JPH0125131B2 - - Google Patents

Info

Publication number
JPH0125131B2
JPH0125131B2 JP56185020A JP18502081A JPH0125131B2 JP H0125131 B2 JPH0125131 B2 JP H0125131B2 JP 56185020 A JP56185020 A JP 56185020A JP 18502081 A JP18502081 A JP 18502081A JP H0125131 B2 JPH0125131 B2 JP H0125131B2
Authority
JP
Japan
Prior art keywords
signal
reproduced signal
reproduced
peak
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56185020A
Other languages
Japanese (ja)
Other versions
JPS5885911A (en
Inventor
Taiji Shimeki
Koji Matsushima
Shiro Tsuji
Nobuyoshi Kihara
Misao Kato
Yoshinori Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18502081A priority Critical patent/JPS5885911A/en
Publication of JPS5885911A publication Critical patent/JPS5885911A/en
Publication of JPH0125131B2 publication Critical patent/JPH0125131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/027Analogue recording
    • G11B5/035Equalising

Description

【発明の詳細な説明】 本発明は信号を再生する時の波形等化方法に関
し、特に磁気記録媒体に記録されたデイジタル信
号を再生するに際して、再生信号レベルを低下さ
せずに、効果的に再生波形のピークシフトを補正
しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveform equalization method when reproducing a signal, and in particular, when reproducing a digital signal recorded on a magnetic recording medium, the present invention can effectively reproduce a digital signal recorded on a magnetic recording medium without reducing the level of the reproduced signal. This is an attempt to correct the peak shift of the waveform.

デイジタル信号を磁気記録媒体上に記録し、該
記録信号を再生する装置等において、近年高密度
記録を実現するための種々の試みが行なわれてい
る。この高密度記録をはばむ大きな要因として、
デイジタル信号の磁化反転間隔が縮まつた場合の
再生信号のパターンピークシフトがある。すなわ
ち第1図アに示すような記録磁化1に対して、再
生信号は第1図イに示すように記録磁化1の立上
りに対する弧立再生波2および記録磁化1の立下
りに対する弧立再生波3との重ね合せにより得ら
れる再生信号4となるが、この重ね合せにより、
記録時の磁化反転間隔hに対して再生信号4のピ
ーク間隔はSとなつて磁化反転間隔hよりも大き
くなり、ピーク位置がずれていわゆるピークシフ
トが生じる。特に高密度記録を実現するために磁
化反転間隔hを小さくすればする程、ピークシフ
トは大きくなり、正しいデイジタル信号を再生で
きなくなる。
2. Description of the Related Art In recent years, various attempts have been made to realize high-density recording in devices that record digital signals on magnetic recording media and reproduce the recorded signals. A major factor hindering this high-density recording is
There is a pattern peak shift of the reproduced signal when the magnetization reversal interval of the digital signal is shortened. That is, for a recorded magnetization 1 as shown in FIG. 1A, the reproduced signal is a rising reproduced wave 2 for the rising edge of the recorded magnetization 1 and a rising reproduced wave for the falling edge of the recorded magnetization 1, as shown in FIG. 1 B. The reproduced signal 4 obtained by superimposing with 3 is obtained, but by this superposition,
With respect to the magnetization reversal interval h during recording, the peak interval of the reproduced signal 4 is S, which is larger than the magnetization reversal interval h, and the peak position shifts, resulting in a so-called peak shift. In particular, the smaller the magnetization reversal interval h is made to achieve high-density recording, the larger the peak shift becomes, making it impossible to reproduce correct digital signals.

ピークシフトを少なくするためには、第1図か
ら理解されるように、弧立再生波2,3のすその
広がりを少なくすれば良い。そこで、従来から提
案されているのが余弦等化方式である。この信号
処理の過程を第2図ア〜オに示す。記録媒体から
の微小再生信号を増幅した第2図アの信号i(t)
の前縁、後縁にこの再生信号i(t)と相似な波
形の信号K/2i(t+τ)6、K/2i(t−τ)
7を 生じさせ、第2図エに示すそれらの和K/2{i(t +τ)+i(t−τ)8を再生信号i(t)より減算
することにより弧立再生波のすその広がりを除去
し、再生信号のピークシフトを減少させた第2図
オの波形を得ることができる。
In order to reduce the peak shift, as can be understood from FIG. 1, it is sufficient to reduce the spread of the bases of the erect reproduction waves 2 and 3. Therefore, a cosine equalization method has been proposed in the past. The process of this signal processing is shown in FIG. 2A to O. Signal i (t) in Figure 2 A, which is the amplified minute reproduction signal from the recording medium.
Signals K/2 i (t+τ)6, K/2 i (t-τ) with waveforms similar to this reproduced signal i (t) are present at the leading and trailing edges of
7 and subtracting their sum K/2{ i (t + τ) + i (t - τ) 8 shown in Figure 2E from the reproduced signal i (t), the base of the rising reproduced wave can be calculated. It is possible to obtain the waveform shown in FIG. 2E in which the spread is removed and the peak shift of the reproduced signal is reduced.

