JPH01253172A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH01253172A
JPH01253172A JP63080524A JP8052488A JPH01253172A JP H01253172 A JPH01253172 A JP H01253172A JP 63080524 A JP63080524 A JP 63080524A JP 8052488 A JP8052488 A JP 8052488A JP H01253172 A JPH01253172 A JP H01253172A
Authority
JP
Japan
Prior art keywords
anode
conductive layer
sodium
container
sulfur battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63080524A
Other languages
Japanese (ja)
Other versions
JP2612894B2 (en
Inventor
Koji Sugimoto
杉本 宏次
Toshikiyo Takeda
武田 年清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63080524A priority Critical patent/JP2612894B2/en
Publication of JPH01253172A publication Critical patent/JPH01253172A/en
Application granted granted Critical
Publication of JP2612894B2 publication Critical patent/JP2612894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the energy efficiency of battery by setting higher the fiber filling ratio to the outer layer of a cathode conductive layer, while by setting lower those of the inner and outer layers. CONSTITUTION:A cathode conductive material M formed with carbon filter of mat and cylinder shape is formed of three layers, i.e. an outer cathode conductive layer Ma abutting against the inner face of a cathode vessel 2, an inner cathode conductive layer Mb abutting against the outer peripheral face of a solid electrolytic tube 5, and an intermediate cathode conductive layer Mc positioned between both layers. The carbon fiber filling ratio to the layer Ma is sufficiently set higher, for example 80% or more, while the ratios to the layers Mb, Mc lower, for example 30%. Since the filling ratio to the layer Ma is set high, even if the liquid surface S of a cathode active material (sulfur) is lowered downward in the layers Mb and Mc at the time of changing of battery, the whole inner peripheral face of the vessel 2 is immersed with sulfur as shown by dotted lines by the soaking up retaining action due to the capillary phenomenon, the lowering of electric resistance is restrained while the passing area of the vessel 2 is sufficiently ensured, and the flow of current is smoothened, thereby the energy efficiency of battery can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はナトリウム−硫黄電池に関し、さらに詳しくは
特に充電中期から末期において陽極容器及び/又は固体
電解質管の電気抵抗が低下して電池エネルギー効率が低
下するのを防止することができるナトリウム−硫黄電池
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a sodium-sulfur battery, and more specifically, the electrical resistance of the anode container and/or solid electrolyte tube decreases from the middle to the final stage of charging, thereby improving battery energy efficiency. The present invention relates to a sodium-sulfur battery that can prevent a decrease in energy.

(従来の技術) 最近、電気自動車用、夜間電力貯蔵用の二次電池として
性能面及び経済面の両面において優れ、300〜400
℃で作動する高温型のナトリウム−硫黄電池の研究開発
が進められている。
(Prior art) Recently, as a secondary battery for electric vehicles and nighttime power storage, it has been developed to be excellent in both performance and economical aspects.
Research and development is progressing on high-temperature sodium-sulfur batteries that operate at ℃.

即ち、性能面では、ナトリウム−硫黄電池は鉛蓄電池に
比べて理論エネルギー密度が高く、充放電時における水
素や酸素の発生といった副反応もなく、陽極活物質の利
用率も高く、経済面ではナトリウム及び硫黄が安価であ
るという利点を存している。
In other words, in terms of performance, sodium-sulfur batteries have a higher theoretical energy density than lead-acid batteries, there are no side reactions such as the generation of hydrogen or oxygen during charging and discharging, and the utilization rate of the positive electrode active material is high. It also has the advantage that sulfur is cheap.

