JPH01252901A - Electrostatic field preventing filter - Google Patents

Electrostatic field preventing filter

Info

Publication number
JPH01252901A
JPH01252901A JP63080127A JP8012788A JPH01252901A JP H01252901 A JPH01252901 A JP H01252901A JP 63080127 A JP63080127 A JP 63080127A JP 8012788 A JP8012788 A JP 8012788A JP H01252901 A JPH01252901 A JP H01252901A
Authority
JP
Japan
Prior art keywords
layer
refractive index
film
filter
electrostatic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63080127A
Other languages
Japanese (ja)
Other versions
JPH07109442B2 (en
Inventor
Yuchi Nakajima
中島 右智
Kazuhiko Inoue
和彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP63080127A priority Critical patent/JPH07109442B2/en
Publication of JPH01252901A publication Critical patent/JPH01252901A/en
Publication of JPH07109442B2 publication Critical patent/JPH07109442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain the title filter with excellent electrostatic field preventing function and easy to manufacture by including a dielectric film layer having the resisting value of 10<5>-10<13>OMEGA/sq. in a multi-layer antireflection film. CONSTITUTION:The resisting value >=10<5>OMEGA/sq. of the dielectric film layer is sufficient for attaining only the electrostatic field preventing function, and when the value exceeds 10<13>OMEGA/sq., the function is not recognized. The substance of the dielectric film layer with the electrostatic field preventing function as mentioned above and the excellent film thickness controlling property and uniform distribution etc. at the time of forming the film is exemplified by TiO2, Ta2O5 or Al2O3, etc. The preferable film formation of the filter is constituted of a middle refractive index layer as 1st layers 1a, 1b and a high refractive index layer composed of TiO2, etc. as 2nd layers 2a, 2b and a low refractive index layer as 3rd layers 3a, 3b, in case of the antireflection film being constituted of 3 layers. When the filter is mounted on a CRT, etc., an electron is led to the dielectric film layer through a grounding, whereby a negative potential generates, and a positive potential at the front of the CRT, etc. disappears. As the result that the potential is zero, the electrostatic field prevention can be attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は静電界防止フィルターに関する。本発明の静電
界防止フィルターは、コンピュータ端末機、ワードプロ
セッサ等に使用されるCRTデイスプレィ等のフィルタ
ーとして好ましく使用される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrostatic field prevention filter. The electrostatic field prevention filter of the present invention is preferably used as a filter for CRT displays used in computer terminals, word processors, etc.

[従来の技術及びその問題点] 近年のコンピュータ等の普及に伴い、CRTデイスプレ
ィ等を長時間使用することが多くなってきている。
[Prior Art and Problems Therewith] With the spread of computers and the like in recent years, CRT displays and the like are increasingly being used for long periods of time.

CRTデイスプレィ等の長時間使用による障害として、
先ず眼II疲労が挙げられる。眼精疲労は、CRTデイ
スプレィ等の表面の反射による外光、CRTデイスプレ
ィ等の画面のちらつき等によって起こる。これらの防止
のためにニュートラルデンジデイガラス基板(透過率3
0%〜70%)等のガラス基板に反射防止膜を設けたフ
ィルターをCRTデイスプレィ等の前面に装着すること
が行なわれ、効果を上げている。
As a result of long-term use of CRT displays, etc.,
First, eye strain can be mentioned. Eye strain is caused by external light reflected from the surface of a CRT display or the like, flickering of the screen of a CRT display, or the like. To prevent these, a neutral-density glass substrate (transmittance 3) is used.
A filter having an anti-reflection coating on a glass substrate (such as 0% to 70%) has been mounted on the front surface of a CRT display, etc., and has been effective.

CRTデイスプレィ等の長時間使用による他の障害とし
て、従来、電磁波によるオペレーターの皮膚や角膜等へ
の障害が問題とされてきた。そこで、その対策として、
従来、基板上に単独、あるいは多層反射防止膜の一部の
層として、ITO(酸化インジウム/酸化スズ)、酸化
スズといった抵抗値が103Ω/□以下の低抵抗値の導
電膜を形成し、この導電膜からアースを取り出すことに
より、電磁波の除去が行なわれている。
Another problem caused by long-term use of CRT displays and the like is damage to the operator's skin, cornea, etc. caused by electromagnetic waves. Therefore, as a countermeasure,
Conventionally, a conductive film with a low resistance value of 103Ω/□ or less, such as ITO (indium oxide/tin oxide) or tin oxide, is formed on a substrate alone or as part of a multilayer antireflection film. Electromagnetic waves are removed by taking out the ground from the conductive film.

