JPH01253178A - Method for detecting degradated conditions in sealed lead battery - Google Patents

Method for detecting degradated conditions in sealed lead battery

Info

Publication number
JPH01253178A
JPH01253178A JP63079587A JP7958788A JPH01253178A JP H01253178 A JPH01253178 A JP H01253178A JP 63079587 A JP63079587 A JP 63079587A JP 7958788 A JP7958788 A JP 7958788A JP H01253178 A JPH01253178 A JP H01253178A
Authority
JP
Japan
Prior art keywords
battery
voltage
sealed lead
electrolyte
decrease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63079587A
Other languages
Japanese (ja)
Other versions
JPH0744044B2 (en
Inventor
Akihiko Kudo
彰彦 工藤
Koji Yamaguchi
浩司 山口
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP63079587A priority Critical patent/JPH0744044B2/en
Publication of JPH01253178A publication Critical patent/JPH01253178A/en
Publication of JPH0744044B2 publication Critical patent/JPH0744044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To detect the degraded conditions by measuring AC and DC voltage components including the voltage of a battery. CONSTITUTION:Since the internal resistance of a sealed battery increases due to the deterioration in the close contact between a separator and an electrode plate caused by the decrease in the electrolyte, the AC voltage components including the battery voltage increases in comparison with a normal battery. When the service life ends due to the elongation of lattice, the close contact between a cathode clattice and a cathode active material is deteriorated, so the relative charge current density increases to increase the charging overvoltage, resulting in increase in the DC voltage component including the battery voltage in comparison with the normal battery. It is thus possible to detect the service life even with any one of the decrease in the electrolyte and the elongation of lattice by detecting the degrading conditions through the measurement of the AC and DC components.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はシール鉛電池の劣化状態検知方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for detecting the deterioration state of a sealed lead battery.

従来の技術 近年、シール鉛電池が無停電電源装置等に幅広く用いら
れるようになってきている。シール鉛電池を無停電11
源装置等のトリクル用途で用いる場合の課題は、劣化状
態の検知が難かしいという点にある。
2. Description of the Related Art In recent years, sealed lead batteries have come to be widely used in uninterruptible power supplies and the like. Uninterruptible sealed lead battery 11
The problem when using it for trickle applications such as power source equipment is that it is difficult to detect the state of deterioration.

この問題を解決する一つの方法として特開昭筒59−1
14472号に示される様に、トリクル充電中の充電電
流により判断するという方法がある。
As one method to solve this problem,
As shown in Japanese Patent No. 14472, there is a method of making a determination based on the charging current during trickle charging.

発明が解決しようとする課題 しかし、上記の検知方法では、シール鉛[6の劣化要因
によっては検知不可能であるという課題を有している。
Problems to be Solved by the Invention However, the above detection method has a problem in that detection is impossible depending on the deterioration factor of the seal lead [6].

シール鉛電池の劣化要因は、電解液の減少、陽極格子の
伸び(腐食)の2つに大別される。
The causes of deterioration of sealed lead batteries can be broadly divided into two: decrease in electrolyte and elongation (corrosion) of the anode grid.

第3図は7−ル鉛電池が電解液の減少により寿命となっ
た場合のトリクル充電電流と容量の変化を示す特性線図
である。
FIG. 3 is a characteristic diagram showing changes in trickle charging current and capacity when a 7-L lead battery reaches the end of its life due to a decrease in electrolyte.

又、第4図は陽極格子の伸び(腐食)により寿命となっ
た場合のトリクル充電電流と容量の変化を示す特性線図
である。
Further, FIG. 4 is a characteristic diagram showing changes in trickle charging current and capacity when the anode lattice reaches the end of its life due to elongation (corrosion).

第3図、第4図に示される様に、陽極格子の伸び(腐食
)で寿命となった場合には寿命末期に充電電流が増大し
ているが、電解液の減少で寿命となった場合には充電電
流の明らかな増大は認められず、上記検知方法を適用す
ることは不可能であった。
As shown in Figures 3 and 4, when the life is reached due to elongation (corrosion) of the anode lattice, the charging current increases at the end of the life, but when the life is reached due to a decrease in electrolyte No obvious increase in the charging current was observed, making it impossible to apply the above detection method.

課題全解決するための手段 本発明は上記の課題を解決するためになされたもので、
シール鉛電池に9.流電流成分を含む充電を流を一定時
間通電した時点で、シール鉛電池の電池電圧に含まれる
交流電圧成分と直流電圧成分を測定した値により劣化状
態を検知することを特徴とするものである。
Means for solving all the problems The present invention has been made to solve the above problems,
9. Sealed lead battery. The battery is characterized by detecting the deterioration state based on the measured values of the AC voltage component and the DC voltage component included in the battery voltage of the sealed lead-acid battery at the time when a current including a current component is passed through the battery for a certain period of time. .