従来のナトリウム−硫黄電池を第7図に基づいて説明す
ると、図中2は陽極端子1を備えた陽極容器、4は陽極
容器2に対し絶縁リング3を介して連結され、かつ溶融
金属ナトリウムを貯留する陰極容器である。又、5は前
記絶縁リング3に固定した有底筒状の固体電解質管、6
は陰極容器4を貫通して固体電解質管5内へ進入した陰
極管である。前記陽極容器2と固体電解質管5との間に
収容され、かつ導電性を有するカーボン繊維をマント状
に、かつ円筒状に形成してなる陽極用導電材Mは、その
カーボン繊維の充填率がどの部位も均一となっていた。
A conventional sodium-sulfur battery will be explained based on FIG. 7. In the figure, 2 is an anode container equipped with an anode terminal 1, and 4 is connected to the anode container 2 via an insulating ring 3, and is connected to the anode container 2 through an insulating ring 3. This is a cathode container for storage. Further, 5 is a bottomed cylindrical solid electrolyte tube fixed to the insulating ring 3;
is a cathode tube that has penetrated the cathode container 4 and entered the solid electrolyte tube 5. The anode conductive material M, which is housed between the anode container 2 and the solid electrolyte tube 5 and is made of conductive carbon fibers formed into a cloak-like and cylindrical shape, has a filling rate of the carbon fibers. All parts were uniform.

そして、電池の充電時には固体電解質管5内のナトリウ
ムがナトリウムイオンと電子に別れて陽極用導電材M内
に進入し、陽極用導電材Mに含浸した陽極活物質として
の溶融硫黄と反応して多硫化ナトリウムを生成する。
When charging the battery, sodium in the solid electrolyte tube 5 separates into sodium ions and electrons and enters the conductive material M for the anode, and reacts with molten sulfur as the anode active material impregnated into the conductive material M for the anode. Produces sodium polysulfide.

(発明が解決しようとする課題) ところが、従来のナトリウム−硫黄電池は、前述したよ
うに陽極用導電材Mの従来率が均一であったため、充電
時間が経過するにともない、第8図に示すように前記陽
極活物質(硫黄)の液面Sが同一レベルで徐々に低下し
、この結果、陽極容器2の内周面及び固体電解質管5の
外周面がそれぞれ上部において陽極活物質が不足する状
態となり、この結果、陽極容器2及び固体電解質管5の
通電面積の低下により電気抵抗が増大し、電池エネルギ
ー効率が低下するという問題があった。
(Problem to be Solved by the Invention) However, in the conventional sodium-sulfur battery, since the conventional rate of the conductive material M for the anode was uniform as described above, as the charging time elapses, the rate as shown in FIG. As such, the liquid level S of the anode active material (sulfur) gradually decreases at the same level, and as a result, the anode active material becomes insufficient at the upper portions of the inner circumferential surface of the anode container 2 and the outer circumferential surface of the solid electrolyte tube 5, respectively. As a result, the electrical resistance increases due to a decrease in the current-carrying area of the anode container 2 and the solid electrolyte tube 5, resulting in a problem that the battery energy efficiency decreases.

本発明の第1の目的は上記問題点を解消して、充電時に
おいて、陽極容器の電気抵抗が大きく低下するのを抑制
して、電池エネルギー効率を向上することができるナト
リウム−硫黄電池を提供することにある。
A first object of the present invention is to solve the above-mentioned problems and provide a sodium-sulfur battery that can suppress a large decrease in the electrical resistance of the anode container during charging and improve battery energy efficiency. It's about doing.

又、本発明の第2の目的は充電時において、固体電解質
管の電気抵抗が太き(低下するのを抑制して、電池エネ
ルギー効率を向上することができるナトリウム−硫黄電
池を提供することにある。
A second object of the present invention is to provide a sodium-sulfur battery that can increase the electrical resistance of the solid electrolyte tube during charging and suppress the decrease in battery energy efficiency. be.

さらに、本発明の第3の目的は、陽極容器及び固体電解
質管の電気抵抗が低下するのを抑制して、電池エネルギ
ー効率をさらに向上することができるナトリウム−硫黄
電池を提供することにある。
Furthermore, a third object of the present invention is to provide a sodium-sulfur battery that can further improve battery energy efficiency by suppressing a decrease in electrical resistance of an anode container and a solid electrolyte tube.