上記のI To1酸化スズ等からなる導電膜は、電磁波
の防止には非常に有効であるが、その屈折率が基板の屈
折率よりも非常に高く、例えば屈折率が最も小さい導電
膜であるITOの場合でも屈折率は1.9で、この膜の
反射率は15%になり、基板にITO躾のみをコートし
た場合、フィルターとしては使用不可能である。
The conductive film made of the above-mentioned ITo1 tin oxide is very effective in preventing electromagnetic waves, but its refractive index is much higher than that of the substrate.For example, ITO, which is a conductive film with the lowest refractive index, Even in this case, the refractive index is 1.9 and the reflectance of this film is 15%, so if the substrate is coated with only ITO, it cannot be used as a filter.

またITOや酸化スズ等の導電膜を多層反射防止膜の一
部の層として真空蒸着法によりコートした場合、以下の
ような問題点がある。
Further, when a conductive film such as ITO or tin oxide is coated as a part of a multilayer antireflection film by vacuum evaporation, the following problems arise.

■ これらのII導電膜光学膜〃の精度の良いコントロ
ールが難しく、反射防止膜の特性に悪影響を与える。
■ It is difficult to precisely control these II conductive films and optical films, which adversely affects the properties of the antireflection film.

■ これらのS電膜を大面積基板へ均一にコートするこ
とが難しい。
■ It is difficult to uniformly coat a large area substrate with these S dielectric films.

■ これらのS電膜はS電性の安定性に不安があり、特
に水分に対する特性劣化が指摘されている。
(2) There are concerns about the stability of the S conductivity of these S conductive films, and it has been pointed out that the characteristics deteriorate in particular with respect to moisture.

■ 導電膜物質がITO,ItC化スズ等に限られてい
るため、膜構成の設計の自由度が小さい。
(2) Since the conductive film material is limited to ITO, ItC tin, etc., there is little freedom in designing the film structure.

■ これらのS電膜は屈折率のコントロールが難しい。■ It is difficult to control the refractive index of these S dielectric films.

従って反射防止膜として製作上及び性能上難点をもつI
TOや酸化スズ等の導電膜を設【プた従来のフィルター
の代りに、上記難点のない新規フィルターの開発が望ま
れていた。
Therefore, I as an anti-reflection film has difficulties in production and performance.
It has been desired to develop a new filter that does not have the above-mentioned drawbacks in place of conventional filters equipped with conductive films such as TO or tin oxide.

[問題点を解決するための手段] 最近の労を方衛生研究によれば、CRTデイスプレィ等
による人体の皮膚や角膜等への障害は、前記の電磁波に
よるよりも静電界によりもたらされることが明らかにな
りつつある。
[Means for solving the problem] According to recent research on human health, it is clear that damage to the human skin, cornea, etc. caused by CRT displays, etc. is caused by electrostatic fields rather than by the electromagnetic waves mentioned above. It is becoming.

そこで、本発明者は、静電界を防止し得る物質を探索し
た結果、前記の反射防止膜として難点をもつ抵抗値が1
03Ω/□以下のII電設の代りに、反射防1)膜とし
て前記難点をもたない抵抗値が10〜1013Ω/□の
範囲にある誘電体膜を設けた場合に、静電界を防止でき
ることを見い出した。
Therefore, as a result of searching for a material that can prevent the electrostatic field, the present inventor found that the resistance value, which has the disadvantage of being used as an anti-reflection film, is 1.
It has been shown that static electric fields can be prevented when a dielectric film with a resistance value in the range of 10 to 1013 Ω/□, which does not have the above-mentioned drawbacks, is provided as an anti-reflection 1) film instead of a II electrical installation with a resistance of 03 Ω/□ or less. I found it.

従って本発明は、基根上に多層反射防止膜を形成したア
ース付きフィルターにおいて、前記多層反射防止膜が1
0〜1013Ω/□の抵抗値を有する、少なくとも1層
mの誘電体膜層を含むことを特徴とする静電界防止フィ
ルターにある。
Therefore, the present invention provides a grounded filter in which a multilayer antireflection film is formed on the base, in which the multilayer antireflection film is
The present invention provides an electrostatic field prevention filter comprising at least one m dielectric film layer having a resistance value of 0 to 1013 Ω/□.

本発明の静電界防止フィルターの静電界防止のメカニズ
ムを述べると以下の通りである。すなわち、CRTデイ
スプレィ等の前面に印加されているプラスの高電圧によ
り静電界は発生するが、該静電界に誘引されて、CRT
デイスプレィ等の前に装着されたフィルター上の抵抗値
が105〜1013Ω/□の誘電体膜層にアースを通じ
て電子が聯かれ、マイナスの電位が生じ、結果としてC
RTデイスプレィ等の前面のプラスの電位が打ち消され
ゼロ電位となって静電界防止が達成される。
The mechanism of electrostatic field prevention of the electrostatic field prevention filter of the present invention will be described as follows. In other words, an electrostatic field is generated by a high positive voltage applied to the front surface of a CRT display, etc., and the CRT is attracted by the electrostatic field.
Electrons are connected through the ground to a dielectric film layer with a resistance value of 105 to 1013 Ω/□ on a filter installed in front of a display, etc., creating a negative potential, resulting in C
The positive potential on the front surface of the RT display, etc. is canceled and becomes zero potential, achieving prevention of static electric fields.

