JPH01250909A - Elliptical jacket type polarization plane maintaining optical fiber - Google Patents

Elliptical jacket type polarization plane maintaining optical fiber

Info

Publication number
JPH01250909A
JPH01250909A JP63152261A JP15226188A JPH01250909A JP H01250909 A JPH01250909 A JP H01250909A JP 63152261 A JP63152261 A JP 63152261A JP 15226188 A JP15226188 A JP 15226188A JP H01250909 A JPH01250909 A JP H01250909A
Authority
JP
Japan
Prior art keywords
refractive index
optical fiber
cladding
elliptical jacket
elliptical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63152261A
Other languages
Japanese (ja)
Other versions
JPH0830774B2 (en
Inventor
Takeyoshi Takuma
詫摩 勇悦
Kimimichi Yamada
山田 公道
Masashi Nakamura
正志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63152261A priority Critical patent/JPH0830774B2/en
Publication of JPH01250909A publication Critical patent/JPH01250909A/en
Publication of JPH0830774B2 publication Critical patent/JPH0830774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To optimize the structure as a polarizer and to improve characteristics by forming a clad and support to the same refractive index as the refractive index value of silica and specifying the specific refractive index difference of the core with respect to the clad, the specific refractive index difference of an elliptical jacket with respect to the clad and the mode double refractive indices. CONSTITUTION:The clad 2 and support 4 of the polarization plane maintaining type optical fiber having a 4-layered structure are formed to the same refractive index as the refractive index value of silica. The specific refractive index difference of the core 1 with respect to the clad specified to <=0.3%, the specific refractive index difference of the elliptical jacket 3 with respect to the clad 2 to -0.15--0.25% and the mode double refractive indices to >=4.52X10<-4>. The structure as the polarizer is thereby optimized. The polarizer which is excellent in characteristics together with extinction ratio and insertion loss is obtd. by winding the optical fiber at a certain radius.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバ偏光子として用いるのに適した楕円
シ、■ゲット型閤波面保存光ファイバに関づる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an ellipsoidal, get-type, wavefront preserving optical fiber suitable for use as an optical fiber polarizer.

[−従来の技術1 偏波面保存光ファイバにより偏光子を構成するためには
、直交する2つの固有調波モードのうち一方のモードを
遮1υ1状態とする絶対単一偏波動作を示ずファム(絶
対単一偏波面保存光ファイバ)を用いることが望ましい
。この点に関し、本出願人は!1.+i願昭61−12
/1663号明細書、特願昭6l−124G(C4−り
明細書及び特願昭61−203751号明細Sにおいて
、それぞれ第6し1(a)へ(C)。
[-Prior art 1] In order to construct a polarizer using a polarization-maintaining optical fiber, it is necessary to use a polarizer that does not exhibit absolute single polarization operation in which one mode of two orthogonal eigenharmonic modes is blocked in the 1υ1 state. (absolutely single polarization maintaining optical fiber) is preferably used. In this regard, the applicant! 1. +i Gansho 61-12
/1663 specification, Japanese Patent Application No. 61-124G (C4-ri specification and Japanese Patent Application No. 61-203751 specification S, respectively, to No. 6-1-1(a) (C).

第717I(a)−1c)及び第8図(a) 〜(C)
に示すような絶対Jトー偏波面保存光ファイバを提案し
ている。
717I(a)-1c) and Figures 8(a)-(C)
We have proposed an absolute J-toe polarization maintaining optical fiber as shown in the figure below.

第6図(a)〜(C)に示した光ファイバ61は楕円ジ
ャケット62の短軸側においてはMC(マツチド クラ
ット)型の屈折率分布を、長軸側においてはW型の屈折
率分布をそれぞれ形成したものであり、基本モードのカ
ットオフ波長かMC型には存在せず、W型には存在する
ことを利用して絶対単一偏波動作を可能としている。
The optical fiber 61 shown in FIGS. 6(a) to 6(C) has an MC (mudded crat) type refractive index distribution on the short axis side of the elliptical jacket 62, and a W type refractive index distribution on the long axis side. Absolutely single polarization operation is possible by utilizing the fact that the cutoff wavelength of the fundamental mode does not exist in the MC type but exists in the W type.

一方、第7図(a)〜(C)に示した光ファイバ71は
楕円ジャケット72の短軸側及び長袖側ともW型の屈折
・45分布を形成しているが互いに消の深さに違いを持
たせたものである。W型ファイバでは清の深さによって
単一モード動作域が決定されるのて、鍋の深さに違いを
持たせたことにより短軸側及び長袖側に偏波したモード
の単一モード動作域が異なり、一方は低((!失な導波
モード、他方は高損失な漏洩モードとなる動作域か存在
し、これを利用して絶対Ji’−(Q波動化を可能とし
ている。
On the other hand, the optical fiber 71 shown in FIGS. 7(a) to (C) forms a W-shaped refraction/45 distribution on both the short axis side and the long sleeve side of the elliptical jacket 72, but the extinction depths are different from each other. It has the following. In a W-type fiber, the single mode operating range is determined by the depth of the fiber, so by making a difference in the depth of the pot, the single mode operating range of modes polarized to the short axis side and the long axis side can be increased. There is an operating range in which one is a low-loss guided mode and the other is a high-loss leaky mode, and this is utilized to make it possible to convert the absolute Ji'-(Q wave.

