JPH01250863A - Method of determining c-terminal amino acid of protein or the like - Google Patents

Method of determining c-terminal amino acid of protein or the like

Info

Publication number
JPH01250863A
JPH01250863A JP8032188A JP8032188A JPH01250863A JP H01250863 A JPH01250863 A JP H01250863A JP 8032188 A JP8032188 A JP 8032188A JP 8032188 A JP8032188 A JP 8032188A JP H01250863 A JPH01250863 A JP H01250863A
Authority
JP
Japan
Prior art keywords
protein
terminal
amino acid
denatured
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8032188A
Other languages
Japanese (ja)
Inventor
Fumio Sakiyama
崎山 文夫
Toshiya Umeda
梅田 俊也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8032188A priority Critical patent/JPH01250863A/en
Publication of JPH01250863A publication Critical patent/JPH01250863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To establish the method of determining C-terminal amino acid which can deal with increasingly slighter quantities of protein, etc., by treating denatured protein or denatured peptide to convert a terminal carboxyl group to an acetyl group, hydrolyzing the resultant product, converting the liberated amino ketone body to a deriv. and separating and identifying the same. CONSTITUTION:The protein, etc., are subjected to the denaturation treatment by performic acid oxidation, etc., to form the denatured protein, etc., in which the three-dimensional structure is broken down and the C-terminal is exposed. After the protein, etc., are dried, the protein, etc., are treated with acetic anhydride in the presence of an org. ternary base in an anhydrous aprotic solvent to convert the carboxyl group at the terminal to the acetyl group. The amino ketone body corresponding to the terminal amino acid part having the C- terminal is liberated as the mixture with the other amino acid if the product is hydrolyzed by using hydrochloric acid, etc. The desired amino ketone body is separated and identified by a hydrazone deriv., etc.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はタンパク質等のC末端アミノ酸の決定方法に
関する。さらに詳しくは、タンパク質等の一次構造決定
の一環として、タンパク質またはペプチドのC末端アミ
ノ酸を決定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method for determining the C-terminal amino acid of proteins, etc. More specifically, the present invention relates to a method for determining the C-terminal amino acid of a protein or peptide as part of determining the primary structure of a protein or the like.

(1口)従来の技術 タンパク質またはタンパク質の断片化により生じたペプ
チドのアミノ酸配列(−次構造)を決定する方法として
は、ペプチド鎖のアミノ(N)末端やカルボキシル(C
)末端にそれぞれ存在する遊離のアミノ基やカルボキシ
ル基を利用して、ペプチド鎖の端から1つずつアミノ酸
を遊離させて順次分析していく方法かとられている。こ
のうちC末端分析法においては、C末端基からアミノ酸
残基の逐次脱離法は開発されていない。カルポキンベプ
チクーゼ(CPage)−’1’や−Pはアミノ酸の種
類によらずペプチド鎖のC末端よりアミノ酸を遊離させ
るが、配列順序の決定には敗残基が限度である。一方、
C末端基のみを決定する方法としてはヒドラジン分解法
+1.  )リチウムラベル法2′、チオヒダントイン
3′法がある。
(1 sip) Conventional techniques Methods for determining the amino acid sequence (-substructure) of proteins or peptides produced by protein fragmentation include the amino (N) terminal and carboxyl (C
) A method is used in which amino acids are released one by one from the ends of the peptide chain and sequentially analyzed using the free amino groups and carboxyl groups present at each end. Among these, in the C-terminal analysis method, a method for sequentially removing amino acid residues from the C-terminal group has not been developed. Calpokin vepticase (CPage) -'1' and -P release amino acids from the C-terminus of the peptide chain regardless of the type of amino acid, but the number of lost residues is the limit for determining the sequence order. on the other hand,
A method for determining only the C-terminal group is the hydrazine decomposition method +1. ) Lithium label method 2' and thiohydantoin 3' method.