作用 本発明は上記の特徴を有することによシ、シール鉛1を
池が電解液の減少で寿命となった場合には、電池電圧に
含まれる交流電圧成分が正常晶に比べて増大するため、
寿命が検知でき、又、陽極格子の伸び(腐食)で寿命と
なった場合にil′1tat圧に含まれる直流電圧が正
常晶に比べて増大するため、寿命と検知できる。
Operation The present invention has the above-mentioned characteristics, so that when the sealed lead 1 battery reaches the end of its life due to a decrease in electrolyte, the AC voltage component included in the battery voltage increases compared to a normal crystal. ,
The lifetime can be detected, and when the anode lattice reaches the end of its life due to elongation (corrosion), the DC voltage included in the il'1tat pressure increases compared to that of a normal crystal, so the lifetime can be detected.

シール鉛電池が電解液の減少によシ寿命となった場合に
電池電圧に含まれる交流電圧成分が正常晶に比べて増大
するのは、電解液の減少により、セパレータと極板の密
着が悪化し、内部抵抗が増大するためであり、陽極格子
の伸び(腐食)により寿命となった場合に電池電圧に含
まれる直流電圧成分が正常晶に比べて増大するのは、陽
極格子の伸び(腐食)により陽極格子と陽極活物質の密
着が悪化するため、相対的な充電電流密度の増大により
充電過電圧が増大したためと考えられる。
When a sealed lead-acid battery reaches the end of its life due to a decrease in electrolyte, the AC voltage component included in the battery voltage increases compared to a normal crystal because the adhesion between the separator and the electrode plate deteriorates due to the decrease in electrolyte. However, this is due to an increase in internal resistance, and the reason why the DC voltage component included in the battery voltage increases compared to a normal crystal at the end of its life due to elongation (corrosion) of the anode lattice is due to elongation (corrosion) of the anode lattice. ), which deteriorates the adhesion between the anode lattice and the anode active material, which is thought to be due to an increase in charging overvoltage due to an increase in relative charging current density.

実施例 本発明の一実施例を説明する。Example An embodiment of the present invention will be described.

第1図はシール鉛電池が電解液の減少により寿命となっ
た場合の電池電圧に含まれる交流電圧成分と容量の変化
を示す特性線図、第2図はシール鉛電池が陽極格子の伸
び(腐食)により寿命となった場合の電池電圧に含まれ
る直流電圧成分の変化を示す特性線図である。
Figure 1 is a characteristic diagram showing the alternating current voltage component included in the battery voltage and changes in capacity when a sealed lead-acid battery reaches the end of its life due to a decrease in electrolyte. FIG. 3 is a characteristic diagram showing changes in the DC voltage component included in the battery voltage when the battery reaches the end of its life due to corrosion.

使用したシール鉛電池は6 V 、1.2Ah、周囲温
度は71℃の加速寿命試験であり、陽極格子の腐食で寿
命とした場合には、一定期間おきに補水を行っている。
The sealed lead battery used was subjected to an accelerated life test at 6 V, 1.2 Ah, and an ambient temperature of 71° C., and when the life was reached due to corrosion of the anode grid, water was refilled at regular intervals.

通電した電流は交流電流成分が0.01 ArI)(周
波数IKHz)、直流電流成分が0.05 Aであり、
通電開始後30秒後に測定した。
The applied current has an alternating current component of 0.01 ArI) (frequency IKHz) and a direct current component of 0.05 A,
Measurement was performed 30 seconds after the start of current application.

第1図に示されるように、シール鉛電池が電解液の減少
で寿命となった場合には電池電圧に含まれる交流電圧成
分が徐々に増加し、寿命を検知することが可能となり、
又、第2図に示されるように、シール鉛電池が陽極格子
の腐食で寿命となっ九場合には、電池電圧に含まれる直
流電圧成分が増大し、寿命を検知することが可能となる
As shown in Figure 1, when a sealed lead battery reaches the end of its life due to a decrease in electrolyte, the AC voltage component included in the battery voltage gradually increases, making it possible to detect the end of its life.
Further, as shown in FIG. 2, when a sealed lead battery reaches the end of its life due to corrosion of the anode grid, the DC voltage component included in the battery voltage increases, making it possible to detect the end of its life.