本発明において、前記少なくとも1層の誘電体膜層は、
その抵抗値が10〜1013Ω/□に限定される。その
理由は、静電界防止のみを達成するためには、後述の実
施例1〜5によっても明らかなように、105Ω/□以
上の抵抗値であれば良く、また1013Ω/□を超える
と、後述の比較例によっても明らかなように、静電界防
止効果が認められなくなるからである。
In the present invention, the at least one dielectric film layer is
Its resistance value is limited to 10 to 1013 Ω/□. The reason for this is that in order to only prevent static electric fields, a resistance value of 105Ω/□ or more is sufficient, as will be clear from Examples 1 to 5 below, and if it exceeds 1013Ω/□, This is because, as is clear from the comparative example, the electrostatic field preventing effect is no longer recognized.

本発明のフィルターにおいて静電界防止機能を有し、か
つ多層反射防止膜作成時に膜厚コントロール性、分布の
均−性等にすぐれた誘電体膜層の物質としては、T t
 O、T a2 o5. A I 203及びこれらを
1種以上含む混合物等が使用でき、これらの物質を使用
することにより、従来、ITO,l化スズ等の導電膜を
使用した場合に課題であった膜厚コントロール、膜構成
の設計の自由度、膜物質の耐久性等の大幅な改良が可能
となった。
In the filter of the present invention, the material for the dielectric film layer that has an electrostatic field prevention function and has excellent film thickness controllability, uniformity of distribution, etc. when producing a multilayer antireflection film is T t.
O, T a2 o5. A I 203 and mixtures containing one or more of these substances can be used, and by using these substances, it is possible to solve problems such as film thickness control and film thickness control, which were conventional problems when using conductive films such as ITO and tin chloride. It has become possible to significantly improve the degree of freedom in the design of the structure and the durability of the membrane material.

多層反射防止膜を有する本発明の静電界防止フィルター
の好ましい層構成を示すと以下の通りである。
The preferred layer structure of the electrostatic field prevention filter of the present invention having a multilayer antireflection film is as follows.

(1)  多層反射防止膜が2層からなる場合は、基板
から外側に向かって第1層が高屈折率層、第2層が低屈
折率層である。
(1) When the multilayer antireflection film consists of two layers, the first layer is a high refractive index layer and the second layer is a low refractive index layer from the substrate toward the outside.

12)  多層反射防止膜が3層からなる場合は、第1
層が中間屈折率層、第2層が高屈折率層、第3層が低屈
折率層であり、第3層(低屈折率層)の屈折率は基板の
屈折率より低い。
12) When the multilayer antireflection coating consists of three layers, the first
The layer is an intermediate refractive index layer, the second layer is a high refractive index layer, and the third layer is a low refractive index layer, and the refractive index of the third layer (low refractive index layer) is lower than the refractive index of the substrate.

(3)  多層反射防止膜が4層からなる場合は、第1
層が低屈折率層、第2@が中間屈折率層、第3層が高屈
折率層、第4層が低屈折率層であり、この場合も第1層
及び第4層(低屈折率層)の屈折率。
(3) When the multilayer antireflection coating consists of four layers, the first
The layer is a low refractive index layer, the second layer is an intermediate refractive index layer, the third layer is a high refractive index layer, and the fourth layer is a low refractive index layer. refractive index of layer).

は基板の屈折率より低い。is lower than the refractive index of the substrate.

そして上記の反射防止膜の層構成において、その少なく
とも1層は、10〜1013Ω/□の抵抗値を有する上
で例示したような物質からなる誘電体膜層により構成さ
れている。
In the above-mentioned layer structure of the anti-reflection film, at least one layer thereof is constituted by a dielectric film layer made of a substance as exemplified above and having a resistance value of 10 to 10 13 Ω/□.

なお、成膜手段としては、真空蓋9法、溶液法、スパッ
タ法等が採用される。
Note that as a film forming method, a vacuum lid method, a solution method, a sputtering method, etc. are employed.

本発明のフィルターにおいて、基板としては、ソーダラ
イムガラス、ニュートラルデンシティガラス等のガラス
基板やアクリル樹脂等のプラスブック基板が用いられる
。特にニュートラルデンシティガラスに反射防止膜を設
けたものは、眼精疲労を防止する能力に特に優れている
In the filter of the present invention, a glass substrate such as soda lime glass or neutral density glass, or a plus book substrate such as acrylic resin is used as the substrate. In particular, neutral density glass provided with an antireflection film is particularly effective in preventing eye strain.

