JPH01252116A - Gas insulated electrical machinery - Google Patents

Gas insulated electrical machinery

Info

Publication number
JPH01252116A
JPH01252116A JP63076012A JP7601288A JPH01252116A JP H01252116 A JPH01252116 A JP H01252116A JP 63076012 A JP63076012 A JP 63076012A JP 7601288 A JP7601288 A JP 7601288A JP H01252116 A JPH01252116 A JP H01252116A
Authority
JP
Japan
Prior art keywords
gas
pressure
section
temperature
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63076012A
Other languages
Japanese (ja)
Inventor
Akira Nishizawa
西沢 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63076012A priority Critical patent/JPH01252116A/en
Publication of JPH01252116A publication Critical patent/JPH01252116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To perform accurate monitoring of gas pressure, by obtaining pressure conversion values at respective positions based on values detected through one pressure sensor arranged in same gas section and a plurality of temperature sensors arranged at positions having different temperature and averaging the pressure conversion values based on volume ratios at respective positions. CONSTITUTION:A gas insulated bus 1 is arranged such that a section from the insulating spacer 3 of a disconnecting switch 4 in a building 2 to a bushing case 5 at the outside of the building 2 is defined as one gas section. Temperature sensors 8a, 8b are arranged respectively at the indoor section 1a and an outdoor section 1b of a bus 1, then their outputs are subjected to A/D conversion 9 and fed to a processing unit 10. Furthermore, a common pressure sensor 7 is provided and its output is subjected to A/D conversion and ted to a processing unit 10. The processing unit 10 calculates pressure conversion values at the points 1a, 1b, which are averaged based on volume ratios to produce a pressure level to be employed for monitoring of pressure in the gas section. By such arrangement, gas pressure can be monitored accurately at points having different temperature in same gas section through a simple device.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はガス漏れ検知機能を有するガス絶縁電気機器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas insulated electrical device having a gas leak detection function.

(従来の技術) 近年、変電所等においては、無保守、無点検化が可能で
ある等の理由により、絶縁ガスを封入した容器内に導体
を収納したガス絶縁電気機器が主流となりつつある。こ
のガス絶縁電気機器は、絶縁ガスのガス漏れにより、そ
の絶縁耐力が低下し絶縁破壊等の事故が発生する虞れが
あるので、温度補督された絶縁ガスのガス圧を検知する
必要がある。
(Prior Art) In recent years, gas-insulated electrical equipment in which a conductor is housed in a container filled with insulating gas has become mainstream in substations and the like because it allows for no maintenance or inspection. In this gas-insulated electrical equipment, leakage of insulating gas may reduce its dielectric strength and cause accidents such as dielectric breakdown, so it is necessary to detect the gas pressure of the insulating gas whose temperature has been compensated. .

このガス漏れ検知機能を有するガス絶縁電気機器として
は、例えば実開昭60−190108号公報等で知られ
、第3図に示すような構成のものがある。
A gas-insulated electric device having this gas leak detection function is known from, for example, Japanese Utility Model Application Publication No. 1981-1901, and has a configuration as shown in FIG. 3.

即ち、同一ガス区画された機器毎に1つのガス圧センサ
21及び温度センサ22が夫々設置されている。
That is, one gas pressure sensor 21 and one temperature sensor 22 are installed for each device partitioned for the same gas.

そして、演算装置25で温度によるガス圧を補正してガ
ス圧を検出してガス漏れが検知される。
Then, the arithmetic unit 25 corrects the gas pressure depending on the temperature, detects the gas pressure, and detects a gas leak.

しかしながら、ガス絶縁電気機器が同一ガス区画で倒え
ば屋内外に配設された場合、正確なガス漏検知ができな
い。
However, if gas-insulated electrical equipment collapses in the same gas compartment and is installed indoors or outdoors, accurate gas leak detection cannot be performed.

即ち、屋外に温度センサ22を設置した場合1日照によ
りガス温度が高くなるため、基準温度20’Cに演算さ
れたガス圧力は真のガス圧力より低くなる。逆に、屋内
に温度センサ22を設置した場合、演算されたガス圧力
は真のガス圧力より低くなる。
That is, when the temperature sensor 22 is installed outdoors, the gas temperature increases due to one day of sunlight, so the gas pressure calculated based on the reference temperature 20'C becomes lower than the true gas pressure. Conversely, if the temperature sensor 22 is installed indoors, the calculated gas pressure will be lower than the true gas pressure.