ところで、この余弦等化方式では減算する補正
信号8は再生信号5と同極性のため、余弦等化後
の出力信号9p(t)はすそ広がりの少ない波形
にはなるが同時に振幅も低下する。ピークシフト
を抑圧するために余弦等化を複数段用いた場合に
は、それだけ振動の低下も大きく、等化後の信号
のS/N比が悪くなり、雑音によるピークシフトが
問題となる。
By the way, in this cosine equalization method, the correction signal 8 to be subtracted has the same polarity as the reproduced signal 5, so the output signal 9 p (t) after cosine equalization has a waveform with less spread at the base, but the amplitude also decreases at the same time. . When multiple stages of cosine equalization are used to suppress peak shifts, the vibration decreases accordingly, the S/N ratio of the equalized signal worsens, and peak shifts due to noise become a problem.

本発明は、上記従来の欠点をなくすものであ
り、再生信号の所定時間前方に再生信号の微分信
号を作成して再生信号から減算し、再生信号の所
定時間後方に再生信号の微分信号を作成して再生
信号に加算することにより、再生信号振幅を低下
させずに、効果的に弧立再生波のすその広がりを
除去し、ピークシフトを減少させることを特徴と
するものである。
The present invention eliminates the above-mentioned conventional drawbacks, and creates a differential signal of the reproduced signal a predetermined time before the reproduced signal and subtracts it from the reproduced signal, and creates a differential signal of the reproduced signal after a predetermined time of the reproduced signal. By adding this to the reproduced signal, the broadening of the base of the rising reproduced wave can be effectively removed and the peak shift can be reduced without reducing the amplitude of the reproduced signal.

以下、本発明の一実施例を図面に示して説明す
る。第3図は本発明の波形等化方法を実現する装
置の一例を示すブロツク構成図、第4図ア〜カは
第3図の要部波形図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a block diagram showing an example of an apparatus for realizing the waveform equalization method of the present invention, and FIG.

磁気記録媒体上の信号を磁気ヘツドにより検出
し、前置増幅により信号処理に必要なレベルまで
増幅した再生信号15(ここでは便宜的にi(t
+τ)と表わすことにする。)は、定遅延回路1
0に供給され、一定時間τ1だけ遅延されて第4図
イに示す出力16(i(t))となる。またこの再
生信号15は微分回路11に供給される。この定
遅延回路10の出力16の出力16は加減算回路
14と次段の定遅延回路12とに供給される。該
定遅延回路10の出力16が補正されるべき信号
である。
A reproduced signal 15 (for convenience, i
+τ). ) is the constant delay circuit 1
0 and is delayed by a fixed time τ 1 to become an output 16 ( i (t)) shown in FIG. 4A. Further, this reproduced signal 15 is supplied to the differentiating circuit 11. The output 16 of the constant delay circuit 10 is supplied to the addition/subtraction circuit 14 and the constant delay circuit 12 at the next stage. The output 16 of the constant delay circuit 10 is the signal to be corrected.

前記定遅延回路10,12は、例えば第5図に
示す演算増幅器を用いた全域通過定遅延回路で実
現できる。各素子の値は式(1)の伝達関数を実現す
るように式(2)の関係を満足させればよい。
The constant delay circuits 10 and 12 can be realized, for example, by all-pass constant delay circuits using operational amplifiers as shown in FIG. The value of each element may satisfy the relationship of equation (2) so as to realize the transfer function of equation (1).