更に、第8図(a)〜(C)に示した光ファイバ81は
、これら第4図(a)〜(0及び第5図(a)〜(C)
に示す光ファイバては、楕円ジャケット62及び72の
屈折率分布をその円周方向に分割して短軸方向と長袖方
向の各屈折率を異なったものとする必要があるため、製
造が難しく設計値通りの光フ7・イバを4S−る歩留り
が悪かった点を改善したものて、コア1を中心としてそ
の外周部に順次クラッド2.楕円ジャケット3及びサボ
ー4を設けた4楕十I・1造の偏波面保存光ファイバに
おいて、楕円ジャケット3がクラッド2より低い屈折率
を有すると共にサポート4が上記クラッド2と等しい屈
折率を有し、楕円ジャケラ1−3か25〜40%の楕円
率とクラッド2に対して−0,05〜−0,03%の比
屈折率を有する構成としたものである。楕円ジャケット
3がその短軸方向及び長軸方向に同一の屈折率を有して
しているのて、容易に製造することができる利点を有す
る。
Furthermore, the optical fiber 81 shown in FIGS. 8(a) to (C) is
The optical fiber shown in the figure is difficult to manufacture because it is necessary to divide the refractive index distribution of the elliptical jackets 62 and 72 in the circumferential direction so that the refractive index in the short axis direction and the long sleeve direction are different. This is an improvement on the poor yield of 4S of optical fibers 7 and 7, which is as low as the price, and the cladding 2. In a polarization-maintaining optical fiber of 4 ellipses I/1 structure provided with an elliptical jacket 3 and a sabot 4, the elliptical jacket 3 has a refractive index lower than that of the cladding 2, and the support 4 has a refractive index equal to that of the cladding 2. , the elliptic jacket 1-3 has an ellipticity of 25 to 40% and a relative refractive index of -0.05 to -0.03% with respect to the cladding 2. Since the elliptical jacket 3 has the same refractive index in its minor axis direction and major axis direction, it has the advantage that it can be manufactured easily.

「発明がR々′沃しようとする課題J しかし、上記した第6図、第7図、第8図の楕円ジャケ
ット型偏波面保存光ファイバは、適当な曲げを加えて光
ファイバt=光子を得ようとする用途には、最適なもの
ではなかっな、即ち、モード複屈折率の効果を考慮して
いなかったので偏光子としての横道か最適化されておら
ず、従って、その特性、例えば消光比、挿入損失等も最
良とはいい得なかった。
However, the elliptical jacket type polarization maintaining optical fibers shown in FIGS. It is not optimal for the intended use, i.e., it is not optimized as a polarizer because the effect of mode birefringence was not taken into account, and therefore its properties, such as extinction The ratio, insertion loss, etc. were also not the best.

本発明は、モード複屈折率をも考慮することにより、偏
光子として適した絶対単一IIrM波動作を示す楕円ジ
ャケット型偏波面保存光ファイバを提供することにある
An object of the present invention is to provide an elliptical jacket type polarization-maintaining optical fiber that exhibits absolute single IIrM wave operation and is suitable as a polarizer by also considering mode birefringence.

[課題を解決するだめの手段] 本発明は上記目的を達成するために、コアを中心として
その外周部に順次クラッド、楕円ジャケット及びサポー
トか設ζ゛フられている4層構造の偏波面保存光ファイ
バにおいて、クラッドとサポートの屈折率がシリカの値
と同じで、クラッドに対するコアの比屈折率差 Δ十を
0.3%以下、クラッドに対する楕円ジャケットの比屈
折率差Δ−を−0,15〜−0,25%、モード複屈折
率Bを4.52X10−’以上として、楕円ジャケット
型面波面保存光フT〜 5〜 イバを邦1成したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a polarization preserving four-layer structure in which a cladding, an elliptical jacket, and a support are sequentially provided around a core around its outer periphery. In an optical fiber, the refractive index of the cladding and support is the same as that of silica, the relative refractive index difference Δ0 of the core to the cladding is 0.3% or less, and the relative refractive index difference Δ− of the elliptical jacket to the cladding is −0, 15% to -0.25%, and the mode birefringence B is 4.52X10' or more, and an elliptical jacket type surface wavefront preserving optical fiber is constructed.

また、偏光子の小型化を図る上で有用なものとしては、
:1アを中心としてその外周部に順次クラッド、楕円ジ
ャゲラ1〜、及びサポートか設幻られている4層Is 
3fjの偏波面保存光ファイバにおいて、クラッドとサ
ポートの屈折率がシリカと同じで、クラッドに対するコ
アの比屈折率差Δ寸を0.3〜0.4%、クラッドに対
する楕円ジャケットの比屈折率差へ−を−0,2〜−〇
、3χ、モード複屈折率Bを6.3 X10−4以上と
して楕円ジャケット型偏波面保存光ファイバを構成する
In addition, useful items for downsizing polarizers include:
: 4 layers Is with cladding, elliptical jaggery 1~, and support arranged in order around the outer periphery of 1A.
In a 3fj polarization maintaining optical fiber, the refractive index of the cladding and support is the same as that of silica, the relative refractive index difference Δ of the core to the cladding is 0.3 to 0.4%, and the relative refractive index difference of the elliptical jacket to the cladding is 0.3 to 0.4%. An elliptical jacket type polarization-maintaining optical fiber is constructed with -0,2 to -0,3χ and a mode birefringence B of 6.3X10-4 or more.