この問題を解決する一つの方法として、従来同一ガス区
画であっても屋内外に配置された機器毎にガス区画して
夫々をガス監視することが考えられる。
As one method to solve this problem, it is conceivable to separate gas sections for each device placed indoors and outdoors and monitor each gas section, even if the same gas section has conventionally been used.

ところが、この場合圧力センサ21温度センサ22の個
数が増し経済的に不利となり、取付によりガスシール部
増加でガス漏れに対する信頼性がかえって低下する。し
かも、一般にガス区画はガス絶縁電気機器に保守点検運
用方法により決定されるもので、簡単に変更することが
できない。
However, in this case, the number of pressure sensors 21 and temperature sensors 22 increases, which is economically disadvantageous, and the mounting increases the number of gas seals, which actually reduces reliability against gas leakage. Moreover, gas compartments are generally determined by the maintenance and inspection method for gas-insulated electrical equipment, and cannot be easily changed.

(発明が解決しようとする課題) このように、従来のガス絶縁電気機器においては、同一
ガス区画における圧力センサ及び温度センサの配置が屋
内外等外的要因による7!!度変化を考慮して成されて
ないので、正確なガス監視を行なうことができなかった
(Problems to be Solved by the Invention) As described above, in conventional gas-insulated electrical equipment, the arrangement of pressure sensors and temperature sensors in the same gas compartment is affected by external factors such as indoors and outdoors. ! Accurate gas monitoring could not be carried out because it was not done in consideration of temperature changes.

本発明は上記点を考慮して成されたもので、簡単な構造
でかつ正確なガス監視を行なうことができるガス絶縁電
気機器を提供することを目的とする。
The present invention has been made in consideration of the above points, and it is an object of the present invention to provide a gas-insulated electric device that has a simple structure and can perform accurate gas monitoring.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために1本発明においては、外的要
因に起因して異なる温度となり得る複数の部位毎に温度
センサを設け、この温度センサと圧力センサの出力より
部位毎の圧力換算値を算出し、この圧力換算値より体積
比率で平均して圧力を算出する。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a temperature sensor is provided for each of a plurality of parts that may have different temperatures due to external factors, and the temperature sensor and pressure sensor are connected to each other. A pressure conversion value for each part is calculated from the output, and the pressure is calculated by averaging the pressure conversion values based on the volume ratio.

(作 用) これにより、従来の如き同一ガス区画に一個の温度セン
サを設けたものに比べ、ガス圧を正確に測定することが
できる。
(Function) As a result, gas pressure can be measured more accurately than in the conventional case where one temperature sensor is provided in the same gas compartment.

(実施例) 以下本発明の一実施例を第1図を参照して説明する。本
実施例においては、−例としてガス絶縁母線1が屋内外
に配設されている。即ち、建屋2内には両側をMaスベ
ニサ3にて封止し、内部にSF、ガス等の絶縁ガスとと
もに接点部4aを収納した断路器4を配置している。
(Example) An example of the present invention will be described below with reference to FIG. In this embodiment, as an example, a gas insulated bus bar 1 is disposed indoors and outdoors. That is, inside the building 2, both sides are sealed with Ma sinter 3, and a disconnector 4 containing an insulating gas such as SF or gas and a contact portion 4a is disposed inside.

そして、断路器4の一側には絶縁スペーサ3を介して図
示しない遮断器等が接続ぎわ、他側には絶縁スペーサ3
を介してガス絶縁母線1が接続されている。
A circuit breaker (not shown) is connected to one side of the disconnector 4 via an insulating spacer 3, and an insulating spacer 3 is connected to the other side of the disconnector 4.
A gas insulated bus bar 1 is connected thereto.