(5題を解決するための手段) 請求項1記載のナトリウム−硫黄電池は前記第1の目的
を達成するため、カーボン繊維あるいはセラミック繊維
等の導電性繊維を集合してなり、かつ陽極活物質の硫黄
を含浸する筒状の陽極用導電材を収納する筒状の陽極容
器に対し、絶縁リングを介して、溶融金属ナトリウムを
貯留する陰極容器を接合固定し、前記陽極容器の内部に
は、基端を前記絶縁リングの内周部に嵌合して前記陰極
容器内部と連通し、かつナトリウムイオンを選択的に透
過させる機能を有した有底筒状の固体電解質管を前記陽
極用導電材の中空部に挿入したナトリウム−硫黄電池に
おいて、 前記陽極容器の内周面に接触する外側陽極用導電層の繊
維充電率を高くし、前記固体電解質管の外周面に接触す
る内側陽極用導電層及び前記外側及び内側の陽極用導電
層の中間に位置する中間陽極用導電層の繊維充填率を低
く設定するという手段をとっている。
(Means for Solving the Five Problems) In order to achieve the first object, the sodium-sulfur battery according to claim 1 is made up of a collection of conductive fibers such as carbon fibers or ceramic fibers, and has an anode active material. A cathode container that stores molten metal sodium is bonded and fixed to a cylindrical anode container that stores a cylindrical anode conductive material impregnated with sulfur through an insulating ring, and inside the anode container, A bottomed cylindrical solid electrolyte tube whose base end fits into the inner circumference of the insulating ring to communicate with the inside of the cathode container and has a function of selectively transmitting sodium ions is attached to the conductive material for the anode. In the sodium-sulfur battery inserted into the hollow part of the anode container, the fiber charging rate of the outer anode conductive layer that contacts the inner peripheral surface of the anode container is increased, and the inner anode conductive layer that contacts the outer peripheral surface of the solid electrolyte tube. Also, a method is taken in which the fiber filling rate of the intermediate anode conductive layer located between the outer and inner anode conductive layers is set low.

請求項2記載のナトリウム−硫黄電池は前記第2の目的
を達成するため、請求項1記載のナトリウム−硫黄電池
において、外側陽極用導電層と中間陽極用導電層の繊維
充填率を低くし、内側陽極用導電層の繊維充填率を高く
設定するという手段をとっている。
In the sodium-sulfur battery according to claim 2, in order to achieve the second object, in the sodium-sulfur battery according to claim 1, the fiber filling rate of the outer anode conductive layer and the intermediate anode conductive layer is lowered, The method is to set the fiber filling rate of the conductive layer for the inner anode to be high.

請求項3記載のナトリウム−硫黄電池は前記第3の目的
を達成するため、請求項1記載のナトリウム−硫黄電池
において内側陽極用導電層の繊維充填率を高く設定する
という手段をとっている。
In order to achieve the third object, the sodium-sulfur battery according to the third aspect of the present invention takes a step in which the fiber filling rate of the inner anode conductive layer is set high in the sodium-sulfur battery according to the first aspect.

(作用) 請求項1記載のナトリウム−硫黄電池は、充電時に内側
陽極用導電層及び中間陽極用導電層内において陽極活物
質の硫黄液面が低下しても、外側陽極用導電層の繊維充
填率が高いため、該導電層内で陽極活物質が毛細管現象
により保持され、充電時間が経過しても陽極容器の内周
面はぼ全体が陽極活物質により浸されているため、陽極
容器の電気抵抗が増大することはなく、電池エネルギー
効率が向上する。
(Function) In the sodium-sulfur battery according to claim 1, even if the sulfur liquid level of the anode active material decreases in the inner anode conductive layer and the intermediate anode conductive layer during charging, the fiber filling of the outer anode conductive layer Due to the high rate, the anode active material is retained within the conductive layer by capillary action, and even after the charging time has elapsed, the entire inner peripheral surface of the anode container is immersed in the anode active material. Electrical resistance does not increase, and battery energy efficiency improves.