またアースは上記の抵抗値10〜1013Ω/□の誘電
体膜層から取ることが望ましいが、該誘電体膜層の上に
設けられた上層が例えば光学g!厚でλ/4の如く薄い
場合は当該上層からアースを取ることも可能である。こ
れは上層が絶縁体でも薄く、且つ高電界がかかる場合に
は通電可能なためである。
Further, it is preferable that the ground is connected to the dielectric film layer having a resistance value of 10 to 1013 Ω/□, but the upper layer provided on the dielectric film layer is, for example, an optical g! If the thickness is as thin as λ/4, it is also possible to connect the ground from the upper layer. This is because even though the upper layer is an insulator, it is thin and can conduct electricity when a high electric field is applied.

[実施例] 以下、本発明の詳細な説明するが、本発明はこれらの実
施例に限定されるものではない。
[Examples] The present invention will be described in detail below, but the present invention is not limited to these Examples.

実施例1 先ず、第1図に示したような層構成を有する本実施例の
静電界防止フィルターの製造例を説明する。
Example 1 First, an example of manufacturing an electrostatic field prevention filter of this example having a layer structure as shown in FIG. 1 will be described.

屈折率1.53の市販のソーダライムガラス基板4の表
裏両面に、3層の反射防止膜1a、Ib;2a、2b;
及び3a、3bを真空蒸暑法により下記の条件で形成し
た。
A three-layer antireflection film 1a, Ib; 2a, 2b;
and 3a and 3b were formed by a vacuum steaming method under the following conditions.

すなわち、ガラス基板4の表面に、フッ化セリウムを、
真空蒸着嘗の真空度を2 X 10 ’Torr(酸素
導入なし)にして真空蒸着することにより、光学膜厚(
nd)が130nmであるフッ化セリウムからなる第1
の層〈中間屈折率層)1aを先ず形成させた。
That is, cerium fluoride is applied to the surface of the glass substrate 4.
The optical film thickness (
The first layer is made of cerium fluoride and has a wavelength of 130 nm (nd) of 130 nm.
A layer (intermediate refractive index layer) 1a was first formed.

次に、真空度を1 X 10 ’Torr (酸素導入
)にして真空蒸着することにより、光学膜厚(Od)が
260rvである酸化チタンからなる第2の層(高屈折
率層)2aを形成させた。この第2の層の抵抗値は3X
105Ω/□であった。
Next, a second layer (high refractive index layer) 2a made of titanium oxide with an optical thickness (Od) of 260 rv is formed by vacuum evaporation at a vacuum degree of 1 x 10' Torr (oxygen introduced). I let it happen. The resistance value of this second layer is 3X
It was 105Ω/□.

さらに、真空度をI X 10−4Torr (酸素導
入)にして真空蒸着することにより、光学膜厚(nd)
が1’30nmである二酸化珪素からなる第3の層(低
屈折率層)3aを形成させた。
Furthermore, by vacuum evaporation with the degree of vacuum set to I x 10-4 Torr (oxygen introduced), the optical film thickness (nd)
A third layer (low refractive index layer) 3a made of silicon dioxide having a thickness of 1'30 nm was formed.

次に、ガラス基板4の裏面に、上と同様にして、第1の
層(中間屈折率層)1bX第2の1(高屈折率)2b、
第3の層(低屈折率層)3bを形成させた。これらの1
ilb、2b、3bでは、蒸着物質、光学膜厚等を上記
の層1a、2a、3aとそれぞれ同一とした。
Next, on the back side of the glass substrate 4, in the same manner as above, a first layer (intermediate refractive index layer) 1bX a second layer (high refractive index layer) 2b,
A third layer (low refractive index layer) 3b was formed. 1 of these
For ilb, 2b, and 3b, the vapor deposition material, optical film thickness, etc. were the same as those of the above layers 1a, 2a, and 3a, respectively.

その後、第2の層2aからアース5を取り、本実施例の
静電界防止フィルターを得た。
Thereafter, the ground 5 was removed from the second layer 2a to obtain the electrostatic field prevention filter of this example.

次に本実施例のフィルターの静電防止能力を次のように
して測定した。すなわち、コンピュータ(日本電気製P
C−980/VX41 ) に接続されたCRTデイス
プレィ(日本電気製PC−KD853)の前面60mの
位置に静電界測定器(シシド静電気(株)スタチロンー
M)を設置し、CRTデイスプレィの@源を入れた結果
、静電圧は15KVであった。次にCRTデイスプレィ
と測定器の間で、測定器から30amの位置にアースを
取った本実施例のフィルターを設置して同様のテストを
行なった。その結果を第2図に示す。
Next, the antistatic ability of the filter of this example was measured as follows. In other words, a computer (NEC P
An electrostatic field measuring device (Stachiron-M, Shishido Electrostatic Co., Ltd.) was installed 60 m in front of the CRT display (NEC PC-KD853) connected to the C-980/VX41), and the power source of the CRT display was turned on. As a result, the static voltage was 15KV. Next, a similar test was conducted by installing the filter of this example, which was grounded at a distance of 30 am from the measuring device, between the CRT display and the measuring device. The results are shown in FIG.

