JPH01252349A - Device of bringing lens into constant pressure contact with grinding stone of ball sliding machine - Google Patents

Device of bringing lens into constant pressure contact with grinding stone of ball sliding machine

Info

Publication number
JPH01252349A
JPH01252349A JP6483588A JP6483588A JPH01252349A JP H01252349 A JPH01252349 A JP H01252349A JP 6483588 A JP6483588 A JP 6483588A JP 6483588 A JP6483588 A JP 6483588A JP H01252349 A JPH01252349 A JP H01252349A
Authority
JP
Japan
Prior art keywords
lens
carriage
contact
carriage body
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6483588A
Other languages
Japanese (ja)
Other versions
JPH0796185B2 (en
Inventor
Nobuhiro Isokawa
磯川 宣廣
Yoshiyuki Hatano
義行 波田野
Shinji Uno
宇野 伸二
Takahiro Watanabe
孝浩 渡辺
Yasuo Suzuki
泰雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP6483588A priority Critical patent/JPH0796185B2/en
Priority to EP19890400760 priority patent/EP0333598B1/en
Priority to DE1989607757 priority patent/DE68907757T2/en
Publication of JPH01252349A publication Critical patent/JPH01252349A/en
Publication of JPH0796185B2 publication Critical patent/JPH0796185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/148Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms electrically, e.g. numerically, controlled

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To maintain a contact force at a normally specified value, by providing a control means which specifies a difference between a rotational lowering moment by the weight of a carriage body determined from the inclination angle of the carriage body when a coarse grinding lens is brought into contact with a V-grinding stone and a rotational lowering preventing moment by a spring. CONSTITUTION:A radius vector is which a coarse polishing lens L between lens shafts 8 and 9 is brought into contact with a V-grinding stone 4 according to the shaft rotation angles of the lens shafts 8 and 9 is determined by a CPU (control means). The inclination angle of a carriage body 7 when the coarse grinding lens L is brought into contact with the V-grinding stone 4 in the radius vector position is computed by a CPU. From the inclination angle, a rotational lowering moment by the weight of the carriage body 7, exerted on the contact part therebetween, is computed by the CPU. A contact pressure regulating means is driven by the CPU so that a difference between the rotational lowering moment and a rotational lowering preventing moment by a spring is adjusted to a specified value. This constitution maintains a contact force of the lens L with the V-grinding stone 4 at a specified value even when the radius vector of a contact position is changed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば、揺動自在なキャリッジ本体のレン
ズ軸間に保持させた粗研削レンズのヤゲン加工前に、前
記粗研削レンズのコバ端のヤゲン砥石のV溝に対する位
置すなわち座標を動径の大小に応じて求めるに用いる玉
摺機砥石へのレンズ定圧当接装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides, for example, a method for processing a rough-ground lens held between the lens axes of a swingable carriage body before beveling the edge end of the rough-ground lens. This invention relates to a constant pressure contact device for a lens to a bevel grinding wheel used to determine the position or coordinates of the bevel grinding wheel relative to the V-groove depending on the size of the vector radius.

(従来の技術) 従来の玉摺機には第8図に示した様なものがある。この
玉摺機では、本体Iの前部内に設けた回転駆動軸2には
粗研削砥石3及びヤゲン砥石4が隣接固定されている。
(Prior Art) There is a conventional beading machine as shown in Fig. 8. In this beading machine, a rough grinding wheel 3 and a bevel grinding wheel 4 are fixed adjacent to a rotary drive shaft 2 provided in the front part of a main body I.

また、本体lの後部に設けた支持部5には回転駆動軸2
と平行な支持軸6が回転自在且つ軸線方向に移動可能に
保持され、この支持軸6にはキャリッジ7の後端部が固
定されている。
In addition, a rotary drive shaft 2 is provided on the support portion 5 provided at the rear of the main body l.
A support shaft 6 parallel to this is held rotatably and movably in the axial direction, and a rear end portion of a carriage 7 is fixed to this support shaft 6.

しかも、支持軸6と平行に且つ同軸上に配置した一対の
レンズ軸8,9がキャリッジ7の前端部に回転自在に保
持されている。このレンズ軸9はレンズ軸8に対して進
退調整可能に設けられていて、このレンズ軸9の締付操
作で生地レンズLをレンズ軸8.9間に固定している。
Furthermore, a pair of lens shafts 8 and 9 arranged coaxially and parallel to the support shaft 6 are rotatably held at the front end of the carriage 7. This lens shaft 9 is provided so as to be adjustable forward and backward with respect to the lens shaft 8, and by tightening the lens shaft 9, the fabric lens L is fixed between the lens shafts 8 and 9.

この様なレンズ軸8,9はキャリッジ7内のレンズ軸回
転用のパルスモータ 10で同期回転駆動可能に設けら
れている。また、レンズ軸8の端部には型板11が着脱
可能に取り付けられている。
Such lens shafts 8 and 9 are provided so as to be driven for synchronous rotation by a pulse motor 10 for rotating the lens shafts within the carriage 7. Further, a template 11 is detachably attached to the end of the lens shaft 8.