請求項2記載のナトリウム−硫黄電池は請求項1記載の
ナトリウム−硫黄電池と同様に固体電解質管の外周面が
充電時に陽極活物質により浸されるため電気抵抗が増大
するのが抑制され、電池エネルギー効率が向上する。
In the sodium-sulfur battery according to claim 2, like the sodium-sulfur battery according to claim 1, the outer peripheral surface of the solid electrolyte tube is immersed in the positive electrode active material during charging, so that an increase in electrical resistance is suppressed, and the battery Improves energy efficiency.

さらに、請求項3記載のナトリウム−硫黄電池は、請求
項1及び請求項2記載のナトリウム−硫黄電池のそれぞ
れの作用を合わせた作用を奏するので、電池エネルギー
効率がさらに向上する。
Furthermore, since the sodium-sulfur battery according to claim 3 exhibits the combined effects of the sodium-sulfur batteries according to claims 1 and 2, the battery energy efficiency is further improved.

(実施例) 次に、請求項1記載のナトリウム−硫黄電池を具体化し
た一実施例を第1図〜第3図に従って説明する。
(Example) Next, an example embodying the sodium-sulfur battery according to claim 1 will be described with reference to FIGS. 1 to 3.

この実施例のナトリウム−硫黄電池は、第2図に示すよ
うに下部に陽極端子lを備えた陽極容器2と、該陽極容
器2の内部に収容され、かつカーボン繊維あるいはセラ
ミック繊維をマット状、かつ円筒状に形成してなり陽極
活物質(硫黄)を含浸した後に詳述する陽極用導電材M
と、前記陽極容器2の上端部に対し、αアルミナ製の絶
縁リング3を介して連結され、かつ溶融金属ナトリウム
Naを貯留する陰極容器4と、前記絶縁リング3の内周
部に固着され、かつ陰極活物質士あるナトリウムイオン
を選択的に透過させる機能を有した下方へ延びる円筒状
の袋管を形成するβアルミナ製の固体電解質管5とから
なっている。又、陰極容器4の上部蓋の中央部には、該
陰極容器4を通して固体電解質管5底部まで延びた細長
い陰極管6が貫通支持され、該陰極管6の上端部には、
陰極端子7が固着されている。
As shown in FIG. 2, the sodium-sulfur battery of this embodiment includes an anode container 2 equipped with an anode terminal 1 at the bottom thereof, and a mat-shaped carbon fiber or ceramic fiber housed inside the anode container 2. A conductive material M for an anode, which is formed into a cylindrical shape and impregnated with an anode active material (sulfur), will be described in detail later.
and a cathode container 4 that is connected to the upper end of the anode container 2 via an insulating ring 3 made of α-alumina and stores molten metal sodium Na, and is fixed to the inner circumference of the insulating ring 3, The solid electrolyte tube 5 is made of β-alumina and forms a cylindrical bag tube extending downward and has a function of selectively transmitting a certain sodium ion as a cathode active material. Further, an elongated cathode tube 6 extending through the cathode container 4 to the bottom of the solid electrolyte tube 5 is supported through the center of the upper lid of the cathode container 4, and at the upper end of the cathode tube 6,
A cathode terminal 7 is fixed.

そして、放電時には次のような反応によってナトリウム
イオンが固体電解質管5を透過して陽極容器2及び固体
電解質管5で区画形成された陽極用導電材Mの収容空間
に入り、該導電材M内の溶融硫黄と反応し、多硫化ナト
リウム、特に最終的には三硫化ナトリウムを生成する。
During discharge, sodium ions pass through the solid electrolyte tube 5 through the following reaction and enter the housing space of the anode conductive material M defined by the anode container 2 and the solid electrolyte tube 5, and the inside of the conductive material M. reacts with molten sulfur to form sodium polysulfides, especially finally sodium trisulfide.

2N、a +X5−Na2 S x 又、充電時には放電時とは逆の反応が起こり、ナトリウ
ム及び硫黄が生成される。
2N, a +X5-Na2 S x Also, during charging, a reaction opposite to that during discharging occurs, and sodium and sulfur are generated.