H(S)=V2/V1=G・S2−6ωpS+12ωp 2/S2+6ωp
S+12ωp 2……(1) 但し、R2R3=4R1R4 ここで、Gは増幅度を与え、時間遅れ量Td
与えられると Td=1/ωp ……(3) なる関係より、各素子の値が決定できる。上記の
全域通過定遅延フイルタはほぼτωpの周波数の信
号まで遅れ量が一定になる。補正されるべき信号
の最高周波数ωの周期Tに比較して、遅れ量τは τ<T/2 ……(4) であるので、 ω<2ωp ……(5) を満足する。よつて、この全域通過定遅延フイル
タは信号帯域内で十分定遅延回路として動作す
る。そして第5図に示したコンデンサの容量の値
を変えることにより容易に遅延量を変えることが
できる。また、遅延線を用いて前記定遅延回路1
0,12を構成することができる。
H(S)=V 2 /V 1 =G・S 2 −6ω p S+12ω p 2 /S 2 +6ω p
S+12ω p 2 ...(1) However, R 2 R 3 = 4R 1 R 4Here , G gives the amplification degree, and given the time delay amount T d , T d = 1/ω p ... (3) From the relationship, the value of each element can be determined. The above-mentioned all-pass constant delay filter has a constant delay amount up to a signal with a frequency of approximately τω p . Compared to the period T of the highest frequency ω of the signal to be corrected, the delay amount τ satisfies τ<T/2 (4), so ω<2ω p (5) is satisfied. Therefore, this all-pass constant delay filter sufficiently operates as a constant delay circuit within the signal band. The amount of delay can be easily changed by changing the capacitance value of the capacitor shown in FIG. Further, the constant delay circuit 1 may be
0,12 can be configured.

さて、微分回路11に供給された信号は微分さ
れて、K1倍に増幅され、その出力として第4図
ウに示す微分信号17が得られる。この微分信号
17はK1d/dti(t+τ1)と表わされる。定遅延回 路10における遅延量τ1は、例えば、微分信号1
7の2つのピーク点の内で、補正されるべき信号
16に対して逆極性のピーク点と16のピーク点
とが一致する遅延量τ1に設定する。信号16は定
遅延回路12で更に一定時間τ2だけ遅延され、微
分回路13で微分され、K2倍に増幅され、その
出力として第4図エに示す微分信号18が得られ
る。この微分信号18はK2d/dti(t−τ2)と表わ される。定遅延回路12における遅延量τ2は、例
えば、微分波18の2つのピーク点の内で、補正
されるべき信号16に対して同極性のピーク点と
16のピーク点が一致する遅延量τ2に設定する。
Now, the signal supplied to the differentiating circuit 11 is differentiated and amplified by a factor of K1 , and the differential signal 17 shown in FIG. 4C is obtained as its output. This differential signal 17 is expressed as K 1 d/dt i (t+τ 1 ). The delay amount τ 1 in the constant delay circuit 10 is, for example, the differential signal 1
The delay amount τ 1 is set so that the peak point of opposite polarity to the signal 16 to be corrected among the two peak points of the signal 16 coincides with the peak point of the signal 16. The signal 16 is further delayed by a fixed time τ 2 in the constant delay circuit 12, differentiated in the differentiating circuit 13, and amplified by a factor of K 2 , and the differential signal 18 shown in FIG. 4E is obtained as an output. This differential signal 18 is expressed as K 2 d/dt i (t-τ 2 ). The delay amount τ 2 in the constant delay circuit 12 is, for example, the delay amount τ at which, among the two peak points of the differential wave 18, the peak point of the same polarity with respect to the signal 16 to be corrected coincides with the peak point 16. Set to 2 .

前記微分回路11,13は第6図に示すように
演算増幅器を用いて構成できる。増幅度K1,K2
はフイードバツク抵抗Rを可変抵抗器で構成する
ことにより調整することができる。
The differentiating circuits 11 and 13 can be constructed using operational amplifiers as shown in FIG. Amplification degree K 1 , K 2
can be adjusted by configuring the feedback resistance R with a variable resistor.