第2図によれば、本実施例のフィルターを用いると、約
30秒で静電圧はOとなり、静電防止能力は非常に優れ
たものであった。
According to FIG. 2, when the filter of this example was used, the static voltage became O in about 30 seconds, and the antistatic ability was very excellent.

実施例2 実施例1で用いたと同一のソーダライムガラス基板にデ
ィッピング法(液浸塗布法)により、3層反射防止膜を
形成した。
Example 2 A three-layer antireflection film was formed on the same soda lime glass substrate used in Example 1 by a dipping method (immersion coating method).

(1)  低屈折率コート剤の作製 テトラエトキシシラン20.8g(0,1101)とエ
タノール90g(1,96io1 )の混合液を室温下
で攪拌しながら、水5.4g(0,3mol)、0.1
N塩酸2g、エタノール90g(1,96101)を滴
下した。次に室温にて4時間攪拌して反応させ、12時
間放置して熟成させた。これを目開きが0.5μlのフ
ィルターにて濾過して低屈折率コート剤とした。
(1) Preparation of low refractive index coating agent While stirring a mixed solution of 20.8 g (0,1101) of tetraethoxysilane and 90 g (1,96 io1) of ethanol at room temperature, 5.4 g (0.3 mol) of water, 0.1
2 g of N hydrochloric acid and 90 g (1,96101) of ethanol were added dropwise. Next, the mixture was stirred at room temperature for 4 hours to react, and left to mature for 12 hours. This was filtered through a filter with an opening of 0.5 μl to obtain a low refractive index coating agent.

(2)  高屈折率コート剤の作成 テトライソプロポキシチタン2(1(0,0671ol
)とエタノール70g(1,2mol )の混合液を室
温下で攪拌しながら水2g(0,11sol)、o、1
N塩M1g、エタノール709(1,2101)を滴下
した。次に室温にて4時間攪拌して反応させ、12時間
放置して熟成させた。
(2) Creation of high refractive index coating agent Tetraisopropoxy titanium 2 (1 (0,0671 ol
) and 70 g (1.2 mol) of ethanol were stirred at room temperature while adding 2 g (0.11 sol) of water, o, 1
1 g of N salt M and ethanol 709 (1,2101) were added dropwise. Next, the mixture was stirred at room temperature for 4 hours to react, and left to mature for 12 hours.

これを目開き0.5μlのフィルターにて濾過して高屈
折率コート剤とした。
This was filtered through a filter with an opening of 0.5 μl to obtain a high refractive index coating agent.

(3)  中間屈折率コート剤の作成 テトラエトキシシランのテトラマー6.6g(0,00
9mol ) 、テトライソプロポキシチタン8.5g
(0,03sol )とエタノール90g(1,96s
ol )の混合液を室温下で攪拌しながら水2g(0,
11101)、011N塩酸1g、エタノール90g(
1,96sol )を滴下した。
(3) Preparation of intermediate refractive index coating agent 6.6 g of tetramer of tetraethoxysilane (0.00
9 mol), tetraisopropoxy titanium 8.5 g
(0,03sol) and ethanol 90g (1,96s
ol) was stirred at room temperature while adding 2 g of water (0,
11101), 1g of 011N hydrochloric acid, 90g of ethanol (
1,96 sol) was added dropwise.

次にV温にて4時間攪拌して反応させ、12時間放置し
て熟成させた。これを目開き0.5μlのフィルターに
て濾過して中間屈折率コート剤とした。
Next, the mixture was stirred at V temperature for 4 hours to react, and left to mature for 12 hours. This was filtered through a filter with an opening of 0.5 μl to obtain an intermediate refractive index coating agent.

(4)3層反射防止膜の形成 基板を超呂波洗浄器にて洗浄、乾燥した後、先ず、上記
(3)で作成した中間屈折率コート剤を使用して45 
cm/ 1nの速度でデイツプコーティングを行なった
。これを200℃で10分間乾燥して中間屈折率層用塗
膜を形成した。同様にして上記(2)で作成した高屈折
率コート剤、上記(1)で作成した低屈折率コート剤を
それぞれ2Qcm/1n 、 12cm/sinの速度
でデイツプコーティングして、高屈折率層用塗膜、低屈
折率層用塗膜を形成した後、500℃にて60分焼成し
た。
(4) Formation of 3-layer anti-reflection film After cleaning and drying the substrate with a super wave cleaner, first coat the intermediate refractive index coating agent prepared in (3) above with 45%
Dip coating was carried out at a speed of cm/1n. This was dried at 200° C. for 10 minutes to form a coating film for an intermediate refractive index layer. Similarly, the high refractive index coating agent prepared in the above (2) and the low refractive index coating agent prepared in the above (1) were dip coated at a speed of 2Qcm/1n and 12cm/sin, respectively, to form a high refractive index layer. After forming the coating film for the coating and the coating film for the low refractive index layer, they were baked at 500° C. for 60 minutes.

焼成後に得られた3層反射防止膜の第1の層である中間
屈折率層は、二酸化珪素と酸化チタンとの混合物からな
る光学膜厚(nd) 120nmの膜であり、第2の層
である高屈折率層は酸化チタンからなる光学膜厚(nd
) 240nm1抵抗値2×1012Ω/□の膜であり
、第3の層である低屈折率層は二酸化珪素からなる光学
膜厚(nd)120nmの躾であった。
The intermediate refractive index layer, which is the first layer of the three-layer antireflection film obtained after firing, is a film with an optical thickness (nd) of 120 nm made of a mixture of silicon dioxide and titanium oxide, and the second layer is a film with an optical thickness (nd) of 120 nm. A certain high refractive index layer has an optical thickness (nd
) It was a film of 240 nm and a resistance value of 2×10 12 Ω/□, and the third layer, a low refractive index layer, was made of silicon dioxide and had an optical thickness (nd) of 120 nm.

次に第2の層からアースを取り、本実施例のフィルター
を得た。
Next, the second layer was grounded to obtain the filter of this example.

肖られた本実施例のフィルターの静電界防止能力を実施
例1と同様にして測定した。その結果、第2図に示すよ
うに、実施例1とほぼ同様の静電界防止効果が認められ
た。
The electrostatic field prevention ability of the filter of this example was measured in the same manner as in Example 1. As a result, as shown in FIG. 2, almost the same electrostatic field prevention effect as in Example 1 was observed.

実施例3 実施例1と同様に真空蒸着法により、ソーダライムガラ
ス基板の表裏両面に4層反射防止膜を形成した。 各層
の成膜条件及び成膜後の各層の光学膜厚(nd)の値を
示すと以下の通りである。
Example 3 Similarly to Example 1, a four-layer antireflection film was formed on both the front and back surfaces of a soda lime glass substrate by vacuum evaporation. The film-forming conditions for each layer and the optical thickness (nd) of each layer after film-forming are shown below.

第1の層(低屈折率層) 蒸着物質    フッ化マグネシウム 蒸着時の真空度 2 X 10 ’Torr (酸素導
入なし) 光学膜厚(nd)  130nm 第2の層(中間屈折率層) 蒸着物質    酸化アルミニウム 蒸着時の真9度 I X 10−’Torr (酸素導
入)光学膜厚(nd)  130nm 抵抗値     5X10”07口 第3のM(高屈折率層) 蒸着物質    酸化ジルコニウム 真空度     1 x 10 ’Torr (酸素導
入)光学膜厚(nd)  26Or+n+ 第4の層(低屈折率層) 蒸着物質    フッ化マグネシウム 真空度     2 X 10’Torr (M素導入
なし) 光学膜fj (nd)  130nm 次に上記の第2の層からアースを取り、本実施例のフィ
ルターを得た。
First layer (low refractive index layer) Vapor deposition material Vacuum degree during magnesium fluoride vapor deposition 2 X 10' Torr (no oxygen introduced) Optical film thickness (nd) 130 nm Second layer (intermediate refractive index layer) Vapor deposition material Oxidation True 9 degrees during aluminum evaporation I Torr (Oxygen introduced) Optical film thickness (nd) 26Or+n+ Fourth layer (low refractive index layer) Vapor deposition material Magnesium fluoride Vacuum degree 2 X 10'Torr (No M element introduced) Optical film fj (nd) 130 nm Next, the above The filter of this example was obtained by connecting the ground to the second layer of the filter.

得られた本実施例のフィルターも第2図に示すように実
施例1のフィルターと同等の静電界防止効果を有してい
た。
The obtained filter of this example also had the same electrostatic field prevention effect as the filter of Example 1, as shown in FIG.

実施例4 実施例1と同様に真空蒸着法を用いて、ソーダライムガ
ラス基板の表裏両面上に2層反射防止膜を形成した。
Example 4 As in Example 1, a two-layer antireflection film was formed on both the front and back surfaces of a soda lime glass substrate using the vacuum evaporation method.

各層の成膜条例及び成膜後の各層の光学膜厚(nd)の
値を示すと以下の通りである。
The film formation regulations for each layer and the optical film thickness (nd) value of each layer after film formation are shown below.

第1の層(高屈折率層) 蒸着物質    酸化タンタル 真空度     I X 10−’rorr (B素導
入)光学膜厚(nd)  260層m 抵抗値     1X1013Ω/□ 第2の層(低屈折率層) 蒸着物質    フッ化マグネシウム 真空a      2 X 10−”Torr (M素
導入なし) 光学膜厚(nd)  130層ll1 次に第1の腑からアースを取り、本実施例のフィルター
を得た。
First layer (high refractive index layer) Vapor deposition material Tantalum oxide Vacuum degree I ) Vapor deposition material Magnesium fluoride vacuum a 2 X 10-'' Torr (no introduction of M element) Optical film thickness (nd) 130 layers 11 Next, earthing was taken from the first cap to obtain the filter of this example.