なお、前記陰極容器4及び固体電解質管5内には、はぼ
全体にわたって該固体電解質管5が破損した場合の安全
対策として、ステンレス製のウィック8が充填されてい
る。
The cathode container 4 and the solid electrolyte tube 5 are filled with a stainless steel wick 8 as a safety measure in case the solid electrolyte tube 5 is damaged.

次に、本発明のナトリウム−硫黄電池の特徴的構成を説
明する。
Next, the characteristic structure of the sodium-sulfur battery of the present invention will be explained.

前述したようにカーボン繊維をマント状に、かつ円筒状
に形成した前記陽極用導電材Mは、陽極容器2の内周面
に接触する外側陽極用導電層Maと、固体電解質管5の
外周面に接触する内側陽極用導電層Mbと、前記外側と
内側の陽極用導電材の間に位置する中間陽極用導電Ji
 M cとの三層に形成されている。そして、この実施
例では外側陽極用導電層Maを構成するカーボン繊維の
充填率を80%以上とし、陽極活物f(硫黄)が毛細管
現象により該陽極用導電層Ma内に含浸保持されるよう
にしている。
As described above, the anode conductive material M made of carbon fiber formed into a cloak-like and cylindrical shape includes an outer anode conductive layer Ma that contacts the inner circumferential surface of the anode container 2 and an outer circumferential surface of the solid electrolyte tube 5. an inner anode conductive layer Mb in contact with the inner anode conductive layer Mb; and an intermediate anode conductive layer Ji located between the outer and inner anode conductive materials.
It is formed in three layers with Mc. In this example, the filling rate of the carbon fibers constituting the outer anode conductive layer Ma is set to 80% or more, so that the anode active material f (sulfur) is impregnated and retained in the anode conductive layer Ma by capillary action. I have to.

一方、前記内側陽極用導電層Mb及び中間陽極用導電J
iiMcの繊維充填率は、前記陽極活物質の液面Sが充
電時間の経過とともに低下し得るようにそれぞれ30%
としている。
On the other hand, the conductive layer Mb for the inner anode and the conductive layer J for the intermediate anode
The fiber filling rate of iiMc was set to 30%, respectively, so that the liquid level S of the anode active material could decrease with the passage of charging time.
It is said that

前記外側陽極用導電NMaの厚さは、例えば1 0mに
設定す杵ば充分であるが、あまり厚くすると、陽極活物
質の利用率に影響するので、望ましくない。
It is sufficient to set the thickness of the conductive NMa for the outer anode to, for example, 10 m, but making it too thick is not desirable because it will affect the utilization rate of the anode active material.

さて、この実施例では、外側陽極用導電層Maの繊維の
充填率を80%と高くしたので、電池の充電時において
第1図に示すように内側陽極用導電層Mb及び中間陽極
用導電MMC内を下方へ陽極活物質の液面Sが低下して
も外側陽極用導電層Ma内においては毛細管現象による
滲み上がり保詩作用により、第1図に鎖線で示すように
陽極容器2の内周面全体が陽極活物質に浸され、従って
、陽極容器2の通電面積を充分確保して電気抵抗の低下
を抑制し、電流の流れを円滑にして、電池エネルギー効
率が向上するのである。
In this example, since the fiber filling rate of the outer anode conductive layer Ma is as high as 80%, when the battery is charged, the inner anode conductive layer Mb and the intermediate anode conductive MMC are Even if the liquid level S of the anode active material decreases downward, the inner periphery of the anode container 2 will ooze out due to capillary action in the outer anode conductive layer Ma, as shown by the chain line in FIG. The entire surface is immersed in the anode active material, thus ensuring a sufficient current-carrying area of the anode container 2, suppressing a decrease in electrical resistance, smoothing the flow of current, and improving battery energy efficiency.

次に、請求項2記載のナトリウム−硫黄電池の一実施例
を第4図に基づいて説明する。
Next, an embodiment of the sodium-sulfur battery according to claim 2 will be described based on FIG. 4.