上記ヒドラジン分解法は、無水ヒドラジン中、例えば1
00℃、6−10時間加熱(減圧封管中)して、C末端
以外のアミノ酸はそのヒドラジドとし、C末端の遊離ア
ミノ酸を分離同定する方法である。
In the above hydrazine decomposition method, for example, 1
In this method, amino acids other than the C-terminus are converted into hydrazide by heating at 00° C. for 6 to 10 hours (in a vacuum-sealed tube), and free amino acids at the C-terminus are separated and identified.

上記トリチウムラベル法は、ピリジン−トリチウム水−
無水酢酸(3:I・3. v/v)混合液中、例えば2
0°C,1−2時間放置し、C末端アミノ酸C−α位水
素原子のみトリチウムに変換し、試料を加水分解後トリ
チウムラベルアミノ酸を分離同定する方法である。
The above tritium labeling method uses pyridine-tritium water-
In acetic anhydride (3:I.3.v/v) mixture, e.g.
In this method, only the hydrogen atom at the C-α position of the C-terminal amino acid is converted to tritium by leaving the sample at 0°C for 1 to 2 hours, and after hydrolyzing the sample, the tritium-labeled amino acid is separated and identified.

上記チオヒダントイン法は、タンパク質等のC末端アミ
ノ酸を無水酢酸の存在下でチオシアン酸および/または
チオシアン酸イオンと反応させた後、希アルカリ分解に
よりC末端アミノ酸のチオヒダントイン誘導体を生成す
ることにより、逐次的に分解していく方法である。
The above thiohydantoin method involves reacting a C-terminal amino acid such as a protein with thiocyanate and/or thiocyanate ion in the presence of acetic anhydride, and then generating a thiohydantoin derivative of the C-terminal amino acid by dilute alkaline decomposition. This is a method of sequential decomposition.

文献) 1) Akabori、S、、 0hno、に、、 a
nd Narita、K。
References) 1) Akabori, S., 0hno, ni., a.
nd Narita, K.

(1954)、Bull、  Chem、  Soc、
  Japan、 25.2142) Matsuo、
H,、and Narita、に、、 −Protei
nS equence D etermination
’ (S 、B 、Needleman。
(1954), Bull, Chem, Soc.
Japan, 25.2142) Matsuo,
H,, and Narita, -Protei
nSequenceDtermination
'(S, B, Needleman.

ed、)、Springer Verlag Berl
in、1975.p、1943) 5tark、G、R
,(196g)、Biochemistry、7,17
96Meuth、J、L、、 Harris、D、E、
、 Dwelet、F。
ed, ), Springer Verlag Berl
in, 1975. p, 1943) 5tark, G.R.
, (196g), Biochemistry, 7,17
96Meuth, J.L., Harris, D.E.
, Dwelet, F.

E、、Crowl−Powers、l’v1.L、、 
and Gurd、 F。
E,,Crowl-Powers,l'v1. L...
and Gurd, F.

R,N、、 (1982)、 Biochemistr
y、21.3750(ハ)発明が解決しようとする課題 しかしながら上記いずれの方法においてら、a)特定の
タンパク質またはペプチドに対して有効でない場合があ
り、b)検出が不可能もしくは困難なアミノ酸があり、
C)副生成物が多く解叶か困難な場合があるという問題
点を有している。またさらに微量のタンパク質もしくは
ペプチドのC末端アミノ酸の決定が困難である。
R, N., (1982), Biochemistr.
y, 21.3750 (c) Problems to be Solved by the Invention However, none of the above methods a) may be ineffective against a specific protein or peptide, and b) may contain amino acids that are impossible or difficult to detect. can be,
C) It has the problem that many by-products are produced and it may be difficult to solve the problem. Furthermore, it is difficult to determine the C-terminal amino acid of trace amounts of proteins or peptides.