[作用1 クラ・ソドに対するコアの比屈折率差Δ十が0,3%以
下、クラッドに対する楕円ジャケットの比屈折率差Δ−
が−0,15〜−0,25%、モード複屈折率Bが4.
52x10−4以上というパラメータを持つ楕円ジャケ
ット型偏波面保存光ファイバは、モード複屈折率を考慮
した計算機による理論解析によって求められるものでは
あるが、いずれにせよこれらの数値範囲内で偏光子とし
ての幇遣か最適化され、ある半径でMf 該光ファイバ
を巻回することにより、消光比及び挿入損失ともに醍れ
た特性の1相光子を得ることがてきる。
[Effect 1: The relative refractive index difference Δ0 of the core with respect to the cladding is 0.3% or less, the relative refractive index difference Δ− of the elliptical jacket with respect to the cladding
is -0.15% to -0.25%, and mode birefringence B is 4.
Although the elliptical jacket type polarization-maintaining optical fiber with a parameter of 52x10-4 or more is obtained by theoretical analysis using a computer that takes into account the modal birefringence, it can be used as a polarizer within these numerical ranges. By winding the optical fiber with optimized winding and a certain radius, one-phase photons with excellent extinction ratio and insertion loss characteristics can be obtained.

また、クラッドに対するコアの比屈折率差Δ→を0.3
〜0.4″%、クラッドに対する楕円ジャクツ1〜のi
t屈屈折率差−を−0,2〜−0,3X−モード複屈折
率Bを6.3×10−4以上というパラメータを1.5
つ楕円ジャケン1へ型面波面保存光ファイバも同様に、
モード複屈折率を考見釘しX偏波及びX偏波の曲げ損失
差が大きくなるように理論解析することにより、偏光子
としての構造が最適化される。しかもこの光ファイバは
、偏光子を招るためになす巻回半径か曲の場合に較べ小
さくなり、小型の偏光子が111ちれる。
Also, the relative refractive index difference Δ→ of the core with respect to the cladding is 0.3
~0.4″%, i of elliptical jack 1~ to cladding
The parameter that the t-refractive index difference - is -0,2 to -0,3X-mode birefringence B is 6.3 x 10-4 or more is 1.5.
Similarly, for the elliptic Jaken 1 type surface wavefront preserving optical fiber,
The structure of the polarizer can be optimized by taking into account the mode birefringence and performing a theoretical analysis to increase the difference in bending loss between the X-polarized wave and the X-polarized wave. Moreover, this optical fiber is smaller than the winding radius or bend made to accommodate the polarizer, and the small polarizer is broken.

「実施例」 以下、本発明の実施例を添(く1図面に従って説明する
``Example'' Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図(aHbHc)はそれぞれ本発明の一実施例に係
る絶対単一・偏波面保存光ファイバの4y!断面図、X
軸方向の屈折率分布図およびY軸方向の屈折率分布図で
ある。図中、1はGeか添加されたSiO□カラスから
なるコアであり、このコア1の外周部にこれを囲繞する
ように純粋S i O2カラスからなるクラッド2が設
りられでいる。さらに、クラッド2の外周部にこ11を
囲繞するように楕円ジャゲラ1−3が設けられている。
FIG. 1 (aHbHc) shows 4y! of an absolutely single polarization maintaining optical fiber according to an embodiment of the present invention. Cross section, X
They are a refractive index distribution diagram in the axial direction and a refractive index distribution diagram in the Y-axis direction. In the figure, 1 is a core made of SiO□ glass doped with Ge, and a cladding 2 made of pure SiO2 glass is provided around the outer periphery of the core 1. Furthermore, an elliptical jaggery 1-3 is provided on the outer peripheral portion of the cladding 2 so as to surround the ridge 11.

この楕円ジャケラ1−3は、B2O3を添加した5in
2カラスからなりクラッド2の屈折率より低い屈折率を
有している。さらに、この楕円ジャケット3の外周部に
は、これを囲繞するように、純粋5IO2カラスからな
りクラッド2と等しい屈折率を有するサボー1〜4か設
けられている。
This elliptical jacket 1-3 is 5 inch with B2O3 added.
It consists of two glasses and has a refractive index lower than the refractive index of cladding 2. Further, sabots 1 to 4 made of pure 5IO2 glass and having the same refractive index as the cladding 2 are provided on the outer circumference of the elliptical jacket 3 so as to surround it.

第1.11(aH及び(C)において、aはコア1の半
径、bcは楕円ジャケット3の長軸半径、b、は楕円ジ
ャクツ1へ3の短軸半径であり、クラッド2の半径はク
ラッド厚とコアー′V径の比をδとして(1+δ)aて
°表わしである。n(r)はコア1、クラッド2、楕円
ジャケラ1へ3及びサボー1〜4の屈折率が、中心0か
らの距NL rの関数で表わされることを示す。Δ子は
クラッド2に対するコア1の比屈折率差、Δ−クラyド
2に対する楕円ジャクツ1−3の比屈折率差である。
1.11 (aH and (C)), a is the radius of core 1, bc is the major axis radius of elliptical jacket 3, b is the minor axis radius of elliptical jacket 1 to 3, and the radius of cladding 2 is the radius of cladding 2. The ratio of the thickness to the core'V diameter is expressed as (1+δ)a. Δ- is the relative refractive index difference of the core 1 with respect to the cladding 2, and Δ− is the relative refractive index difference of the elliptical jacks 1-3 with respect to the cladding 2.