このようにして得られた微分信号17,18は
補正されるべき信号16とともに加減算回路14
に供給される。加減算回路14では、信号16に
微分信号18より微分信号17を減算した信号を
加える。これは信号16より第1図オに示す合成
信号19(この合成信号はτ1=τ2=τとしたとき
K1d/dti(t+τ)−K2d/dti(t−τ)である
。)を 減算することと同等である。その結果、加減算回
路14の出力にはすその広がりの少ない再生信号
20が得られることになる。なおこの再生信号2
0はp(t)=i(t)−K1d/dti(t+τ)−K
2d/dti (t−τ)と表される。
The differential signals 17 and 18 obtained in this way are sent to the addition/subtraction circuit 14 together with the signal 16 to be corrected.
is supplied to The addition/subtraction circuit 14 adds to the signal 16 a signal obtained by subtracting the differential signal 17 from the differential signal 18 . This is the composite signal 19 shown in Figure 1 O from the signal 16 (this composite signal is obtained when τ 1 = τ 2 = τ
K 1 d/dt i (t+τ)−K 2 d/dt i (t−τ). ) is equivalent to subtracting. As a result, the output of the adder/subtracter circuit 14 is a reproduced signal 20 with less width at the base. Note that this playback signal 2
0 is p (t) = i (t) - K 1 d/dt i (t + τ) - K
It is expressed as 2d /dt i (t-τ).

加減算回路14は演算増幅器を用いて第7図に
示すように構成できる。入出力関係式は第7図の
場合、 V20=V16−V17+V18 ……(6) となる。ここで補正されるべき信号16をV16
微分信号17をV17、微分信号18をV18とすれ
ば補正に必要な加減算を実現することができる。
The addition/subtraction circuit 14 can be constructed as shown in FIG. 7 using an operational amplifier. In the case of FIG. 7, the input/output relational expression is V 20 =V 16 −V 17 +V 18 (6). Here, the signal 16 to be corrected is V 16 ,
By setting the differential signal 17 to V 17 and the differential signal 18 to V 18 , addition and subtraction necessary for correction can be realized.

上記の実施例において、このようにすその広が
りの少ない出力信号20が得られるのは、第4図
より明らかなように、再生信号16より減算する
合成信号19は再生信号16のピーク近傍で再生
信号16と逆極性であり、かつ再生信号16のピ
ークと合成信号19のピーク(逆極性)とが一致
しているので、減算することにより再生信号16
のピーク近傍は増幅されるが、一方合成信号19
は再生信号16のピークから離れ位置に、再生信
号16と同極性を持つた2つのピークを有してい
るので、減算することにより再生信号のすその広
がりが抑圧されるためである。前記従来の余弦等
化方式では再生信号5のピークの位置での、減算
する合成信号8の極性がピークの極性と同じであ
るので、補正後の信号9の振幅は補正前よりも減
少し、補正後のS/N比が劣化するが、本発明では
上記実施例からも明らかなように補正後の信号の
振幅は増加する。更に、再生信号のすその部分を
抑圧し、ピーク近傍を強調することができるので
あるので余弦等化方式に比べてすその広がりの抑
圧効果が大きい。その結果、必要なピークシフト
補正に対して余弦等化方式に比べて少ない処理段
数でピークシフト補正を実現できる。
In the above embodiment, the output signal 20 with a small width at the base is obtained because, as is clear from FIG. Since the polarity is opposite to that of the signal 16, and the peak of the reproduced signal 16 and the peak (reverse polarity) of the composite signal 19 match, by subtraction, the reproduced signal 16
The vicinity of the peak of is amplified, while the composite signal 19
has two peaks having the same polarity as the reproduced signal 16, which are located away from the peak of the reproduced signal 16, so the subtraction suppresses the spread of the base of the reproduced signal. In the conventional cosine equalization method, the polarity of the composite signal 8 to be subtracted at the peak position of the reproduced signal 5 is the same as the peak polarity, so the amplitude of the signal 9 after correction is smaller than before correction, Although the S/N ratio after correction deteriorates, in the present invention, as is clear from the above embodiments, the amplitude of the signal after correction increases. Furthermore, since it is possible to suppress the base portion of the reproduced signal and emphasize the vicinity of the peak, the effect of suppressing the width of the base is greater than that of the cosine equalization method. As a result, the required peak shift correction can be realized with fewer processing stages than the cosine equalization method.