このガス絶縁母線1は建屋2の建屋壁2aを貫通し、絶
縁スペーサ3を介してブッシングケース5に接続される
。つまり、ガス絶縁母線1は屋内部1a及び屋外部1b
に区分される。
This gas insulated bus bar 1 penetrates a building wall 2a of a building 2 and is connected to a bushing case 5 via an insulating spacer 3. In other words, the gas insulated bus bar 1 has an indoor area 1a and an outdoor area 1b.
It is divided into

そして、断路器4.ガス絶縁母gi及びブッシングケー
ス5間は絶縁スペーサ3にてガス止めしているけれども
、相互間に開閉可能なガス配管6を接続している。この
ガス配管6により断路器4゜ガス絶縁母線1及びブッシ
ングケース5は同一ガス区画となる。
And disconnector 4. Although the gas insulating base gi and the bushing case 5 are gas-stopped by an insulating spacer 3, a gas pipe 6 that can be opened and closed is connected between them. With this gas pipe 6, the disconnector 4, the gas insulated bus bar 1, and the bushing case 5 become the same gas compartment.

また、断路器4とガス絶縁母線の屋内部1aを接続する
ガス配管6の途中に圧力センサ7を接続する。
Further, a pressure sensor 7 is connected in the middle of a gas pipe 6 that connects the disconnector 4 and the indoor portion 1a of the gas insulated bus bar.

さらに、ガス絶縁母線の屋内部1a及び屋外部1bには
夫々温度センサ8a、 8bを設ける。
Furthermore, temperature sensors 8a and 8b are provided in the indoor part 1a and the outdoor part 1b of the gas insulated bus bar, respectively.

そして、圧カセンサ7.温度センサ8a、8bは夫々A
/D変換器9を介して演算処理袋Vi1oに接続されて
いる。このA/D変換器9は圧力センサ7及び温度セン
サ8a、8bからのアナログ信号をデジタル信号に変換
するものである。また、演算処理装置10では屋内外の
容器体積比率で平均して同一ガス区画全体の温度補償を
行なうものである。
And pressure sensor 7. Temperature sensors 8a and 8b are each A
It is connected to the arithmetic processing bag Vi1o via the /D converter 9. This A/D converter 9 converts analog signals from the pressure sensor 7 and temperature sensors 8a, 8b into digital signals. Further, the arithmetic processing unit 10 compensates for the temperature of the entire same gas compartment by averaging the volume ratio of indoor and outdoor containers.

次に、本実施例の構成における作用効果を説明する。Next, the effects of the configuration of this embodiment will be explained.

一般に、理想気体の温度、圧力及び体積の関係はボイル
シャルルの方程式 %式%(1) そして、屋内外の温度を夫々Ti、 To、M内外のガ
ス絶縁機器の容器体積を夫々Vi、Vo、同一ガス区画
全体の圧力をPx&すれば、絶縁ガスの漏れがない場合
下記の方程式が成立つ。
In general, the relationship between temperature, pressure, and volume of an ideal gas is expressed by Boyle-Charles equation (1). Then, the indoor and outdoor temperatures are expressed as Ti, To, M, respectively, and the container volumes of internal and external gas insulated equipment as Vi, Vo, respectively. If the pressure of the entire same gas compartment is Px&, the following equation holds true if there is no leakage of insulating gas.

ニーームカ−+」2社 エ −  。L     T、     ・・川・■■
式を基準温度圧力と任意温度における圧力の比率で示す
と下式となる。
Neemka+" 2 companies. L T, ・・River・■■
Expressing the equation as the ratio of the reference temperature and pressure to the pressure at an arbitrary temperature, the following equation is obtained.

尚、Tは基1!!温度、Pは基準温度における圧力、■
は同一ガス区画全体の体積(Vi + Vo )である
Furthermore, T is base 1! ! temperature, P is pressure at reference temperature, ■
is the volume of the entire same gas compartment (Vi + Vo).

ここで9例えば、 V = 10rn’、Vi=3rn
’、  V0=7rn’、T=20℃、Ti=20℃、
To=35℃、P=5 bar at 20℃ とすると、(3)式よりPg=5.1111 barと
なる。
Here 9 For example, V = 10rn', Vi = 3rn
', V0=7rn', T=20℃, Ti=20℃,
When To=35°C and P=5 bar at 20°C, Pg=5.1111 bar from equation (3).