また、図示しないフレームに支持された横移動量のパル
スモータ12を正又は逆に回転駆動すると、送りネジ1
3が回転駆動させられて、ガイド軸14に支持されたア
ーム板15がレンズ軸8,9及び支持軸6の延びる方向
に進退動する。このアーム板15には支持軸6の端部が
回転自在に保持されていて、キャリッジ7はパルスモー
タ12の作動によりアーム板15を介して支持軸6の軸
線方向に進退駆動される。また、このアーム板15には
、聖堂16が昇降可能に保持されていると共に、聖堂1
6を昇降駆動させるパルスモータ17が取り付けられて
いる。この聖堂16は聖堂本体16aの上部に当接片1
6bを一端部を中心に上下に所定範囲回動する様に取り
付けたもので、当接片16bは上方にバネ付勢されてい
る。
Further, when the pulse motor 12 for lateral movement supported by a frame (not shown) is rotated in the forward or reverse direction, the feed screw 1
3 is rotationally driven, and the arm plate 15 supported by the guide shaft 14 moves forward and backward in the direction in which the lens shafts 8 and 9 and the support shaft 6 extend. The arm plate 15 rotatably holds the end of the support shaft 6, and the carriage 7 is driven forward and backward in the axial direction of the support shaft 6 via the arm plate 15 by the operation of the pulse motor 12. Further, a church 16 is held on this arm plate 15 so as to be movable up and down, and a church 16 is held in a movable manner.
A pulse motor 17 is attached to drive the motor 6 up and down. This church 16 has a contact piece 1 on the top of the church body 16a.
6b is attached so as to rotate up and down within a predetermined range around one end, and the contact piece 16b is biased upward by a spring.

この様な玉摺機を用いて、生地レンズLを加工する場合
、聖堂16上に型板11を当接させた状態でレンズ軸8
,9を回転させると共に、粗研削砥石3を回転駆動させ
て、聖堂を16を降下させると、生地レンズLが粗研削
砥石3により型板11の形状に粗研削される。この粗研
削された生地レンズLは、回転中心から周面までの動径
P、が周方向の各点で異なると同時に両面が第9図の如
く三次元的な曲面であるため1周縁部のコバ縁がレンズ
軸8,9の軸方向に変化している。このためこの様な粗
研削されたレンズLの周縁部にヤゲン加工をする場合に
は、各動径/’Lに応じてキャリッジ7の横移動量を制
御しないと、レンズLの周縁部に理想的なりゲン加工を
施すことができない。
When processing a fabric lens L using such a beading machine, the lens shaft 8 is
. This rough-ground material lens L has a radius P from the rotation center to the circumferential surface that differs at each point in the circumferential direction, and both surfaces are three-dimensional curved surfaces as shown in FIG. The edges change in the axial direction of the lens shafts 8 and 9. Therefore, when beveling the peripheral edge of a lens L that has been roughly ground, it is necessary to control the amount of lateral movement of the carriage 7 according to each vector radius /'L. It is not possible to apply a natural finish.

従って、この点を満足させるために、第9図に示した様
に、粗研削されたレンズLをヤゲン砥石4のV溝18上
に移動させた後、聖堂16の上下駆動によりレンズ軸8
,9を所定高さから所定量降下させる動作と、キャリッ
ジ7の横移動とを繰り返し行わせて、レンズLのコバ端
L7tLbがV溝18の傾斜面18a、18bに当接す
るY方向(レンズ軸8,9の軸方向)の座標及びコバ厚
を予め数箇所の動径ア、毎に測定して、各動径ア(に対
応するヤゲン加工時の横移動量を決定する様にしたもの
が考えられている。
Therefore, in order to satisfy this point, as shown in FIG.
. The axial direction of 8 and 9) and the edge thickness are measured in advance for each radius vector A, and the amount of lateral movement during bevel machining corresponding to each radius vector A is determined. It is considered.

尚、この具体的構成は、出願人が先に出願した特開昭6
2−335672号のものと同じである。
Note that this specific configuration is based on the Japanese Patent Application Laid-open No. 6, which the applicant previously filed.
It is the same as that of No. 2-335672.

(発明が解決しようとする課題) この様な測定に際して、レンズLの測定位置を周方向に
変えていくと、これに対応して動径ア。
(Problem to be Solved by the Invention) When performing such measurements, when the measurement position of the lens L is changed in the circumferential direction, the radius vector a correspondingly changes.

も変化するため、レンズLのコバ端り、、Lbの傾斜面
18a、18bへの当接位置を周方向に変えると、この
ときのキャリッジ7の傾斜角θも変化する。
Since the angle of inclination θ of the carriage 7 also changes, if the contact position of the edge end of the lens L, Lb, to the inclined surfaces 18a, 18b is changed in the circumferential direction, the inclination angle θ of the carriage 7 at this time also changes.

しかし、レンズLのコバ端り、、Lbの傾斜面18a、
18bへの当接力はキャリッジ7の重量による回動モー
メントを利用しているため、キャリッジ7の傾斜角0が
変化すると、レンズLのコバ端り、、Lbの傾斜面18
a、18bへの当接力が大きくなるために、レンズLの
コバ端り、、Lbの傾斜面18a、18bへの当接力が
一定とならないものであった。この様な当接力は、レン
ズLのコバ端り、、Lbの傾斜面18a、18bへの当
接位置が周方向に移動させられて、当接点における動径
ア、が変化しても、レンズ研削加工圧により十分小さく
常に一定になるのが、より精確な8:す定を行う上で望
ましい。
However, the edge end of the lens L, the inclined surface 18a of Lb,
Since the contact force to 18b uses the rotational moment due to the weight of the carriage 7, when the tilt angle 0 of the carriage 7 changes, the edge end of the lens L, the inclined surface 18 of Lb
Since the abutting force on the lenses a and 18b becomes large, the abutting force on the sloping surfaces 18a and 18b of the edges of the lens L and Lb is not constant. Such a contact force can be applied even if the contact position of the edge end of the lens Lb and the inclined surfaces 18a and 18b of the lens Lb is moved in the circumferential direction, and the radius vector a at the contact point changes. It is desirable for the grinding pressure to be sufficiently small and always constant in order to perform more accurate 8:s determination.