また遅延量τ1,τ2については、実施例で示した
ピークをそろえる値に限らず、再生波形に応じ
て、すその広がりの抑圧が効果的に実現できる値
に調整することができる。このときτ1,τ2の値は
実施例で示したピークをそろえるための値よりも
短い範囲で選定しなければすその広がりの抑圧が
効果的に実現できない。増幅度K1,K2について
もτ1,τ2と同様に調整することができる。τ2に比
してτ1を小さく、あるいはK2に比してK1を大き
くすれば再生信号の前縁のすその抑圧ができ、τ1
に比してτ2を小さく、あるいはK1に比してK2
大きくすれば再生信号の後縁のすそを抑圧するこ
とができる。このような調整によつて再生信号の
波形を微妙に補正することが可能である。
Further, the delay amounts τ 1 and τ 2 are not limited to the values that align the peaks shown in the embodiment, but can be adjusted to values that can effectively suppress the width of the base, depending on the reproduced waveform. At this time, unless the values of τ 1 and τ 2 are selected within a range shorter than the values for aligning the peaks shown in the embodiment, suppression of the skirt broadening cannot be effectively realized. The amplification degrees K 1 and K 2 can also be adjusted in the same way as τ 1 and τ 2 . By making τ 1 smaller than τ 2 or making K 1 larger than K 2 , the leading edge of the reproduced signal can be suppressed, and τ 1
The tail of the trailing edge of the reproduced signal can be suppressed by making τ 2 smaller than τ 2 or larger than K 1 . Through such adjustment, it is possible to subtly correct the waveform of the reproduced signal.

なお上記第4図のブロツク図における定遅延回
路10,12、微分回路11,13、加減算回路
は、第5図〜第7図に示した回路に限らず他の構
成のものでも実現可能であることはいうまでもな
い。
Note that the constant delay circuits 10, 12, differentiating circuits 11, 13, and addition/subtraction circuits in the block diagram of FIG. 4 above are not limited to the circuits shown in FIGS. 5 to 7, but can be realized with other configurations. Needless to say.

以上のように本発明の波形等化方法によれば、
デイジタル信号の再生信号に対し、所定時間前方
および後方にこの再生信号の第1、第2の微分信
号を形成し、前記再生信号から第1の微分信号を
減算し、前記再生信号に第2の微分信号を加算す
ることにより、再生信号の波形のすその広がりを
抑圧しピークシフトを減少させることが可能であ
り、かつ再生信号のレベルを低下させず逆にピー
ク点の振幅を大となすことが可能な優れた波形等
化方法を実現できるものである。
As described above, according to the waveform equalization method of the present invention,
First and second differential signals of the reproduced signal of the digital signal are formed forward and backward by a predetermined time, the first differential signal is subtracted from the reproduced signal, and the second differential signal is subtracted from the reproduced signal. By adding differential signals, it is possible to suppress the spread of the waveform of the reproduced signal and reduce the peak shift, and to increase the amplitude of the peak point without lowering the level of the reproduced signal. This makes it possible to realize an excellent waveform equalization method that enables the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ア,イは記録磁化と再生信号との関係を
示す波形図、第2図ア〜オは従来の波形等化方法
を説明するための波形図、第3図は本発明波形等
化方法の一実施例における装置を示すブロツク
図、第4図ア〜カは上記ブロツク図の要部におけ
る信号の波形図、第5図、第6図、第7図は第3
図に用いる各回路の一実施例を示す回路図であ
る。 10……定遅延回路、11……微分回路、12
……定遅延回路、13……微分回路、14……加
減算回路。
Figures 1A and 1B are waveform diagrams showing the relationship between recording magnetization and reproduction signals, Figure 2A to O are waveform diagrams for explaining the conventional waveform equalization method, and Figure 3 is the waveform equalization method of the present invention. A block diagram showing an apparatus in one embodiment of the method, Figure 4A to 4A are waveform diagrams of signals in the main parts of the above block diagram, and Figures 5, 6, and 7 are
FIG. 2 is a circuit diagram showing an example of each circuit used in the figure. 10... Constant delay circuit, 11... Differential circuit, 12
... Constant delay circuit, 13 ... Differentiation circuit, 14 ... Addition and subtraction circuit.