屈折4−(分布n (r)の消の深さ、即ち八−は、楕
円ジャゲラ1−3の短軸および長軸側て同してあり、同
じシリカに対し比屈折率差△−を−0,15〜−0,2
5%の範囲で定める。また、屈折率分布n (r)の堝
の幅は、楕円シャグツ1へ3の楕円率εを25〜40″
Aの範囲で定める。
The extinction depth of refraction 4-(distribution n(r), that is, 8-) is the same on the short axis and long axis sides of the elliptical Jaegera 1-3, and the relative refractive index difference Δ- for the same silica is - 0,15~-0,2
Set within a range of 5%. In addition, the width of the refractive index distribution n (r) is 25 to 40'', with an ellipticity ε of elliptic shag 1 to 3.
Defined within the range of A.

かかる桿1成を前提として、モード複屈折率Bの作用効
果を考慮しつつ、偏光子として最適な構造を、有限要素
法により計算機により理論解析する。
On the premise of such a rod configuration, the optimal structure as a polarizer is theoretically analyzed by computer using the finite element method while taking into account the effect of the mode birefringence B.

この理路論解析では、便宜上、楕円ジャケット3の部分
までをコアであるとして扱い、この実効コア部内の」規
化位相定数Uと、その周囲のサポートl】を実効クラッ
ド部としC扱ったときの正規化横方向減衰定数Wとを吟
味する。
In this theoretical analysis, for convenience, the area up to the elliptical jacket 3 is treated as the core, and the normalized phase constant U in this effective core part and the support l around it are treated as C as the effective cladding part. Let us examine the normalized lateral damping constant W.

詳述するに、まず実効コア部としての楕円の長軸(X軸
)、短軸(y軸)の屈折率分布より、X軸方向に電界を
持つX偏波とX軸方向に電界を持つy偏波とに関し、そ
れぞれ進行方向の伝搬定数β8.β2を求める。この両
者の差Δβ−β8−β、は、屈折率分布の非軸対称性及
び異方性歪により生じるX偏波、y偏波間の伝搬定数差
てあり、この伝搬定数差ΔβC」てさるだ(1大きいこ
とか望まれる。 ’1llJ、l化モー1〜複屈折ぢ二
Bと伝搬定数差Δβ及び結合長C1の間には、次の関係
があり、両モード間の結合を減らすことができるからで
ある。
To explain in detail, first, from the refractive index distribution of the long axis (X-axis) and short axis (y-axis) of the ellipse as the effective core part, there is an X-polarized wave with an electric field in the X-axis direction and an electric field in the Regarding the y-polarized waves, the propagation constant β8 in the traveling direction, respectively. Find β2. The difference between the two, Δβ−β8−β, is the propagation constant difference between the (It is desirable that it be larger than 1.) There is the following relationship between 1llJ, 1-birefringence 2B, the propagation constant difference Δβ, and the coupling length C1, and it is possible to reduce the coupling between both modes. Because it can be done.

但し、k、(ミ2π/′λ)は自由空間中の光の波数、
λは自由空間中の光σ)波長である。
However, k, (mi2π/′λ) is the wave number of light in free space,
λ is the wavelength of light σ) in free space.

次に これらの値β1.βッ、Δβを用いて、X偏波の
実効コア部内の正′jJ、!化位相定数Uえと、X偏波
の実効コア部内の正規化位相定数Uyとを次式にて求め
る。
Next, these values β1. Using βt and Δβ, the positive ′jJ in the effective core of the X polarization,! The normalized phase constant U, and the normalized phase constant Uy in the effective core portion of the X-polarized wave are determined by the following equation.

已し、rl oは実効コア部内の中心(r−のての屈折
率である。
Then, rlo is the refractive index at the center (r-) within the effective core.

一方、X偏波、y (周波の実効クラッド部(サポート
部)内の正規化横方向減衰定数W工、Wyは、上記(1
1、(21式の正規化位相定数U1.Uyと正規化周波
数Vエ yyとを用いて、それぞれ次式で求められる。
On the other hand, the normalized lateral attenuation constant W in the effective cladding part (support part) of the X polarization, y (frequency) is the above (1
1, (Using the normalized phase constant U1.Uy and the normalized frequency Vyy of Equation 21, it is determined by the following equations, respectively.

W・−5票70酊コ     ・・・・・・(3)w、
 =、f’にコI買ロ1      ・・・・・・(4
)1Q L、正規化周波数V、、V、は、実効コア部内
の屈折率rto−自由空間中の波数k。、長袖半径bc
、短軸半径す0、実効クラッド部に対する実効コア部の
比屈折率差Δの関数で表わされ、V x ”’  16
 k。b c E口A     −−+5]V  、 
  =     n  、   k  o   b  
t  、L−m=7−し【−−−−−−−LSIで定義
されている。
W・-5 votes 70 intoxicants ・・・・・・(3) lol,
=, f' to buy 1 ...... (4
)1Q L, normalized frequency V, , V, is the refractive index rto in the effective core - the wave number k in free space. , long sleeve radius bc
, the minor axis radius 0, and the relative refractive index difference Δ between the effective core and the effective cladding, and V x ''' 16
k. b c E mouth A −-+5]V,
= n, kob
t, L-m=7- and [defined in LSI.