そこで、この発明は、この要望を満たす玉摺機砥石への
レンズ定圧当接装置を提供することを目的とするもので
ある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a device for bringing a lens into constant pressure contact with a grindstone for a grinding machine, which satisfies this demand.

(課題を解決するための手段) この目的を達成するため、この発明は1本体の前部に回
転駆動可能に装着されたヤゲン砥石と、市記ヤゲン砥石
の回転軸と平行な方向に進退駆動可能に前記本体に装着
され且つ支持部が設けられているキャリッジベースと、 後端部近傍の部分が前記支持部に前記回転軸と平行な支
持軸を介して枢着され且つ前記支軸より前部側に重心が
あるキャリッジ本体と、前記回転軸と平行な方向に同軸
上で相対接近・離反調整可能に且つ軸回り方向に回転駆
動可能に前記キャリッジ本体に設けられた一対のレンズ
軸と、 前記キャリッジ本体の後端部と前記キャリッジベースと
のいずれか一方に一端部が装着された弾性部材と、 前記キャリッジ本体の後端部と前記キャリッジベースの
いずれか他方と前記弾性部材の他端部との間に介装され
た当接力調整手段と、 前記レンズ軸の軸回動角に対応して前記レンズ軸間の粗
研削レンズが前記ヤゲン砥石に当接する動径を求めて、
この動径位置で前記粗研削レンズがヤゲン砥石に当接す
るときのキャリッジ本体の傾斜角度を演算し、該傾斜角
度から前記当接部に作用する前記キャリッジ本体の重量
による回動降下モーメントを演算して、該回動降下モー
メントと前記スプリングによる回動降下阻止モーメント
との差が一定となる様に前記当接力調整手段を駆動制御
する制御手段と、 を備える玉摺機砥石へのレンズ定圧当接装置としたこと
を特徴とするものである。
(Means for Solving the Problems) In order to achieve this object, the present invention includes a bevel grinding wheel rotatably mounted on the front part of a main body, and a bevel grinding wheel that is driven forward and backward in a direction parallel to the rotation axis of the beveling grindstone. a carriage base that is attachable to the main body and is provided with a support portion; a portion near the rear end is pivotally connected to the support portion via a support shaft parallel to the rotation axis; a carriage body having a center of gravity on the side thereof; a pair of lens shafts provided on the carriage body so as to be able to adjust relative approach and separation coaxially in a direction parallel to the rotation axis and rotatably drive in a direction around the axis; an elastic member having one end attached to one of the rear end of the carriage body and the carriage base; and the other end of the elastic member to the rear end of the carriage body, the other of the carriage base, and the other end of the elastic member. and a contact force adjusting means interposed between the lens shafts, and determining a radius vector at which the rough grinding lens between the lens shafts contacts the beveling grindstone in accordance with the rotation angle of the lens shafts,
Calculate the inclination angle of the carriage body when the rough grinding lens contacts the beveling grindstone at this radial position, and calculate the rotational descent moment due to the weight of the carriage body acting on the contact portion from the inclination angle. a control means for driving and controlling the contact force adjusting means so that the difference between the rotational descent moment and the rotational descent prevention moment by the spring is constant; It is characterized in that it is a device.

(作 用) この様な構成によれば、[レンズ軸の軸回動角に対応し
てレンズ軸間の粗研削レンズがヤゲン砥石に当接する動
径が求められ、この動径位置で前記粗研削レンズがヤゲ
ン砥石に当接するときのキャリッジ本体の傾斜角度が演
算され、この傾斜角度から前記当接部に作用する前記キ
ャリッジ本体の重量による回動降下モーメントが演算さ
れて。
(Function) According to such a configuration, [corresponding to the axial rotation angle of the lens shaft, the radius vector at which the rough grinding lens between the lens axes comes into contact with the bevel grinding wheel is determined, and at this radius vector position, the rough grinding The angle of inclination of the carriage body when the grinding lens contacts the beveling grindstone is calculated, and from this angle of inclination, the rotational downward moment due to the weight of the carriage body acting on the contact portion is calculated.

この回動降下モーメントと弾性部材による回動降下阻止
モーメントとの差が一定となる様に」制御手段が当接力
調整手段を駆動する。これにより、当接位置の動径が変
化しても、レンズのヤゲン砥石への当接力が一定となる
The control means drives the contact force adjusting means so that the difference between this rotational descent moment and the rotational descent prevention moment by the elastic member becomes constant. Thereby, even if the radius vector of the contact position changes, the contact force of the lens against the beveling grindstone remains constant.

(実施例) 以下、この発明の実施例を第1図〜第7図に基づいて説
明する。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 to 7.