Claims (1)

【特許請求の範囲】 1 磁気記録媒体に記録されたデイジタル信号を
再生するに際して、得られた再生信号の所定時間
前方及び所定時間後方に、この再生信号の第1、
第2の微分信号を生ぜしめ、前記前方に位置する
第1の微分信号を前記再生信号より減算し、前記
後方に位置する第2の微分信号を前記再生信号に
加算することを特徴とする波形等化方法。 2 前方への所定時間を、再生信号より前方に位
置する第1の微分信号の2つのピーク点の内で、
再生信号に対して逆極性のピーク点と再生信号の
ピーク点が一致する時間以下とし、後方への所定
時間を、再生信号より後方に位置する第2の微分
信号の2つのピーク点の内で、再生信号に対して
同極性のピーク点と再生信号のピーク点が一致す
る時間以下とすることを特徴とする特許請求の範
囲第1項記載の波形等化方法。
[Scope of Claims] 1. When reproducing a digital signal recorded on a magnetic recording medium, the first, first and second signals of the obtained reproduction signal are predetermined times before and after a predetermined time.
A waveform characterized in that a second differential signal is generated, the first differential signal located at the front is subtracted from the reproduced signal, and the second differential signal located at the rear is added to the reproduced signal. Equalization method. 2. The predetermined forward time is between the two peak points of the first differential signal located in front of the reproduced signal,
The predetermined backward time is set to be less than or equal to the time when the peak point of the opposite polarity to the reproduced signal matches the peak point of the reproduced signal, and the predetermined backward time is set within the two peak points of the second differential signal located after the reproduced signal. 2. The waveform equalization method according to claim 1, wherein the equalization time is set to be less than or equal to the time at which the peak point of the same polarity with respect to the reproduced signal and the peak point of the reproduced signal coincide.
JP18502081A 1981-11-18 1981-11-18 Equalizing method of waveform Granted JPS5885911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18502081A JPS5885911A (en) 1981-11-18 1981-11-18 Equalizing method of waveform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18502081A JPS5885911A (en) 1981-11-18 1981-11-18 Equalizing method of waveform

Publications (2)

Publication Number Publication Date
JPS5885911A JPS5885911A (en) 1983-05-23
JPH0125131B2 true JPH0125131B2 (en) 1989-05-16

Family

ID=16163363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18502081A Granted JPS5885911A (en) 1981-11-18 1981-11-18 Equalizing method of waveform

Country Status (1)

Country Link
JP (1) JPS5885911A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700961B2 (en) * 1991-04-08 1998-01-21 三菱電機株式会社 Signal waveform processing device
JPH05343991A (en) * 1992-06-11 1993-12-24 Shodenryoku Kosoku Tsushin Kenkyusho:Kk Smoothing circuit for voltage waveform
US5623377A (en) * 1993-04-06 1997-04-22 Cirrus Logic, Inc. Filtering a read signal to attenuate secondary pulses caused by pole tips of a thin film magnetic read head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856320B2 (en) * 1979-04-06 1983-12-14 シ−メンス、アクチエンゲゼルシヤフト ultrasonic transducer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856320U (en) * 1981-10-13 1983-04-16 ソニー株式会社 Digital recording and playback circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856320B2 (en) * 1979-04-06 1983-12-14 シ−メンス、アクチエンゲゼルシヤフト ultrasonic transducer

Also Published As

Publication number Publication date
JPS5885911A (en) 1983-05-23

Similar Documents

Publication Publication Date Title
US4646153A (en) Noise reduction circuit for a video signal
US5598302A (en) Method and apparatus for detecting digital playback signals using phase equalization and waveform shaping of playback signals
JPH0125131B2 (en)
JPH0528410A (en) Digital magnetic recording and reproducing device
JP2690946B2 (en) MIG head waveform reproducing device
JPS58151110A (en) Waveform equalizing circuit
KR0185908B1 (en) Method for correcting signal reproduced and its method
US5631997A (en) Equalizer used for a VTR
KR0148184B1 (en) Method and apparatus of equalizing reproduced signal of recording and reproducing system for improving asymmetry improving asymmetry
JP2872514B2 (en) Noise reduction regenerative amplifier
JPS62219806A (en) Waveform equalizer
JP2675018B2 (en) Magnetic recording method for digital signals
JPH0424530Y2 (en)
JPH0526242B2 (en)
KR100223161B1 (en) Device for compensating reproduction signals
JP2508492B2 (en) Magnetic playback device
JP3364935B2 (en) Magnetic recording device
KR940000976B1 (en) Digital signal recording apparatus
JP2770886B2 (en) Magnetic recording / reproducing device
JPH0432857Y2 (en)
JPH0562345A (en) Audio magnetic recording/reproducing device
JPS6243246B2 (en)
JP2650278B2 (en) Waveform shaping circuit
JP2535826B2 (en) Noise cancellation circuit
JPH0316683B2 (en)