また、従来技術の如く、圧力センサと温度センサを夫々
1個屋外に設けた場合、20℃への圧力換算値は P(
20) =−影醗」5覗−P  より273+T P、(20) = 4.92 bar   となる。
In addition, when one pressure sensor and one temperature sensor are installed outdoors as in the conventional technology, the pressure conversion value to 20°C is P(
20)=-Video'5 Peek-P, 273+T P, (20) = 4.92 bar.

他方、圧力センサと温度センサを夫々1個屋内に設けた
場合、20℃への圧力換算値はPL(20) = 5.
17 bar   となる。
On the other hand, when one pressure sensor and one temperature sensor are installed indoors, the pressure conversion value to 20°C is PL(20) = 5.
It will be 17 bar.

これに対して1本実施例の如く屋内外の夫々の圧力換算
値を夫々の体積比率で平均すると。
On the other hand, if the converted indoor and outdoor pressure values are averaged by their respective volume ratios as in this embodiment.

となり良好な値が得られる。Therefore, a good value can be obtained.

これらの従来技術と本実施例による其準温度へのガス圧
力変換値は第2図に示す。
The gas pressure conversion values to sub-temperatures according to these conventional techniques and this embodiment are shown in FIG.

尚、本実施例においては1機器の温度差の発生原因を機
器の屋内外配置として説明したが、他に機器の一部が着
色または別色とされている、発熱体に近接している等が
ある。
In this example, the cause of the temperature difference between one device was explained as the indoor/outdoor placement of the device, but there are other reasons such as a part of the device being colored or a different color, being close to a heat generating element, etc. There is.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明においては外的要因に起因
して異なる温度となり得る複数の部位毎に温度センサを
設け、この温度センサと圧力センサの出力より部位毎の
圧力換算値を算出し、この圧力換算値の体積比率で平均
して圧力を換算したので、正確なガス監視が可能なガス
絶縁電気機器を提供することができる6
As explained above, in the present invention, a temperature sensor is provided for each of a plurality of parts that may have different temperatures due to external factors, and a pressure conversion value for each part is calculated from the outputs of the temperature sensor and pressure sensor. Since the pressure is averaged using the volume ratio of this pressure conversion value, it is possible to provide gas-insulated electrical equipment that allows accurate gas monitoring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すガス絶縁電気機器の概
略構成図、第2図は第1図に示すガス絶縁電気機器の効
果を示す図、第3図は従来のガス絶縁電気機器を示す概
略構成図である。 1・・・ガス絶縁母線、  1a・・・屋内部。 1b・・・屋外部、     2・・・建屋。 2a・・・建屋壁、      3・・・絶縁スペーサ
、4・・・断路器、     4a・・・接点部。 5・・・ブッシングケース、6・・・ガス配管、7・・
・圧力センサ、    8a、8b・・・温度センサ、
9・・・A/D変換器    lO・・・演算処理装置
。 代理人 弁理士  則 近 憲 体 間     第子丸   健 第1図 5外のhli肉のみ  本発明による 5yA贋センサjHAセ゛7サ オ央算イ直設置   
1え置
Fig. 1 is a schematic configuration diagram of a gas insulated electrical equipment showing an embodiment of the present invention, Fig. 2 is a diagram showing the effects of the gas insulated electrical equipment shown in Fig. 1, and Fig. 3 is a conventional gas insulated electrical equipment. FIG. 1...Gas insulated bus bar, 1a...Indoor. 1b...Outdoor area, 2...Building. 2a... Building wall, 3... Insulating spacer, 4... Disconnector, 4a... Contact portion. 5...Bushing case, 6...Gas piping, 7...
・Pressure sensor, 8a, 8b...temperature sensor,
9... A/D converter lO... Arithmetic processing unit. Agent Patent Attorney Nori Chika Ken Tama Daikomaru Ken Figure 1 Only hli meat outside Figure 5 5yA counterfeit sensor according to the present invention Directly installed in the center of the HA SE7S
1 place

Claims (1)