第1図は、この発明に係る砥石へのレンズ定圧当接装置
を備える玉摺機の斜視図で、第8図に示した部分と同−
若しくは類似の部分には同一の符号を付して、その説明
は省略する。また、レンズコバ位置の測定は、出願人が
先に出願した特開昭62−335672号のものと同じ
様にして行われる。
FIG. 1 is a perspective view of a polishing machine equipped with a constant pressure contact device for a lens to a grindstone according to the present invention, and is the same as the part shown in FIG. 8.
Otherwise, similar parts will be given the same reference numerals and their explanation will be omitted. Further, the lens edge position is measured in the same manner as in Japanese Patent Laid-Open No. 62-335672, which was previously filed by the applicant.

従って、以下、これらと相違する点について詳述する。Therefore, the points that are different from these will be explained in detail below.

本体1の後部にはヤゲン砥石4の回転駆動軸2(回転軸
)と平行な方向に延びるガイド軸19が図示しない位置
で取り付けられ、このガイド軸19にはキャリッジベー
ス20が長手方向に進退動可能に保持されている。この
キャリッジベース20は、アーム板15に連結されてい
て、パルスモータ12によりガイド軸19の軸線方向に
アーム板15と一体に進退駆動される様になっている。
A guide shaft 19 extending in a direction parallel to the rotary drive shaft 2 (rotary shaft) of the bevel grinding wheel 4 is attached to the rear part of the main body 1 at a position not shown, and a carriage base 20 is attached to this guide shaft 19 to move forward and backward in the longitudinal direction. Possibly held. The carriage base 20 is connected to the arm plate 15 and is driven forward and backward in the axial direction of the guide shaft 19 by a pulse motor 12 together with the arm plate 15.

このキャリッジベース20の移動方向両端部には上方に
突出する支持部21゜21が設けられ、この支持部21
.21の上端部にはキャリッジ本体すなわちキャリッジ
7の後端部7a 、 7a近傍の部分が同軸上に配置さ
れた支持軸22.22により上下回動自在に保持されて
いる。尚、キャリッジ7の重心Gは支持軸22より前方
に位置している。
Support portions 21° 21 projecting upward are provided at both ends of the carriage base 20 in the moving direction.
.. At the upper end portion of the carriage body 21, the rear end portions 7a and 7a of the carriage 7 are supported by support shafts 22 and 22 arranged coaxially so as to be movable up and down. Note that the center of gravity G of the carriage 7 is located forward of the support shaft 22.

聖堂16の型骨本体16aと当接片16bとの間には聖
堂センサーSが介装されている。この聖堂センサーSに
は特開昭62−335672号の聖堂に設けたものと同
じ検出器が同じように用いられているので、その詳細な
説明は省略する。
A temple sensor S is interposed between the mold bone body 16a of the temple 16 and the contact piece 16b. Since this cathedral sensor S uses the same detector as that provided in the cathedral of Japanese Patent Application Laid-open No. 62-335672, a detailed explanation thereof will be omitted.

キャリッジ7の後端部7aには当接力調整手段23が装
着されている。この当接力調整手段23は、後端部7a
に取り付けられたパルスモータ24と、このパルスモー
タ24に連動する減速装置f24aと、この減速装置2
4aに連動する回転軸24bと、この回転軸24bに装
着された円形のタイミングプレート25及びスプリング
取付用のレバー26と、後端部7aに取り付けられたマ
イクロスイッチ27を有する。このタイミングプレート
25にはV字状の切欠25aが形成され、このタイミン
グプレート25の局面にはマイクロスイッチ27のアク
チュエータレバー27aの先端のローラ27bが当接し
ている。 そして、ローラ27aが切欠25aに係合す
ると、マイクロスイッチ26はOFFする様になってい
る。
A contact force adjusting means 23 is attached to the rear end 7a of the carriage 7. This contact force adjusting means 23 has a rear end portion 7a.
The pulse motor 24 attached to the
4a, a circular timing plate 25 and a spring attachment lever 26 attached to the rotation shaft 24b, and a microswitch 27 attached to the rear end 7a. A V-shaped notch 25a is formed in the timing plate 25, and a roller 27b at the tip of an actuator lever 27a of the microswitch 27 is in contact with the curved surface of the timing plate 25. When the roller 27a engages with the notch 25a, the microswitch 26 is turned off.

また、レバー26の下端部とキャリッジペース20との
間には、スプリング28が介装されている。
Further, a spring 28 is interposed between the lower end of the lever 26 and the carriage pace 20.

更に、当接力調整手段23は、演算回路(制御手段)と
してのCPU29(中央演算処理装置)により駆動制御
可能に設けられている。このCPU29には、マイクロ
スイッチ26からの出力、聖堂センサーSからの信号が
入力される。また、 CPLI29は、 タイマ30を
介してパルスモータ24の回転時間を制御する。
Further, the contact force adjusting means 23 is provided so as to be drive controllable by a CPU 29 (central processing unit) serving as an arithmetic circuit (control means). The output from the microswitch 26 and the signal from the church sensor S are input to the CPU 29. Further, the CPLI 29 controls the rotation time of the pulse motor 24 via the timer 30.

この様なCPU29は、レンズLの粗研削加工時おける
パルスモータ10の駆動制御パルス信号からレンズ軸8
,9の回動角を演算して記憶する。
Such a CPU 29 controls the lens axis 8 from the drive control pulse signal of the pulse motor 10 during rough grinding of the lens L.
, 9 are calculated and stored.