この実施例では内側陽極用導電iMbの繊維充填率を8
0%以上とし、外側陽極用導電1iMa及び中間陽極用
導電層Mcの繊維充填率を30%としているが、その他
の構成は前記実施例と同様である。従って、電池の充電
時において固体電解質管5の外周面全体が陽極活物質に
満たされているので、固体電解質管5の電気抵抗が増大
するのを抑制することができ、この結果、電池エネルギ
ー効率が向上する。
In this example, the fiber filling rate of the conductive iMb for the inner anode was 8.
0% or more, and the fiber filling rate of the conductive layer 1iMa for the outer anode and the conductive layer Mc for the intermediate anode is 30%, but the other configurations are the same as in the previous example. Therefore, since the entire outer peripheral surface of the solid electrolyte tube 5 is filled with the anode active material during charging of the battery, it is possible to suppress the electrical resistance of the solid electrolyte tube 5 from increasing, and as a result, the battery energy efficiency is reduced. will improve.

次に、請求項3記載のナトリウム−硫黄電池の実施例を
第5図に基づいて説明する。
Next, an embodiment of the sodium-sulfur battery according to claim 3 will be described based on FIG.

この実施例では外側陽極用導電層Ma及び内側陽極用導
電層Mbの繊維充填率を80%とし、中間陽極用導電M
MCの繊維充填率を30%としている。又、中間陽極用
導電層Mcの繊維の方向を半□径方向に指向して電子が
繊維に沿って陽極容器2の内周面側に移行し易くして、
電流の流れが円滑になるようにしているが、その他の構
成は前記実施例と同様である。
In this example, the fiber filling rate of the conductive layer Ma for the outer anode and the conductive layer Mb for the inner anode is 80%, and the conductive layer Ma for the intermediate anode is
The fiber filling rate of MC is 30%. Further, the direction of the fibers of the intermediate anode conductive layer Mc is oriented in the radial direction so that electrons can easily migrate along the fibers to the inner peripheral surface side of the anode container 2.
Although the current flow is made smooth, the other configurations are the same as those of the previous embodiment.

従って、この実施例では充電時において、陽極容器2及
び固体電解質管5の電気抵抗がともに低下するのを抑制
して電池エネルギー効率を一層向上することができる。
Therefore, in this embodiment, during charging, the electric resistance of both the anode container 2 and the solid electrolyte tube 5 can be suppressed from decreasing, and the battery energy efficiency can be further improved.

なお、本発明は次のように具体化することも可能である
Note that the present invention can also be embodied as follows.

第6図に示すように請求項1記載の実施例において、内
側陽極用導電層Mb及び中間陽極用導電層Mcの繊維の
方向を横方向に指向すること。又、図示しないが、請求
項2記載の実施例においても同様の構成をとることがで
きる。
As shown in FIG. 6, in the embodiment of claim 1, the fibers of the inner anode conductive layer Mb and the middle anode conductive layer Mc are oriented in the lateral direction. Further, although not shown in the drawings, a similar configuration can be adopted in the embodiment described in claim 2.

(発明の効果) 以上詳述したように、請求項1記載のナトリウム−硫黄
電池は、放電時において陽極容器の内周面に陽極活物質
を接触させてその電気抵抗が低下するをの抑制し、電池
エネルギー効率を向上することができる効果がある。
(Effects of the Invention) As detailed above, the sodium-sulfur battery according to claim 1 suppresses a decrease in electrical resistance by bringing the anode active material into contact with the inner peripheral surface of the anode container during discharge. , which has the effect of improving battery energy efficiency.

又、請求項2記載のナトリウム−硫黄電池は、充電時に
おいて陽極容器の内周面に陽極活物質を接触させてその
電気抵抗が低下するをの抑制し、電池エネルギー効率を
向上することができる効果がある。
Further, in the sodium-sulfur battery according to claim 2, the anode active material is brought into contact with the inner circumferential surface of the anode container during charging, suppressing a decrease in electrical resistance thereof, and improving battery energy efficiency. effective.