従って、偏光子としての最適化を図る一Fで問題となる
曲り′損失特性は、上記(1)〜[F])式の諸量Ut
Therefore, the bending loss characteristic that becomes a problem in 1F, which is aimed at optimization as a polarizer, is the various quantity Ut of the above equations (1) to [F]).
.

WL、Vむ(t=x、y)を基にして、有限要素法によ
り電磁界分布を知ることにより計算で求めることができ
、又そのときの屈折率分布をRNF(RefraCie
d Near Field )により測定し、これによ
り構成パラメータを求めることができる。
Based on WL, Vmu (t = x, y), it can be calculated by knowing the electromagnetic field distribution using the finite element method, and the refractive index distribution at that time can be calculated using RNF (RefraCie
dNear Field), from which the configuration parameters can be determined.

第2図の実線は上記理論解析法による計算により得られ
た曲げ損失特性を示し、黒丸のプロットはX偏波の曲げ
損失の実測値を、白丸プロットはy偏波の曲は損失の実
測値を示す。これから上記理論解析法による曲げ損失特
性は実測曲げ損失特性と極めて近似していることが判る
。よって、上記理論解析法により所望の曲げ損失特性の
楕円ジャケット型閤渡面保存光ファイバを計算すること
ができ、偏光子として最適となる屈折率分布も求めるこ
とができる。
The solid line in Figure 2 shows the bending loss characteristics obtained by calculation using the above theoretical analysis method, the black circle plot shows the actual measured value of the bending loss for X polarization, and the white circle plot shows the actual measured loss for the y polarization song. shows. It can be seen from this that the bending loss characteristics obtained by the above theoretical analysis method are extremely similar to the actually measured bending loss characteristics. Therefore, by the above-mentioned theoretical analysis method, it is possible to calculate an elliptical jacket type plane-preserving optical fiber having desired bending loss characteristics, and it is also possible to obtain a refractive index distribution that is optimal as a polarizer.

上記解析法を用いて、λが1.55.1.30.0.8
5μmの各波長用に設計した理論上の曲げ損失特性を第
3図に、そのときの導波構造を表1に示す6表1 但し、正規化モード複屈折率BはG、34xlO−’と
し、まIた、■で示す波長1.55μm用、■で示す波
長1.30μm用、■で示ず波長0.85μm用のいず
れの光ファイバも、正規化周波数は、 9<V、<11.   3.5<Vヶ<5.55の範囲
にある。
Using the above analysis method, λ is 1.55.1.30.0.8
The theoretical bending loss characteristics designed for each wavelength of 5 μm are shown in Figure 3, and the waveguide structure at that time is shown in Table 1.6Table 1 However, the normalized mode birefringence B is G, 34xlO-'. , Also, the normalized frequencies of the optical fibers for wavelengths of 1.55 μm, shown by ■, for wavelengths of 1.30 μm, shown by ■, and for wavelengths of 0.85 μm, not shown by ■, are as follows: 9<V, <11 .. It is in the range of 3.5<V<5.55.

第3図の曲げ損失特性から、■■■いずれの光ファイバ
も、曲げ半径が40 +n tll以下ではX偏波の曲
は損失αッがα、 > 1 dB#nとなる。従って、
40mm以下の半径てこの光ファイバを巻けば、実効的
にX偏波のみどなり、所望の最適な光フアイバ面光子か
得られる。
From the bending loss characteristics shown in FIG. 3, for any of the optical fibers, if the bending radius is 40+ntll or less, the loss α for the X-polarized wave becomes α, > 1 dB#n. Therefore,
By winding the optical fiber with a radius of 40 mm or less, the X-polarized light is effectively generated, and the desired optimum optical fiber surface photons can be obtained.

実際に0.85μm用の光ファイバ■を曲は半径401
11+11て15回たけ(長さ3.8n+)巻回した結
果、消光比−47dB  (円偏波入射)、挿入損失0
.3(IB  (x 14jJ波入射)の1、ν性を有
する光フアイバ面光子を得た。
Actually, the radius of bending a 0.85 μm optical fiber is 401
As a result of winding 11+11 15 times (length 3.8n+), the extinction ratio is -47 dB (circularly polarized wave incidence) and the insertion loss is 0.
.. An optical fiber surface photon having a 1, ν property of 3 (IB (x 14j J wave incident) was obtained.

上記設計例の光ファイバ■■■は、それぞれ曲げ半径4
0mn1以下で偏光子となるが、理論解析の結果、これ
以外の場合でも、次のような条件下で偏光子としての構
造を最適化できることが判った。
The optical fibers in the design example above each have a bending radius of 4
It becomes a polarizer when it is 0 mn1 or less, but as a result of theoretical analysis, it was found that the structure as a polarizer can be optimized under the following conditions even in cases other than this.

即ち、クラッドとサポートの屈折率かシリカの値と同じ
場合において、クラッド2に対する:1ア1の比屈折率
差Δ十を0.3冗以千、クラッド2に対する楕円ジャケ
ット3の比屈折率差Δ−を一〇、15〜−0.25%、
モード複屈折率Bを4.52xlO−4以上とした楕円
ジャケット型面波面保存光ファイバである。
That is, in the case where the refractive index of the cladding and the support is the same as that of silica, the relative refractive index difference Δ0 of :1A1 with respect to the cladding 2 is more than 0.3 thousand, and the relative refractive index difference of the elliptical jacket 3 with respect to the cladding 2 is Δ- is 10, 15 to -0.25%,
It is an elliptical jacket type surface wavefront preserving optical fiber with a mode birefringence B of 4.52xlO-4 or more.