また、CPU29は、荒研削されたレンズLのコバ端の
位置座標を測定する際に、粗研削レンズLのヤゲン砥石
4に当接する動径ア、をレンズ軸8,9の軸回動角に対
応して求めると共に、この動径位置で粗研削レンズLが
ヤゲン砥石4に当接するときのキャリッジ7の傾斜角度
θを求められた動径p5と既知のキャリッジアーム長か
ら演算する。しかも、CPU29は、この演算結果を基
にタイマ30の動作時間及びパルスモータへの通電方向
を決定して、このタイマ30によりパルスモータへの通
電時間及び通電方向を制御する。この際のCPU29に
よる通電時間及び通電方向の制御は、ローラ27bが切
欠25aに係合してマイクロメスイッチ27がOFF 
L、でいる状態の位置から開始されると共に、キャリッ
ジ7の傾斜角度0から当接部に作用するキャリッジ7の
重量による回動降下モーメントと、この回動降下モーメ
ントとスプリング28による回動降下阻止モーメントと
の差が一定となる様に行われる。
In addition, when measuring the positional coordinates of the edge end of the roughly ground lens L, the CPU 29 adjusts the radius vector A of the roughly ground lens L that comes into contact with the beveling grindstone 4 to the axial rotation angle of the lens shafts 8 and 9. In addition, the inclination angle θ of the carriage 7 when the rough grinding lens L contacts the beveling grindstone 4 at this radius vector position is calculated from the determined radius vector p5 and the known carriage arm length. Moreover, the CPU 29 determines the operating time of the timer 30 and the direction of energization to the pulse motor based on the calculation result, and uses the timer 30 to control the energization time and the direction of energization to the pulse motor. At this time, the CPU 29 controls the energization time and the energization direction by turning the micromechanical switch 27 OFF when the roller 27b engages with the notch 25a.
The rotational descent moment due to the weight of the carriage 7 that starts from the position of L, and acts on the contact portion from the inclination angle of the carriage 7 to 0, and this rotational descent moment and the rotational descent prevention by the spring 28. This is done so that the difference from the moment remains constant.

この関係の一例を、キャリッジ7の回動中心を0、キャ
リッジ7の重心をG、回動中心Oからレンズ軸の軸、a
O,までの長さをA、回動中心Oから重心Gまでの長さ
をC1回動中中心からスプリングのバネ力が作用する点
fまでの長さを8゜とすると共に、点fに作用するバネ
力をF。とし、重心Gにおける重量をGい重量G0によ
る回動降下モーメントによりレンズのヤゲン砥石への当
接点E及び軸lv!Oユに作用する回動降下モーメント
をvoとして、第5図〜第7図により説明する。
An example of this relationship is as follows: the center of rotation of the carriage 7 is 0, the center of gravity of the carriage 7 is G, and the axis of the lens axis from the center of rotation O is a.
The length from the rotation center O to the center of gravity G is C1, and the length from the rotation center to the point f where the spring force acts is 8 degrees, and at the point f. The acting spring force is F. Let the weight at the center of gravity G be G. Due to the rotational descending moment due to the weight G0, the contact point E of the lens with the beveling grindstone and the axis lv! This will be explained with reference to FIGS. 5 to 7, assuming that the rotational lowering moment acting on the O-yu is vo.

第5図は、キャリッジ7が水平となって、その傾斜角が
ゼロの場合を示したものである。この場合のレンズ加工
動径をア。とすると、A−110,C−G、 、 B・
Foの関係は、 A−11,+ C−Go = Da −F。
FIG. 5 shows a case where the carriage 7 is horizontal and its inclination angle is zero. In this case, the lens machining radius is a. Then, A-110, C-G, , B・
The relationship of Fo is A-11,+C-Go=Da-F.

となる。becomes.

このときは、レバーが下方に向けて鉛直となる状態にパ
ルスモータが制御される。
At this time, the pulse motor is controlled so that the lever is vertically directed downward.

また、第6図は、加工動径ア、がpoより大きいア、と
なった場合を示したものである。この場合には、回動中
心Oからスプリングのバネ力が作用する点fユまでの長
さを[31とすると共に、点f、に作用するバネ力をF
、とすると、その力関係はA−W、cosO+C−Go
cosθ〉”a’F+cosθA・す。cosO+Cl
G11cosO=B1・F1cosθ ′(B、 <8
. ) なる様にする。従って、この場合には、レバーが回動中
心0から離反する側に回動させられる。
Further, FIG. 6 shows a case where the machining radius a is larger than po. In this case, the length from the rotation center O to the point f where the spring force of the spring acts is [31, and the spring force that acts on the point f is F.
, then the power relationship is A-W, cosO+C-Go
cosθ〉”a'F+cosθA・su.cosO+Cl
G11cosO=B1・F1cosθ′(B, <8
.. ) Make it happen. Therefore, in this case, the lever is rotated away from the rotation center 0.