又、請求項3記載のナトリウム−硫黄電池は、請求項1
及び請求項2記載のナトリウム−硫黄電池よりもさらに
、電池エネルギー効率を向上することができる効果があ
る。。
Moreover, the sodium-sulfur battery according to claim 3 is the sodium-sulfur battery according to claim 1.
Moreover, there is an effect that the battery energy efficiency can be further improved than the sodium-sulfur battery according to claim 2. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のナトリウム−硫黄電池の要部の作用状
態を示す部分拡大断面図、第2図はナトリウム−硫黄電
池の中央部縦断面図、第3図は第2図のA−A線断面図
、第4図は請求項2記載のナトリウム−硫黄電池の実施
例を示す中央部縦断面図、第5図は請求項3記載のナト
リウム−硫黄電池の実施例を示す中央部縦断面図、第6
図は本発明の別の実施例を示す中央部縦断面図、第7図
は従来のナトリウム−硫黄電池の中央部縦断面図、第8
図は同じく第7図の陽極用導電材の部分拡大断面図であ
る。 2・・・陽極容器、3・・・絶縁リング、4・・・陰極
容器5・・・固体電解質管、6・・・陰極管、M・・・
陽極用導電材、Ma・・・外側陽極用導電層、Mb・・
・内側陽極用導電層、Mc・・・中間陽極用導電層、S
・・・硫黄、Na・・・ナトリウム。
FIG. 1 is a partially enlarged cross-sectional view showing the operating state of the main parts of the sodium-sulfur battery of the present invention, FIG. 2 is a vertical cross-sectional view of the central part of the sodium-sulfur battery, and FIG. 3 is A-A in FIG. 2. A line sectional view, FIG. 4 is a central longitudinal sectional view showing an embodiment of the sodium-sulfur battery according to claim 2, and FIG. 5 is a central longitudinal sectional view showing an embodiment of the sodium-sulfur battery according to claim 3. Figure, 6th
The figures are a vertical cross-sectional view of the central part showing another embodiment of the present invention, FIG. 7 is a vertical cross-sectional view of the central part of a conventional sodium-sulfur battery, and FIG.
The figure is also a partially enlarged sectional view of the conductive material for an anode shown in FIG. 7. 2... Anode container, 3... Insulating ring, 4... Cathode container 5... Solid electrolyte tube, 6... Cathode tube, M...
Conductive material for anode, Ma... Conductive layer for outer anode, Mb...
・Conductive layer for inner anode, Mc...conductive layer for intermediate anode, S
...Sulfur, Na...Sodium.

Claims (1)