この数fli範囲における光フ7・イバも、曲げ半径が
成る値以下で口i光子となる。従ってその偏光子となる
曲げ半径は40IIIIIlより大きい場合も存在する
The optical fiber 7 in this number fli range also becomes a photon below the value of the bending radius. Therefore, there are cases where the bending radius of the polarizer is larger than 40IIIIIIl.

ところで、第3図の曲ζ・ノ′損失特性より、曲げ半径
40 m +n以下てはX偏波の曲げ損失が1dB#n
以上となるから、数1119Hば偏光子か慴られる訳で
あるが、挿入損失を0.5(IC以下とするためには、
X 141j波の曲(・)゛損失により曲げ半径か約1
5Illn+以上と限定されてしまう、偏光子を小型化
しシステム全体をコンバクI−にするためには、曲り半
径の小さな領域(10u以下)で絶対Jii〜・1狗波
動作を実現することか望まhる。
By the way, from the curve ζ・no' loss characteristics in Figure 3, if the bending radius is less than 40 m + n, the bending loss of the X polarization is 1 dB#n
Because of the above, a polarizer of several 1119H is preferred, but in order to reduce the insertion loss to 0.5 (IC or less),
X 141j wave bending (・)゛Due to loss, the bending radius is approximately 1
In order to miniaturize the polarizer and make the entire system convex I-, which is limited to 5Illn+ or more, it is desirable to realize absolute Jii~-1 dog wave operation in a region with a small bending radius (10u or less). Ru.

そこで、モード複屈折率を考慮した上述の有限要素法に
よる設計法を用いて、曲げ半径10nun以下で絶対却
−偏波動作が可能となるよう、楕円ジャケット型111
1波面保存光フトイバの構造パラメータをjπよ。
Therefore, using the above-mentioned finite element method design method that takes into account the modal birefringence, an elliptical jacket type 111
1 Let jπ be the structural parameter of the wavefront preserving optical fiber.

まず、第1図に示した楕円型ジャケット偏波面保存(S
 P )光ファイバの屈折十分イIJを次のようにする
。コア1はゲルマニウノ\をドープじたシリカカラス、
クラッド2は純粋シリカガラス、楕円シャゲラ1−3は
ポロン、リンをドープしたシリカカラスより成り、外周
部には、これらを囲繞するよう純粋シリカカラスからな
りクラッドと等しい屈折率を有°jるサポート4を設?
−Jる。コア1のクラッド2に対する比屈折率差Δ+は
0.3・−0,4%、クラッド2に対する楕円ジャケラ
1−30比屈折率差八−は−0,2〜−03%、楕円ジ
ャケラ1−・の楕円率εは30〜45%、モード複屈折
率Bは6.3x10’以」−の範囲て定める。
First, let's start with the elliptical jacket polarization preserving (S) shown in Figure 1.
P) Set the sufficient refraction IJ of the optical fiber as follows. Core 1 is silica crow doped with Germani Uno,
The cladding 2 is made of pure silica glass, and the elliptical shagellas 1-3 are made of silica glass doped with poron and phosphorus.The outer periphery is surrounded by a support made of pure silica glass and having a refractive index equal to that of the cladding. Set 4?
-Jru. The relative refractive index difference Δ+ of the core 1 with respect to the cladding 2 is 0.3・-0.4%, the relative refractive index difference 8- with respect to the elliptical jacket 1-30 with respect to the cladding 2 is -0.2 to -03%, and the elliptical jacket 1- The ellipticity ε of * is set in the range of 30 to 45%, and the mode birefringence B is set in the range of 6.3 x 10' or more.

このような構成を前提として、モード複屈折率Bの作用
効果を考慮し、曲C−)半径の小さな領域で1扁光了と
して動作する?L適な横道を、−L述の有限要素法によ
り解析する。
Assuming such a configuration, considering the effect of the mode birefringence B, the curve C-) operates as a single beam in a region with a small radius. The L-suitable side road is analyzed by the finite element method described in -L.

なお、この設計法により得られる曲は損失特性、カット
オフ波長は実測地と一致することを確めている。
It has been confirmed that the loss characteristics and cutoff wavelength of the songs obtained using this design method match those of the actual measurement locations.

上記解析法を用いて、波長0.85μm用に設計したS
P光ファイバの構造パラメータを表2に示す。
Using the above analysis method, S designed for a wavelength of 0.85 μm
Table 2 shows the structural parameters of the P optical fiber.

但し、計算ではB = 6.3 x 10−’とした。However, in the calculation, B = 6.3 x 10-'.

表2 この光ファイバの曲げ損失特性を第4図及び第5図に示
す。第4図はコア1のクラッド2に対する比屈折率差Δ
十−〇、3%のSP光ファイバ(aHb)について、第
5図はクラッド2に対する楕円ジャケット3の比屈折率
差Δ−−0,2%のSP光ファイバ[aHc)について
示しである。表2に(a)(b)(C)で示すいずれの
SP光ファイバも、正規化周波数は、 9<V工<15.  4<Vアく6 のφi工囲にある。
Table 2 The bending loss characteristics of this optical fiber are shown in FIGS. 4 and 5. Figure 4 shows the relative refractive index difference Δ between core 1 and cladding 2.
FIG. 5 shows an SP optical fiber (aHc) with a relative refractive index difference Δ--0.2% between the elliptical jacket 3 and the cladding 2. For all SP optical fibers shown in (a), (b), and (C) in Table 2, the normalized frequency is 9<V<15. It is in the φi range of 4<Vaku6.