更に、第7図は、加工動径ア、がア。より小さいア2と
なった場合を示したものである。この場合には、回動中
心Oからスプリングのバネ力が作用する点f2までの長
さを82とすると共に、点f2に作用するバネ力をF2
とすると、その力関係はA−vOCO5O+C−GOC
O8θ<Bo−F2CO8OAHw。cosO+C番G
、cos O=8.命F、cos O′(B11> 8
2 ) なる様にする。従って、この場合には、レバーが回動中
心Oに接近する側に回動させられる。
Furthermore, Fig. 7 shows machining radius a and g. This shows the case where A2 is smaller. In this case, the length from the rotation center O to the point f2 on which the spring force of the spring acts is 82, and the spring force acting on the point f2 is F2.
Then, the power relationship is A-vOCO5O+C-GOC
O8θ<Bo−F2CO8OAHw. cosO+C number G
, cos O=8. Life F, cos O' (B11 > 8
2) Make it happen. Therefore, in this case, the lever is rotated toward the rotation center O.

尚、キャリッジの傾斜角を演算で求める代わりに、第1
図に破線で示す様に傾斜角検出用のロータリエンコータ
IIFを取り付けてもよい。
Note that instead of calculating the inclination angle of the carriage, the first
A rotary encoder IIF for detecting the inclination angle may be attached as shown by the broken line in the figure.

また、スプリング28のバネ力のキャリッジ7への作用
点を回動するレバー26で行うようにしたが、必ずしも
此れに限定されるものではない。例えば、バネ取付部材
をキャリッジ7の後端部7aにキャリッジ7の前端部に
対して進退自在に装着して、このバネ取付部材にスプリ
ング28の上端部を保持させると共に、このバネ取付部
材をパルスモータやシリンダ等でキャリッジ7の前端部
に対して進退駆動制御させるようにしてもよい。
Further, although the spring force of the spring 28 is applied to the carriage 7 by the rotating lever 26, the present invention is not necessarily limited to this. For example, a spring mounting member is attached to the rear end 7a of the carriage 7 so as to be able to move forward and backward with respect to the front end of the carriage 7, and this spring mounting member holds the upper end of the spring 28, and the spring mounting member is The forward and backward movement of the front end of the carriage 7 may be controlled by a motor, cylinder, or the like.

(発明の効果) この発明は、以上説明したように、本体の前部に回転駆
動可能に装着されたヤゲン砥石と、前記ヤゲン砥石の回
転軸と平行な方向に進退駆動可能に前記本体に装着され
且つ支持部が設けられているキャリッジベースと、後端
部近傍の部分が前記支持部に前記回転軸と平行な支持軸
を介して枢着され且つ前記支軸より前部側に重心がある
キャリッジ本体と、前記回転軸と平行な方向に同軸上で
相対接近・離反調整可能に且つ軸回り方向に回転駆動可
能に前記キャリッジ本体に設けられた一対のレンズ軸と
、前記キャリッジ本体の後端部と前記キャリッジベース
とのいずれか一方に一端部が装着された弾性部材と、前
記キャリッジ本体の後端部と前記キャリッジベースのい
ずれか他方と前記弾性部材の他端部との間に介装された
当接力調整手段と、前記レンズ軸の軸回動角に対応して
前記レンズ軸間の粗研削レンズが前記ヤゲン砥石に当接
する動径を求めて、この動径位置で前記粗研削レンズが
ヤゲン砥石に当接するときのキャリッジ本体の傾斜角度
を演算し、該傾斜角度から前記当接部に作用する前記キ
ャリッジ本体の重量による回動降下モーメントを演算し
て、該回動降下モーメントと前記弾性部材による回動降
下阻止モーメントとの差が一定となる様に前記当接力調
整手段を駆動制御する制御手段とを設けた構成としたの
で、荒研削されたレンズのコバ端がヤゲン砥石に当接す
る際の当接力を、レンズのコバ端のヤゲン砥石への当接
位置が周方向に移動させられて、当接点における動径が
変化しても、レンズ研削時の加工圧より十分小さく常に
一定にできることになる。また、この制御は、レンズコ
バを当接測定させるときのみでなく、レンズ研削加工の
加工圧調整にも利用することもできる。
(Effects of the Invention) As explained above, the present invention includes a bevel grinding wheel rotatably mounted on the front part of a main body, and a bevel grinding wheel mounted on the main body so as to be movable forward and backward in a direction parallel to the rotation axis of the beveling grindstone. and a carriage base having a support portion, a portion near the rear end being pivotally connected to the support portion via a support shaft parallel to the rotation axis, and having a center of gravity on the front side of the support shaft. a carriage body, a pair of lens shafts provided on the carriage body so as to be able to adjust relative approach and separation coaxially in a direction parallel to the rotation axis and rotatably drive in a direction around the axis; and a rear end of the carriage body. an elastic member having one end attached to one of the carriage base and the carriage base; and an elastic member interposed between the rear end of the carriage body, the other of the carriage base, and the other end of the elastic member. Determine the radius vector at which the rough grinding lens between the lens axes comes into contact with the beveling grindstone in accordance with the contact force adjustment means and the rotation angle of the lens axis, and adjust the rough grinding lens at this radius vector position. Calculate the inclination angle of the carriage body when it contacts the beveling grindstone, calculate the rotational descent moment due to the weight of the carriage body acting on the abutment part from the inclination angle, and calculate the rotational descent moment and the Since the structure is provided with a control means for driving and controlling the contact force adjusting means so that the difference with the moment for preventing rotation and descent by the elastic member is constant, the edge end of the roughly ground lens is not in contact with the beveling grindstone. The contact force during contact is always kept sufficiently smaller than the processing pressure during lens grinding, even if the contact position of the edge of the lens to the bevel grindstone is moved in the circumferential direction and the radius at the contact point changes. This means that you can do it. Further, this control can be used not only when contacting and measuring the lens edge, but also for adjusting the processing pressure for lens grinding.