【特許請求の範囲】[Claims] 同一ガス区画の機器が外的要因に起因して異なる温度と
なり得る複数の部位を有するものにおいて、前記機器に
設けた圧力センサと、前記複数の部位毎に設けた温度セ
ンサと、前記圧力センサ及び温度センサの出力より夫々
の部位毎の圧力換算値を算出し、この圧力換算値を各部
位の体積比率で平均して同一ガス区画全体の圧力を算出
する演算処理装置とを備えてなるガス絶縁電気機器。
In a device in the same gas compartment having a plurality of parts that can have different temperatures due to external factors, a pressure sensor provided in the equipment, a temperature sensor provided for each of the plurality of parts, and a pressure sensor and a temperature sensor provided in each of the plurality of parts. A gas insulation system that is equipped with an arithmetic processing device that calculates a pressure conversion value for each part from the output of a temperature sensor, and averages this pressure conversion value based on the volume ratio of each part to calculate the pressure of the entire same gas compartment. electrical equipment.
JP63076012A 1988-03-31 1988-03-31 Gas insulated electrical machinery Pending JPH01252116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076012A JPH01252116A (en) 1988-03-31 1988-03-31 Gas insulated electrical machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076012A JPH01252116A (en) 1988-03-31 1988-03-31 Gas insulated electrical machinery

Publications (1)

Publication Number Publication Date
JPH01252116A true JPH01252116A (en) 1989-10-06

Family

ID=13592907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076012A Pending JPH01252116A (en) 1988-03-31 1988-03-31 Gas insulated electrical machinery

Country Status (1)

Country Link
JP (1) JPH01252116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951592A1 (en) * 2009-10-15 2011-04-22 Areva T & D Sas Average or high voltage electrical apparatus e.g. circuit breaker, has densimeter with chamber connected to enclosure, where temperature of inner surface of enclosure is equal or close to average temperature of gas within enclosure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951592A1 (en) * 2009-10-15 2011-04-22 Areva T & D Sas Average or high voltage electrical apparatus e.g. circuit breaker, has densimeter with chamber connected to enclosure, where temperature of inner surface of enclosure is equal or close to average temperature of gas within enclosure

Similar Documents

Publication Publication Date Title
CN104568211A (en) Switch cabinet contact and busbar connection point temperature rise online monitoring device and working method thereof
US5012182A (en) Electrical measuring device
CN110553801A (en) Multifunctional gas density monitor and system based on edge calculation
CN204422095U (en) Switch cabinet contact and busbar tie point temperature rise on-Line Monitor Device and system
US4894609A (en) Electrical measuring device
JPH01252116A (en) Gas insulated electrical machinery
US4866393A (en) Method of diagnosing the deterioration of a zinc oxide type lightning arrester utilizing vector synthesis
CN211179414U (en) Economical gas density monitoring device and system
KR100219013B1 (en) Insulation monitoring system
CN110426315A (en) A kind of gas density relay and system of electromechanical integration
JP2016226146A (en) Gas-insulation opening/closing device monitoring device, gas-insulation opening/closing device monitoring method, and gas-insulation opening/closing facility
RU2251703C2 (en) Method revealing non-controlled consumption of electric energy in 0,4 kv circuits
CN211179415U (en) Mechatronic gas density relay and system
CN207586351U (en) A kind of bus insulation detection circuit
CN101278201A (en) Voltage sensors and voltage sensing methods for gas insulated switchgear
CN104330447A (en) System and method applied to on-line detection of capacitance of collective shunt capacitor
ES2588260B2 (en) PROCEDURE AND DEVICE FOR THE DETERMINATION OF THE STATE OF THE NEUTRAL DRIVER IN AN ELECTRICAL INSTALLATION
CN110426316A (en) A kind of economical gas density detecting device and system
CN108801854A (en) Gas density measuring device
CN114325180B (en) Power equipment heating diagnosis method based on sulfur hexafluoride gauge pressure monitoring
CN220893664U (en) SF6 air pressure monitoring device and SF6 air pressure monitoring system
JP3321480B2 (en) Fault location system
CN205583473U (en) Prevent intelligent integrated transformer substation of strong magnetism
JPH0756580Y2 (en) Overheat monitoring device for closed power equipment
JPS62211534A (en) Monitoring device for gas pressure of gas insulation switching device