発明の効果 、上述しまたように、本発明によれば、シール鉛電池に
交流電流成分を含む充電電流を一定時間通電した時点で
シール鉛電池の電池電圧に含まれる交流電圧成分と直流
電圧成分を測定した値により劣化状態を検知する方法と
したため、電解液の減少及び陽極格子の伸び(腐食)の
どちらの寿命要因でも寿命検知が可能であるという効果
がある。
Effects of the Invention As described above, according to the present invention, when a charging current containing an alternating current component is applied to the sealed lead battery for a certain period of time, the alternating current voltage component and the direct current voltage component included in the battery voltage of the sealed lead battery are reduced. Since the deterioration state is detected based on the measured value, it is possible to detect the lifespan of both the electrolyte decrease and the elongation (corrosion) of the anode lattice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシール鉛電池が電解液の減少により寿命となっ
た場合の電池電圧に含まれる交流電圧成分及び容量の変
化を示す特性線図、第2図はシール鉛電池が陽極格子の
伸び(腐食)により寿命となった場合の電池電圧に含ま
れる直流電圧成分及び容量の変化を示す特性線図、第3
図はシール鉛電池が電解液の減少により寿命となった場
合のトリクル充電電流と容量の変化を示す特性線図、第
4図はシール鉛電池が陽極格子の腐食で寿命となった場
合のトリクル充電電流と容量の変化を示す特性線図であ
る。
Figure 1 is a characteristic diagram showing the alternating current voltage component included in the battery voltage and changes in capacity when a sealed lead-acid battery reaches the end of its life due to a decrease in electrolyte. Characteristic diagram showing the DC voltage component included in the battery voltage and changes in capacity when the battery reaches the end of its life due to corrosion, Part 3
The figure is a characteristic diagram showing the change in trickle charging current and capacity when a sealed lead battery reaches the end of its life due to a decrease in electrolyte. Figure 4 shows a trickle charge diagram when a sealed lead battery reaches the end of its life due to corrosion of the anode grid. FIG. 3 is a characteristic diagram showing changes in charging current and capacity.

Claims (1)

【特許請求の範囲】[Claims] シール鉛電池に交流電流成分を含む充電電流を一定時間
通電した時点で、シール鉛電池の電池電圧に含まれる交
流電圧成分と直流電圧成分を測定した値により劣化状態
を検知することを特徴とするシール鉛電池の劣化状態検
知方法。
The deterioration state is detected based on the measured values of the AC voltage component and the DC voltage component included in the battery voltage of the sealed lead battery when a charging current containing an AC current component is applied to the sealed lead battery for a certain period of time. A method for detecting the deterioration state of sealed lead-acid batteries.
JP63079587A 1988-03-31 1988-03-31 Deteriorated state detection method for sealed lead batteries Expired - Lifetime JPH0744044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079587A JPH0744044B2 (en) 1988-03-31 1988-03-31 Deteriorated state detection method for sealed lead batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079587A JPH0744044B2 (en) 1988-03-31 1988-03-31 Deteriorated state detection method for sealed lead batteries

Publications (2)

Publication Number Publication Date
JPH01253178A true JPH01253178A (en) 1989-10-09
JPH0744044B2 JPH0744044B2 (en) 1995-05-15

Family

ID=13694123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079587A Expired - Lifetime JPH0744044B2 (en) 1988-03-31 1988-03-31 Deteriorated state detection method for sealed lead batteries

Country Status (1)

Country Link
JP (1) JPH0744044B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329362A (en) * 1976-09-01 1978-03-18 Sumitomo Chemical Co Method of making resin sheets

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329362A (en) * 1976-09-01 1978-03-18 Sumitomo Chemical Co Method of making resin sheets

Also Published As

Publication number Publication date
JPH0744044B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US8541122B2 (en) Lithium rechargeable cell with reference electrode for state of health monitoring
JP4759795B2 (en) Rechargeable battery remaining capacity detection method
KR101222220B1 (en) Charging method and charger for non-aqueous electrolyte secondary battery
RU2692242C1 (en) Auxiliary accumulator system and method for evaluation of mechanical stress of active material of auxiliary accumulator
JP5050999B2 (en) Test method for battery and electrode
US7507497B2 (en) Method and apparatus for judging degradation of storage battery
US4143212A (en) Sealed storage battery
WO2004021498A1 (en) Method for testing precursor of secondary cell, its testing instrument, and method for manufacturing secondary cell using the method
US20130295424A1 (en) Electrolyte-Based Battery Cell, Method and System for Determining the State of Charge of Electrolyte-Based Batteries
KR102259454B1 (en) Method for the in-situ recalibration of a comparison electrode incorporated into an electrochemical system
US6097176A (en) Method for managing back-up power source
JP2005158643A (en) Inspection method for lithium secondary battery
JPH0821434B2 (en) Method for detecting deterioration of sealed lead-acid battery
JPH01253177A (en) Method for detecting degradated conditions in sealed battery
JPH01253178A (en) Method for detecting degradated conditions in sealed lead battery
JP2004111371A (en) Method for inspecting secondary battery precursor, its inspection device, and method for manufacturing secondary battery using the method
JPS61206179A (en) Series connection circuit of lithium secondary battery
JP7011782B2 (en) Secondary battery inspection method
Calábek et al. Analysis of positive-plate resistance during cycling and the effect of compression
JP3584955B2 (en) Pass / fail judgment method and pass / fail judgment device for gas-absorbing sealed lead-acid battery
US20230333173A1 (en) Battery monitoring apparatus
JP3340504B2 (en) Deterioration judgment method of lead storage battery
JPH0487271A (en) Life deciding method of lead storage battery
JPH0782879B2 (en) Deteriorated state detection method for sealed lead batteries
JPH0927350A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term