今、第71図及び第5し!において、y偏波の曲は損失
が10 FI B / +nとなる曲げ半径R1−x偏
波野面げ損失が0.1〔lB#nとなる曲げ半径をR2
とすれば、第X1図及び第5図の曲げ損失特性から、y
10波の曲げ損失が10 d B / n1以上で、X
偏波の曲げ損失が0゜1 d B / IN以下となる
曲げf径Rが、10111m以下で存在することが判る
。従って、その範囲(R1くRく1髪2)で、このS 
F)光ファイバを数111巻ζづは、小型光ファイバ偏
光了力冑;)られることになる。
Now, Figure 71 and Figure 5! In the curve of y-polarized wave, the bending radius is R1-x where the loss is 10 FI B / +n, and the bending radius where the polarization loss is 0.1[lB#n is R2
Then, from the bending loss characteristics shown in Figures X1 and 5, y
When the bending loss of 10 waves is 10 dB/n1 or more,
It can be seen that the bending f diameter R at which the polarization bending loss is 0°1 dB/IN or less exists at 10111 m or less. Therefore, in that range (R1 × R × 1 hair 2), this S
F) Several 111 turns of optical fiber are used to create a compact optical fiber for polarization.

実際に0.81JJJ、lll用S I)光7yイバ(
a)を曲げ半径6111111て2.5m8いたR−へ
果、挿入損失0.2dB−消光比(円面波入射時)−4
2dBの’Lν性を有する光フッ・イバ偏光子を得た。
Actually 0.81JJJ, lll SI) light 7y iba (
Bending a) to R- which was 2.5m8 with a radius of 6111111, the result is insertion loss 0.2dB - extinction ratio (at the time of circular wave incidence) -4
An optical fiber polarizer having a 'Lν property of 2 dB was obtained.

[発明の効果] 以上のように、本発明の楕円ジャゲン1へ型面波面保存
光ファイバは、モード複屈折率を考慮した屈折率分布と
したのて、特性の嗟れた1=光子が得らノ′シる。この
なめず口光子を使用する光泪測システム、光フアイバジ
ャイロ、コヒーレン1へ伝送シス13等の機能向上につ
ながる。
[Effects of the Invention] As described above, the elliptical Jagen 1 wavefront preserving optical fiber of the present invention has a refractive index distribution that takes into account the mode birefringence, and a 1=photon with enhanced characteristics can be obtained. Rano'shiru. This will lead to improvements in the functionality of optical measurement systems, optical fiber gyros, transmission systems 13 to Coheren 1, etc. that use these photons.

特に請求項2の楕円ジャケット型偏波面保存光ファイバ
の場合は、小型で特性の優れた光フアイバ偏光子が14
7られるため、偏光子を使用する光計測システム、光フ
アイバジャイロ、コヒーレン1へ伝送システム等の小型
化、機能向上が図れる。
In particular, in the case of the elliptical jacket type polarization maintaining optical fiber of claim 2, the optical fiber polarizer is small and has excellent characteristics.
7, it is possible to downsize and improve the functionality of an optical measurement system using a polarizer, an optical fiber gyro, a transmission system to the coheren 1, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図faHb)(c)はそれぞれ本発明の楕円ジャケ
ン1〜型偏波面保存)にファイバの横断面図、X軸力向
の屈折率分布図及びy軸方向の屈折率分布図、第2図は
X偏波及びY偏波の計算と実J!11による曲げ損失1
、ν・rlをボす図、第3[ン1はR1算により求めた
3種の光ファイバの曲り(が失特性を示す図、第11し
1及び第5図はそれぞれ他の光ファイバにお(′)る曲
げ損失;[♂性を示ずしI、第6図(a)〜[C) 、
第7図(a) ヘIc) 、第8図(a)へFC)はぞ
れぞれ既にJIl案されている光ファイバの4i!!1
EIi面及び屈折率分布を示す説明図である。 図中、1はコア、2(」クラ:lド、3は楕円ジャケッ
ト、4はサポートである。
Figure 1 faHb) and (c) are the cross-sectional view of the fiber, the refractive index distribution diagram in the X-axis power direction, the refractive index distribution diagram in the y-axis direction, and the second The figure shows the calculation of X polarization and Y polarization and the actual J! Bending loss 1 due to 11
, ν・rl, 3rd [n1] is a diagram showing the loss characteristics of the three types of optical fibers determined by R1 calculation, and 11th, 1, and 5 are diagrams showing the loss characteristics of the three types of optical fibers obtained by calculating R1. (') bending loss;
Fig. 7(a) FC) and Fig. 8(a) FC) are respectively 4i! of the optical fiber already proposed by JIl! ! 1
FIG. 3 is an explanatory diagram showing an EIi plane and a refractive index distribution. In the figure, 1 is a core, 2 is an oval jacket, 4 is a support.

Claims (1)

【特許請求の範囲】 1、コアを中心としてその外周部に順次クラッド、楕円
ジャケット及びサポートが設けられている4層構造の偏
波面保存光ファイバにおいて、クラッドとサポートの屈
折率がシリカの値と同じで、クラッドに対するコアの比
屈折率差を0.3%以下、クラッドに対する楕円ジャケ
ットの比屈折率差を−0.15〜−0.25%、モード
複屈折率を4.52×10^−^4以上としたことを特
徴とする楕円ジャケット型偏波面保存光ファイバ。 2、コアを中心としてその外周部に順次クラッド、楕円
ジャケット及びサポートが設けられている4層構造の偏
波面保存光ファイバにおいて、クラッドとサポートの屈
折率がシリカの値と同じで、クラッドに対するコアの比
屈折率差を0.3〜0.4%、クラッドに対する楕円ジ
ャケットの比屈折率差を−0.2〜−0.3%、モード
複屈折率を6.3×10^−^4以上としたことを特徴
とする楕円ジャケット型偏波面保存光ファイバ。
[Claims] 1. In a polarization-maintaining optical fiber with a four-layer structure in which a cladding, an elliptical jacket, and a support are sequentially provided on the outer periphery of the core, the refractive index of the cladding and the support is the same as that of silica. Similarly, the relative refractive index difference of the core to the cladding is 0.3% or less, the relative refractive index difference of the elliptical jacket to the cladding is -0.15 to -0.25%, and the mode birefringence is 4.52 × 10^ An elliptical jacket-type polarization-maintaining optical fiber characterized by having a polarization-maintaining optical fiber of −^4 or more. 2. In a polarization-maintaining optical fiber with a four-layer structure in which a cladding, an elliptical jacket, and a support are sequentially provided around the core, the refractive index of the cladding and the support is the same as that of silica, and the core relative to the cladding is The relative refractive index difference of 0.3 to 0.4%, the relative refractive index difference of the elliptical jacket to the cladding is -0.2 to -0.3%, and the mode birefringence is 6.3 × 10^-^4 An elliptical jacket type polarization maintaining optical fiber characterized by the above.
JP63152261A 1987-12-18 1988-06-22 Elliptical jacket type polarization-maintaining optical fiber Expired - Lifetime JPH0830774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63152261A JPH0830774B2 (en) 1987-12-18 1988-06-22 Elliptical jacket type polarization-maintaining optical fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-318967 1987-12-18
JP31896787 1987-12-18
JP63152261A JPH0830774B2 (en) 1987-12-18 1988-06-22 Elliptical jacket type polarization-maintaining optical fiber

Publications (2)

Publication Number Publication Date
JPH01250909A true JPH01250909A (en) 1989-10-05
JPH0830774B2 JPH0830774B2 (en) 1996-03-27

Family

ID=26481232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152261A Expired - Lifetime JPH0830774B2 (en) 1987-12-18 1988-06-22 Elliptical jacket type polarization-maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPH0830774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622622A3 (en) * 1993-04-27 1994-11-23 Hitachi Ltd Physical quantity detecting apparatus and internal combustion engine control apparatus each utilizing optical fiber.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622622A3 (en) * 1993-04-27 1994-11-23 Hitachi Ltd Physical quantity detecting apparatus and internal combustion engine control apparatus each utilizing optical fiber.
US5693936A (en) * 1993-04-27 1997-12-02 Hitachi, Ltd. Physical quantity detecting apparatus and internal combustion engine control apparatus each utilizing optical fiber

Also Published As

Publication number Publication date
JPH0830774B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US12117646B2 (en) Hollow-core optical fibers
KR910000718B1 (en) Optical fiber for propagating single mode single polarized wave
US4913521A (en) Single-polarization optical fiber
US4717225A (en) Form polarizing fibers and method of fabrication
Mousavi et al. First design of high birefringence and polarising hollow core anti-resonant fibre
Shao et al. Seven-core fiber based in-fiber Mach–Zehnder interferometer for temperature-immune curvature sensing
Ren et al. Design of polarization beam splitter based on dual-core photonic crystal fiber with three layers of elliptical air holes
Bhandari Orbital angular momentum (OAM) mode mixing in a bent step index fiber in perturbation theory
JPS6360411A (en) Optical fiber for maintaining plane of polarization
US4711525A (en) Polarizing optical fiber with absorbing jacket
Bürger et al. Impact of coordinate frames on mode formation in twisted waveguides
JPH01250909A (en) Elliptical jacket type polarization plane maintaining optical fiber
Kurbatov et al. Polarization and modal filters based on W-fibers Panda for fiber-optic gyroscopes and high-power fiber lasers
JPS60154215A (en) Fiber type directional coupler
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JPS6053285B2 (en) Constant polarization optical fiber
Huang et al. Broadband low loss single-polarization single-mode hollow-core antiresonant fiber with hybrid cladding
Asha et al. Highly Birefringent Low Loss Hollow Core Nested Antiresonant Fiber
Morshed et al. Bending characteristics of single mode-multimode-single mode optical fiber structures
JPH0223305A (en) Elliptic jacket type polarization plane maintaining optical fiber
JP3011140B2 (en) Fiber type optical isolator and method of manufacturing the same
JP2528094B2 (en) Fiber type polarizer
CN108427159B (en) Deep ultraviolet planar optical waveguide
JPS58220103A (en) Single polarization fiber for ultralong wavelength
JPS6310403B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13