また、本発明の代わりに、バネの長さを変えることによ
り、キャリッジの回動阻止モーメントをちょうせいする
方式も考えられるが、その方式ではバネ定数の大きなバ
ネを利用し、且つ、バネの長さを変化するための大トル
クのバネ長さ変化手段を必要とし、装置の大型化やエネ
ルギー浪費型となる欠点が予想される。また、バネ長の
調整のみでは阻止モーメントの調節範囲が少なく1例え
ば、レンズコバ厚測定時の当接力調節とレンズ研削加工
時の加工圧調節を1つの機構で調節することは不可能と
いってよい。
Furthermore, instead of the present invention, a method may be considered in which the moment for preventing rotation of the carriage is increased by changing the length of the spring, but in that method, a spring with a large spring constant is used, and the length of the spring is In order to change the spring length, a large torque spring length changing means is required, which is expected to have the disadvantage of increasing the size of the device and consuming energy. In addition, adjusting the spring length alone has a small adjustment range for the blocking moment.1For example, it is impossible to adjust the contact force when measuring the lens edge thickness and the processing pressure during lens grinding using a single mechanism. .

これに対し、本発明は、バネの作用点(1)を変化させ
る方式のため、調節装置が簡単で小型且つ省エネルギー
型となり、且つキャリッジ回動阻止モーメントの@節範
囲も大きく取れ、1つの調節機構でレンズコバ厚測定時
の当接力調節にもレンズの研削加工時の加工圧調節にも
兼用し得る。
In contrast, the present invention uses a method of changing the point of action (1) of the spring, so the adjustment device is simple, compact, and energy-saving, and the range of the carriage rotation blocking moment can be widened, allowing one adjustment. The mechanism can be used both to adjust the contact force when measuring the lens edge thickness and to adjust the processing pressure when grinding the lens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る砥石へのレンズ定圧当接装置
を備える玉摺機の斜視図である。 第2図は、第1図に示した玉摺機の要部説明図である。 第3図は、第2図の右側面図である。 第4図は、第2図に示したレンズ定圧当接装置の制御回
路図である。 第5図〜第7図は、第1図〜第4図に示したレンズ定圧
当接装置の作動説明図である。 第8図は、玉摺機の一例を示す斜視図である。 第9図は、第8図に示した玉摺機の作動説明図である。 l・・・本体、      2・・・回転駆動軸(回転
軸)、3・・・荒研削砥石、   4・・・ヤゲン砥石
、7・・・キャリッジ、   8,9・・・レンズ軸、
11・・・型板、      16・・・聖堂、18・
・・V溝、       20・・・キャリッジベース
、21.21・・・支持部、   22.22・・・支
持軸、23・・・当接力調整手段、29・・・cpu 
(制御手段)、し・・・レンズ。 第2図 第 3 コ 第4図 訛 5図 第7図 第 3 口 第 9 図
FIG. 1 is a perspective view of a polishing machine equipped with a constant pressure contact device for a lens to a grindstone according to the present invention. FIG. 2 is an explanatory diagram of the main parts of the beading machine shown in FIG. 1. FIG. 3 is a right side view of FIG. 2. FIG. 4 is a control circuit diagram of the lens constant pressure abutting device shown in FIG. 2. 5 to 7 are explanatory views of the operation of the lens constant pressure contact device shown in FIGS. 1 to 4. FIG. FIG. 8 is a perspective view showing an example of a beading machine. FIG. 9 is an explanatory diagram of the operation of the beading machine shown in FIG. 8. l...Main body, 2...Rotation drive shaft (rotation axis), 3...Rough grinding wheel, 4...Bevel grinding wheel, 7...Carriage, 8, 9...Lens axis,
11... Template, 16... Cathedral, 18.
... V groove, 20... Carriage base, 21.21... Support part, 22.22... Support shaft, 23... Contact force adjustment means, 29... CPU
(control means),...lens. Figure 2 Figure 3 Figure 4 Accent Figure 5 Figure 7 Figure 3 Mouth Figure 9

Claims (1)