【特許請求の範囲】 1、カーボン繊維あるいはセラミック繊維等の導電性繊
維を集合してなり、かつ陽極活物質の硫黄を含浸する筒
状の陽極用導電材(M)を収納する筒状の陽極容器(2
)に対し、絶縁リング(3)を介して、溶融金属ナトリ
ウム(Na)を貯留する陰極容器(4)を設け、前記陽
極容器(2)の内部には、基端を前記絶縁リング(3)
の内周部に嵌合して前記陰極容器(4)内部と連通し、
かつナトリウムイオンを選択的に透過させる機能を有し
た有底筒状の固体電解質管(5)を前記陽極用導電材(
M)の中空部に挿入したナトリウム−硫黄電池において
、 前記陽極容器(2)の内周面に接触する外側陽極用導電
層(Ma)の繊維充填率を高くし、前記固体電解質管(
5)の外周面に接触する内側陽極用導電層(Mb)及び
前記外側及び内側の陽極用導電層(Ma、Mb)の中間
に位置する中間陽極用導電層(Mc)の繊維充填率を低
く設定したことを特徴とするナトリウム−硫黄電池。 2、請求項1記載のナトリウム−硫黄電池において、外
側陽極用導電層(Ma)と中間陽極用導電層(Mb)の
繊維充填率を低くし、内側陽極用導電層(Mc)の繊維
充填率を高く設定したことを特徴とするナトリウム−硫
黄電池。 3、請求項1記載のナトリウム−硫黄電池において、内
側陽極用導電層(Mb)の繊維充填率を高く設定したこ
とを特徴とするナトリウム−硫黄電池。
[Claims] 1. A cylindrical anode containing a cylindrical anode conductive material (M) made of a collection of conductive fibers such as carbon fibers or ceramic fibers and impregnated with sulfur as an anode active material. Container (2
) is provided with a cathode container (4) for storing molten metal sodium (Na) via an insulating ring (3), and inside the anode container (2), the proximal end is connected to the insulating ring (3).
fits into the inner circumference of the cathode container (4) and communicates with the inside of the cathode container (4);
A bottomed cylindrical solid electrolyte tube (5) having a function of selectively permeating sodium ions is connected to the anode conductive material (
In the sodium-sulfur battery inserted into the hollow part of M), the fiber filling rate of the outer anode conductive layer (Ma) in contact with the inner peripheral surface of the anode container (2) is increased, and the solid electrolyte tube (M) is
5) The fiber filling rate of the inner anode conductive layer (Mb) in contact with the outer circumferential surface of the inner anode conductive layer (Mb) and the intermediate anode conductive layer (Mc) located between the outer and inner anode conductive layers (Ma, Mb) is lowered. A sodium-sulfur battery characterized by the following: 2. In the sodium-sulfur battery according to claim 1, the fiber filling rate of the outer anode conductive layer (Ma) and the intermediate anode conductive layer (Mb) is lowered, and the fiber filling rate of the inner anode conductive layer (Mc) is lowered. A sodium-sulfur battery characterized by having a high value. 3. The sodium-sulfur battery according to claim 1, wherein the inner anode conductive layer (Mb) has a high fiber filling rate.
JP63080524A 1988-03-31 1988-03-31 Sodium-sulfur battery Expired - Lifetime JP2612894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080524A JP2612894B2 (en) 1988-03-31 1988-03-31 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080524A JP2612894B2 (en) 1988-03-31 1988-03-31 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH01253172A true JPH01253172A (en) 1989-10-09
JP2612894B2 JP2612894B2 (en) 1997-05-21

Family

ID=13720706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080524A Expired - Lifetime JP2612894B2 (en) 1988-03-31 1988-03-31 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2612894B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110880A (en) * 1984-06-27 1986-01-18 Hitachi Ltd Sodium-sulfur battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110880A (en) * 1984-06-27 1986-01-18 Hitachi Ltd Sodium-sulfur battery

Also Published As

Publication number Publication date
JP2612894B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US3811943A (en) Mass transportation electrode for energy conversion device
US3915741A (en) Sodium-sulfur cell with improved separator
KR100250163B1 (en) Lead battery
US3972727A (en) Rechargeable battery which combats shape change of the zinc anode
US4357398A (en) Electrochemical cell having cylindrical electrode elements
US3377201A (en) Spiral battery cell
CN209843832U (en) Liquid metal battery
CN109841910B (en) Liquid metal battery
US4076902A (en) Sodium-sulfur storage battery
US4492742A (en) Electrochemical storage cell
JPH0345868B2 (en)
US4137375A (en) Button type electric cells
EP0213828B1 (en) Sodium-sulphur storage battery
JPH01253172A (en) Sodium-sulfur battery
JP2568622B2 (en) Sodium-sulfur battery
JP2612888B2 (en) Sodium-sulfur battery
JP2614262B2 (en) Sodium-sulfur battery
JP2526285Y2 (en) Sodium-sulfur battery
JP2635989B2 (en) Sodium-sulfur battery
JPS6160549B2 (en)
JP2667551B2 (en) Method for forming high resistance layer used in sodium-sulfur battery
JPH01235168A (en) Sodium-sulfur battery and manufacture thereof
JPH01253170A (en) Sodium-surfur battery
JPH05266921A (en) Sodium-sulfur battery
JPS6226768A (en) Sodium-sulfur battery