得られた本実施例のフィルターも第2図に示すように実
流例1のフィルターと同等の静電界防止効果を有してい
た。
As shown in FIG. 2, the obtained filter of this example also had the same electrostatic field prevention effect as the filter of actual flow example 1.

実施例5 実施例1と同様に真空蒸着法により、ソーダライムガラ
ス基板の表裏両面に3層反射防止膜を形成した。
Example 5 As in Example 1, a three-layer antireflection film was formed on both the front and back surfaces of a soda lime glass substrate by vacuum evaporation.

各層の成膜条材及び成膜後の各層の光学膜厚(ncl)
の値を示すと以下の通りである。
Film forming strip material for each layer and optical film thickness (ncl) of each layer after film formation
The values of are shown below.

第1の層(中間屈折率B) 蒸着物質    フッ化セリウム 真9度     2 X 10−5Torr (酸素導
入なし) 光学膜厚(nd)  130nlll 第2の層(高屈折率層) 蒸着物質    酸化チタンと酸化ジルコニウムの混合
物 真空度     I X 10’Torr (11素導
入)光学膜厚(nd)  260層m 抵抗値     3X108Ω/□ 第3のIII(低屈折率層) 蒸着物質    フッ化マグネシウム 真空r!12 X 10−5Torr (lil素導入
なし) 光学膜厚(nd)  13Qnm 次に第2の巽からアースを取り、本実施例のフィルター
を得た。。
First layer (intermediate refractive index B) Vapor deposition material Cerium fluoride true 9 degrees 2 X 10-5 Torr (no oxygen introduced) Optical film thickness (nd) 130 nllll Second layer (high refractive index layer) Vapor deposition material Titanium oxide Zirconium oxide mixture Vacuum level I 12.times.10.sup.-5 Torr (no lil element introduced) Optical film thickness (nd) 13 Qnm Next, grounding was taken from the second Tatsumi to obtain the filter of this example. .

得られた本実施例のフィルターも第2図に示すように実
施例1のフィルターと同等の静電界防止効果を有してい
た。
The obtained filter of this example also had the same electrostatic field prevention effect as the filter of Example 1, as shown in FIG.

比較例 第1層、第2層及び第3層とも本発明で規定された十限
を超える抵抗値を有する物質の蒸着膜を用いた以外は、
実施例1と同様に真空蒸着法により、ソーダライムガラ
ス基板の表裏両面に3層反射防止膜を形成した。各層の
成膜条材及び成膜後の光学膜厚(nd)の値を示すと以
下の通りである。
Comparative Example Except that the first, second, and third layers were each made of a vapor-deposited film of a substance having a resistance value exceeding the tenth limit specified in the present invention.
As in Example 1, a three-layer antireflection film was formed on both the front and back surfaces of a soda lime glass substrate by vacuum evaporation. The values of the film-forming strip material of each layer and the optical film thickness (nd) after film-forming are as follows.

第1の層(中間屈折率層〉 蒸着物質    フッ化セリウム 真空度     2 X 10 ””Torr (酸素
導入なし) 光学11U厚(nd)  130層m 第2の層(高屈折率層) 蒸着物質    酸化ジルコニウム 真空度     I X 10−’Torr (酸素導
入〉光学膜厚(nd)  260層m 第3の層(低屈折率層) 蒸着物質    フッ化マグネシウム 真空度     2 X 10−5Torr (酸素導
入なし) 光学膜厚(nd)  130層m 次に上記の第2層からアースを取り、本比較例のフィル
ターを得た。
First layer (intermediate refractive index layer) Vapor deposition material Cerium fluoride Vacuum degree 2 X 10 ”” Torr (no oxygen introduced) Optical 11U thickness (nd) 130 layer m Second layer (high refractive index layer) Vapor deposition material Oxidation Zirconium vacuum degree I X 10-' Torr (oxygen introduced) Optical film thickness (nd) 260 layer m Third layer (low refractive index layer) Vapor deposition material Magnesium fluoride Vacuum degree 2 X 10-5 Torr (no oxygen introduced) Optical Film thickness (nd): 130 layers m Next, the second layer was grounded to obtain a filter of this comparative example.

得られた本比較例のフィルターは、第2図に示寸ように
、フィルターなしに比べ若干の静電圧低重は認められる
が、実施例1〜5のフィルターと異なり、静電圧減衰効
果は認められなかった。
As shown in Figure 2, the obtained filter of this comparative example has a slightly lower static voltage than the filter without a filter, but unlike the filters of Examples 1 to 5, no static voltage damping effect was observed. I couldn't.

[発明の効果] 基板上に設けられた多層反射防止膜の少なくとも1lF
3が10〜1013Ω/□の抵抗値を有する誘電体膜層
からなる本発明の静電界防止フィルターは静電界防止機
能においてすぐれている。
[Effect of the invention] At least 1lF of the multilayer antireflection film provided on the substrate
The electrostatic field prevention filter of the present invention, which is composed of a dielectric film layer having a resistance value of 10 to 1013 Ω/□, has an excellent static electric field prevention function.