【特許請求の範囲】 本体の前部に回転駆動可能に装着されたヤゲン砥石と、 前記ヤゲン砥石の回転軸と平行な方向に進退駆動可能に
前記本体に装着され且つ支持部が設けられているキャリ
ッジベースと、 後端部近傍の部分が前記支持部に前記回転軸と平行な支
持軸を介して枢着され且つ前記支軸より前部側に重心が
あるキャリッジ本体と、 前記回転軸と平行な方向に同軸上で相対接近・離反調整
可能に且つ軸回り方向に回転駆動可能に前記キャリッジ
本体に設けられた一対のレンズ軸と、 前記キャリッジ本体の後端部と前記キャリッジベースと
のいずれか一方に一端部が装着された弾性部材と、 前記キャリッジ本体の後端部と前記キャリッジベースの
いずれか他方と前記弾性部材の他端部との間に介装され
た当接力調整手段と、 前記レンズ軸の軸回動角に対応して前記レンズ軸間の粗
研削レンズが前記ヤゲン砥石に当接する動径を求めて、
この動径位置で前記粗研削レンズがヤゲン砥石に当接す
るときのキャリッジ本体の傾斜角度を演算し、該傾斜角
度から前記当接部に作用する前記キャリッジ本体の重量
による回動降下モーメントを演算して、該回動降下モー
メントと前記スプリングによる回動降下阻止モーメント
との差が一定となる様に前記当接力調整手段を駆動制御
する制御手段と、 を備える玉摺機砥石へのレンズ定圧当接装置。
[Scope of Claims] A beveling grindstone rotatably mounted on the front part of a main body, and a support portion is provided on the main body so as to be movable forward and backward in a direction parallel to the rotation axis of the beveling grindstone. a carriage base; a carriage body whose portion near the rear end is pivotally attached to the support portion via a support shaft parallel to the rotation axis and whose center of gravity is on the front side of the support shaft; a pair of lens shafts provided on the carriage body such that they can be adjusted relatively toward and away from each other on the same axis in the same direction and rotatably driven in a direction around the axis; and either the rear end of the carriage body or the carriage base. an elastic member having one end attached to one end; a contact force adjusting means interposed between the rear end of the carriage body, the other of the carriage base, and the other end of the elastic member; Determining the radius at which the rough grinding lens between the lens axes comes into contact with the beveling grindstone corresponding to the rotation angle of the lens axes,
Calculate the inclination angle of the carriage body when the rough grinding lens contacts the beveling grindstone at this radial position, and calculate the rotational descent moment due to the weight of the carriage body acting on the contact portion from the inclination angle. a control means for driving and controlling the contact force adjusting means so that the difference between the rotational descent moment and the rotational descent prevention moment by the spring is constant; Device.
JP6483588A 1988-03-18 1988-03-18 Constant pressure contact device for lens grinding wheel Expired - Fee Related JPH0796185B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6483588A JPH0796185B2 (en) 1988-03-18 1988-03-18 Constant pressure contact device for lens grinding wheel
EP19890400760 EP0333598B1 (en) 1988-03-18 1989-03-17 Lens grinding apparatus
DE1989607757 DE68907757T2 (en) 1988-03-18 1989-03-17 Lens grinder.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6483588A JPH0796185B2 (en) 1988-03-18 1988-03-18 Constant pressure contact device for lens grinding wheel

Publications (2)

Publication Number Publication Date
JPH01252349A true JPH01252349A (en) 1989-10-09
JPH0796185B2 JPH0796185B2 (en) 1995-10-18

Family

ID=13269702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6483588A Expired - Fee Related JPH0796185B2 (en) 1988-03-18 1988-03-18 Constant pressure contact device for lens grinding wheel

Country Status (3)

Country Link
EP (1) EP0333598B1 (en)
JP (1) JPH0796185B2 (en)
DE (1) DE68907757T2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19616536C2 (en) * 1996-04-25 2000-01-27 Wernicke & Co Gmbh Process and eyeglass lens grinding machine for shaping the peripheral edge of eyeglass lenses and possibly for subsequent facet grinding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962821A1 (en) * 1969-12-15 1971-06-16 Textron Inc Device for the preparation of jacked up lens blanks
JPS6049545B2 (en) * 1982-04-16 1985-11-02 株式会社工研 lens processing machine
JPS60123259A (en) * 1983-12-02 1985-07-01 Nippon Kogaku Kk <Nikon> Lens peripheral edge machining device

Also Published As

Publication number Publication date
EP0333598B1 (en) 1993-07-28
DE68907757D1 (en) 1993-09-02
DE68907757T2 (en) 1994-02-24
JPH0796185B2 (en) 1995-10-18
EP0333598A3 (en) 1990-12-27
EP0333598A2 (en) 1989-09-20

Similar Documents

Publication Publication Date Title
EP0960690B1 (en) Eyeglass lens grinding apparatus
KR100509791B1 (en) Lens spherical surface grinding apparatus
JP4169923B2 (en) Lens grinding method and lens grinding apparatus
US6261150B1 (en) Eyeglass lens grinding apparatus
US5144561A (en) Apparatus for sensing a lens blank and a machine including such apparatus
JPS6130371A (en) Grinder for edge end of glass plate
JPH01295713A (en) In-process measuring method and device for thread shaft effective diameter
JP2002283202A (en) Cup mounting device
JPH01252349A (en) Device of bringing lens into constant pressure contact with grinding stone of ball sliding machine
JPS61257754A (en) Three-dimensional curved face polishing controller
US3535826A (en) Template-controlled tool grinding machines
JP2771547B2 (en) Eyeglass lens peripheral edge chamfering device
JPH0752015A (en) Grinding device for lens of eyeglasses
JPH06258050A (en) Profile measuring apparatus for grinding wheel
JP2534500B2 (en) Grinding machine control method
JPS632662A (en) Polishing method for profile rotary sander
JPH10109250A (en) Method and device for milling
JPH04201170A (en) Outer surface grinding device for long shaft
JPH0331525Y2 (en)
JPS61257750A (en) Automatic lens grinder
JPH06312365A (en) Dressing device for inner circumferential blade
JPH07186025A (en) Lens chamfering device
JPH02116466A (en) Grinding device
JP4055945B2 (en) Polishing equipment
JPH05277920A (en) Lens grinding device and grinding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees