially after long-term heat treatment, and the thermal deterioration of the adhesion strength was extremely small compared to conventional products.

【表】 (発明の効果) 以上説明したように本発明の銅箔の製造方法に
よれば、導電性材料よりなる基体表面に、銅イオ
ンを含有する電解液を用いて電流密度0.15〜
3A/cm2、電解液流速4〜20m/秒の条件で電解
メツキを施して銅を析出させ、粗面化表面を有す
る銅箔層を形成する第1の工程と、前記銅箔層の
粗面に、銅イオンを含有する電解液を用いて電流
密度0.3〜1A/cm2、電解液流速0.08〜1m/秒及
び電極間距離5〜50mmの条件で粗面化電解メツキ
を施すことにより、前記粗面に銅の微小な突起状
析出物を形成する第2の工程を有することとした
ので、基板上に回路として形成した時に、基板と
の密着性に優れるとともに、この密着性が熱劣化
することが防止された銅箔を提供できるという利
点を有する。
[Table] (Effects of the Invention) As explained above, according to the method for producing copper foil of the present invention, an electrolytic solution containing copper ions is applied to the surface of a substrate made of a conductive material at a current density of 0.15 to
A first step of depositing copper by electrolytic plating under conditions of 3 A/cm 2 and an electrolyte flow rate of 4 to 20 m/sec to form a copper foil layer having a roughened surface; By subjecting the surface to roughening electrolytic plating using an electrolytic solution containing copper ions at a current density of 0.3 to 1 A/cm 2 , an electrolytic solution flow rate of 0.08 to 1 m/sec, and an interelectrode distance of 5 to 50 mm, Since the second step is to form minute copper protrusions on the rough surface, when the circuit is formed on the substrate, it has excellent adhesion to the substrate, and this adhesion does not deteriorate due to heat. This has the advantage that it is possible to provide a copper foil that is prevented from causing damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の銅箔の製造方法の
一実施例を示す製造工程説明図、第3図及び第4
図は従来の銅箔の製造方法を示す製造工程説明図
である。 10……銅箔層、10a……表面粒子、11…
…突起状析出物。
1 and 2 are manufacturing process explanatory diagrams showing one embodiment of the copper foil manufacturing method of the present invention, and FIGS. 3 and 4 are
The figure is a manufacturing process explanatory diagram showing a conventional method for manufacturing copper foil. 10...Copper foil layer, 10a...Surface particles, 11...
...Protruding precipitates.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性材料よりなる基体表面に、銅イオンを
含有する電解液を用いて電流密度0.15〜3A/cm2
電解液流速4〜20m/秒の条件で電解メツキを施
して銅を析出させ、粗面化表面を有する銅箔層を
形成する第1の工程と、前記銅箔層の粗面に、銅
イオンを含有する電解液を用いて電流密度0.3〜
1A/cm2、電解液流速0.08〜1m/秒及び電極間
距離5〜50mmの条件で粗面化電解メツキを施すこ
とにより、前記粗面に銅の微小な突起状析出物を
形成する第2の工程を有することを特徴とする銅
箔の製造方法。
1. A current density of 0.15 to 3 A/cm 2 is applied to the surface of a substrate made of a conductive material using an electrolytic solution containing copper ions.
A first step of depositing copper by electrolytic plating at an electrolyte flow rate of 4 to 20 m/sec to form a copper foil layer having a roughened surface, and adding copper ions to the rough surface of the copper foil layer. A current density of 0.3~ using an electrolyte containing
A second process in which fine protrusive deposits of copper are formed on the rough surface by performing surface roughening electrolytic plating under the conditions of 1 A/cm 2 , an electrolyte flow rate of 0.08 to 1 m/sec, and a distance between electrodes of 5 to 50 mm. A method for producing copper foil, comprising the steps of:
JP1873587A 1987-01-30 1987-01-30 Production of copper foil Granted JPS63186888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1873587A JPS63186888A (en) 1987-01-30 1987-01-30 Production of copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1873587A JPS63186888A (en) 1987-01-30 1987-01-30 Production of copper foil

Publications (2)

Publication Number Publication Date
JPS63186888A JPS63186888A (en) 1988-08-02
JPH0125388B2 true JPH0125388B2 (en) 1989-05-17

Family

ID=11979926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1873587A Granted JPS63186888A (en) 1987-01-30 1987-01-30 Production of copper foil

Country Status (1)

Country Link
JP (1) JPS63186888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262558B2 (en) * 1998-09-14 2002-03-04 三井金属鉱業株式会社 Porous copper foil, use thereof, and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974373B1 (en) * 2008-02-28 2010-08-05 엘에스엠트론 주식회사 Surface treatment method of copper foil for printed circuit, copper foil and electroplater thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262558B2 (en) * 1998-09-14 2002-03-04 三井金属鉱業株式会社 Porous copper foil, use thereof, and method for producing the same

Also Published As

Publication number Publication date
JPS63186888A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
EP0252139B1 (en) A process and apparatus for electroplating copper foil
US3220897A (en) Conducting element and method
US3654099A (en) Cathodic activation of stainless steel
JPS63500250A (en) Treatment for copper foil
US4293617A (en) Process for producing strippable copper on an aluminum carrier and the article so obtained
US3454376A (en) Metal composite and method of making same
US4551210A (en) Dendritic treatment of metallic surfaces for improving adhesive bonding
US4323632A (en) Metal composites and laminates formed therefrom
JPS63310990A (en) Electrolytic copper foil and production thereof
JPS63310989A (en) Electrolytic copper foil and production thereof
US3006821A (en) Manufacture of silver chloride electrodes
JPH09272994A (en) Electrolytic copper foil for fine pattern
US4549941A (en) Electrochemical surface preparation for improving the adhesive properties of metallic surfaces
JPH0125388B2 (en)
JPH0368795A (en) Production of copper foil for printed circuit
Sun et al. Growth of electrolytic copper dendrites and their adhesion to an epoxy resin
EP0520640A1 (en) Metal foil with improved peel strength and method for making said foil
JPH0328389A (en) Copper foil layer for copper-clad laminate, its production and plating bath used therefor
US6042711A (en) Metal foil with improved peel strength and method for making said foil
US1787139A (en) Process of forming iron foils
JP2005008955A (en) Surface treatment method for copper foil
US4234395A (en) Metal composites and laminates formed therefrom
JPS5921392B2 (en) Manufacturing method of copper foil for printed circuits
JP2001177205A (en) Copper foil bonding treatment with improved bond strength and resistance to undercutting
JPS6317597A (en) Printed circuit copper foil and manufacture of the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term