また上記抵抗値を有する誘電体111層を多種の誘電体
物質から選択することができ、膜厚のコントロール、膜
設針の自由度、膜物質の耐久性等の改良が可能である。
Further, the dielectric 111 layer having the above-mentioned resistance value can be selected from a variety of dielectric materials, and it is possible to control the film thickness, improve the degree of freedom in film installation, and improve the durability of the film material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の静電界防止フィルターの層構成を示
す概略図、第2図は実施例1〜5の静電界防止フィルタ
ーの静電界防止機能を示すグラフである。 1a、1b・・・第1の層(中間屈折率層)2a、2b
・・・第2の層(高屈折率層)3a、3b・・・第3の
層(低屈折率層)4・・・ソーダライムガラス基板 5・・・アース
FIG. 1 is a schematic diagram showing the layer structure of the electrostatic field prevention filter of Example 1, and FIG. 2 is a graph showing the electrostatic field prevention function of the electrostatic field prevention filters of Examples 1 to 5. 1a, 1b...first layer (intermediate refractive index layer) 2a, 2b
...Second layer (high refractive index layer) 3a, 3b...Third layer (low refractive index layer) 4...Soda lime glass substrate 5...Ground

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に多層反射防止膜を形成したアース付きフィ
ルターにおいて、前記多層反射防止膜が10^5〜10
^1^3Ω/□の抵抗値を有する、少なくとも1層の誘
電体膜層を含むことを特徴とする静電界防止フィルター
1. In a grounded filter in which a multilayer antireflection film is formed on a substrate, the multilayer antireflection film has a thickness of 10^5 to 10
An electrostatic field prevention filter comprising at least one dielectric film layer having a resistance value of ^1^3Ω/□.
JP63080127A 1988-03-31 1988-03-31 Electrostatic field prevention filter Expired - Lifetime JPH07109442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080127A JPH07109442B2 (en) 1988-03-31 1988-03-31 Electrostatic field prevention filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080127A JPH07109442B2 (en) 1988-03-31 1988-03-31 Electrostatic field prevention filter

Publications (2)

Publication Number Publication Date
JPH01252901A true JPH01252901A (en) 1989-10-09
JPH07109442B2 JPH07109442B2 (en) 1995-11-22

Family

ID=13709552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080127A Expired - Lifetime JPH07109442B2 (en) 1988-03-31 1988-03-31 Electrostatic field prevention filter

Country Status (1)

Country Link
JP (1) JPH07109442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634802A (en) * 1992-07-20 1994-02-10 Fuji Photo Optical Co Ltd Conductive antireflection film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070478A (en) * 1973-10-24 1975-06-11
JPS61158426U (en) * 1985-03-23 1986-10-01
JPS6270801A (en) * 1985-09-24 1987-04-01 Mitsubishi Shindo Kk Filter for crt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070478A (en) * 1973-10-24 1975-06-11
JPS61158426U (en) * 1985-03-23 1986-10-01
JPS6270801A (en) * 1985-09-24 1987-04-01 Mitsubishi Shindo Kk Filter for crt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634802A (en) * 1992-07-20 1994-02-10 Fuji Photo Optical Co Ltd Conductive antireflection film

Also Published As

Publication number Publication date
JPH07109442B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
US5728456A (en) Methods and apparatus for providing an absorbing, broad band, low brightness, antireflection coating
US4747674A (en) Contrast enhancement filter
JP3464785B2 (en) Improved anti-reflective composites
JPH03504900A (en) transparent conductive coating
EP0913712A1 (en) Multilayer electrically conductive anti-reflective coating
JPS63228101A (en) Antistatic non-reflection plate having stain resistance
JPH0656478A (en) Composite functional material
JPH01252901A (en) Electrostatic field preventing filter
JPH04504388A (en) Transparent conductive coating
JPH0634801A (en) Conductive antireflection film
JP3713774B2 (en) Transparent electromagnetic shielding board
JPH05266828A (en) Conductive film, low reflection conductive film and manufacture thereof
JP4242664B2 (en) Antireflection film
JPH07296672A (en) Touch panel
JPH1148387A (en) Transparent conductive film
JPH10282307A (en) Antireflection film
JPH0756004A (en) Conductive antireflection film
JP3915202B2 (en) Conductive antireflection film and method for producing the same
JPH0455379Y2 (en)
JPH05190091A (en) Conductive film and low-reflection conductive film and its manufacture
US7771848B2 (en) Extreme low resistivity light attenuation anti-reflection coating structure and method for manufacturing the same
RU2685887C1 (en) Anti-glare screen based on silicate glass, antiglare and anti-reflective electric heating coating for it
JPH0373335A (en) Transparent electrically conductive glass
JP2677281B2 (en) Picture tube and picture tube reflection and antistatic treatment method
JP3292338B2 (en) Panel for cathode ray tube