この発明はかかる状況に鑑みなされたものであり、いず
れのタンパク質またはペプチドにも応用可能であり、タ
ンパク質またはペプチドの微量化に対応可能なC末端ア
ミノ酸の決定方法を提供しようとするものである。
The present invention has been made in view of this situation, and aims to provide a method for determining the C-terminal amino acid that can be applied to any protein or peptide and can be applied to miniaturization of proteins or peptides.

(ニ)課題を解決するための手段 かくしてこの発明によれば、予め変性した末端にカルボ
キシル基を有する変性タンパク質もしくは変性ペプチド
を、無水の非プロトン性溶媒中、有機第3級塩基の存在
下無水酢酸と処理して末端カルボキシル基をアセチル基
に変換し、得られたこの生成物を加水分解に付し、次に
遊離した末端アミノ酸部分に相当するアミノケトン体を
、ヒドラゾン誘導体もしくはオキシム誘導体に導いて、
これを分離同定することを特徴とするタンパク質等のC
末端アミノ酸の決定方法が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a denatured protein or a denatured peptide having a carboxyl group at the terminal which has been denatured in advance is dehydrated in the presence of an organic tertiary base in an anhydrous aprotic solvent. The terminal carboxyl group is converted to an acetyl group by treatment with acetic acid, the resulting product is subjected to hydrolysis, and the free aminoketone corresponding to the terminal amino acid moiety is converted into a hydrazone derivative or an oxime derivative. ,
C of proteins, etc. characterized by separating and identifying this
A method for determining terminal amino acids is provided.

この発明の方法は、予め変性されたC末端を有するタン
パク質またはペプチド(以下変性タンパク質等という)
を対象とし、(1)上記変性タンパク質等の末端カルボ
キシル基をアセチル基へ変換する反応工程、(2)アセ
チル基に変換された末端゛アミノケトン部を遊離する加
水分解過暖、(3)遊離アミノケトン体を誘導体化しそ
れを分離・同定する過程、の3段階からなるものである
The method of this invention involves the use of proteins or peptides (hereinafter referred to as denatured proteins, etc.) having a previously denatured C-terminus.
(1) A reaction step for converting the terminal carboxyl group of the above-mentioned denatured protein into an acetyl group, (2) Hydrolytic heating to release the terminal aminoketone moiety converted to an acetyl group, and (3) Free aminoketone. It consists of three steps: derivatizing the body, separating it, and identifying it.

この発明の方法に供される変性タンパク質等とは、予め
変性処理されてその三次元構造が破壊されその結果C末
端が露出されたものをいう。上記変性処理としては、過
ギ酸酸化、S−カルボキシメチル化、S−アミノエチル
化等が挙げられる。
The denatured protein etc. to be subjected to the method of the present invention refers to one whose three-dimensional structure has been destroyed by a denaturation treatment in advance and the C-terminus has been exposed as a result. Examples of the modification treatment include performic acid oxidation, S-carboxymethylation, S-aminoethylation, and the like.

上記変性タンパク質等は、まず上記(1)の反応工程に
付される前に通常乾燥処理される。これは次の(1)の
反応工程が無水条件で進行されるためであり、この乾燥
処理を行うことにより効率良く反応が進行する。この乾
燥処理は例えば試料をジメチルスルホキシド(以下D 
M S Oという)またはヘキサフルオロイソプロパツ
ール(以下HFIPという)のいずれかの溶媒に溶かし
、減圧乾燥を操り返す等が挙げられる。このように無水
処理して得られる変性タンパク質等は、次いで(1)の
反応工程に付される。すなわちこの変性タンパク質等は
無水の非プロトン性溶媒中、有機第3級塩基の存在下無
水酢酸と処理され、末端のカルポキシル基がアセチル基
に変換される。この反応過程はいわゆるデイキン−ウェ
スト(D akin−West)反応を利用する工程で
ある。ここで用いられる上記無水の非プロトン性の溶媒
としては、目的のタンパク質等を溶解し得るものが選択
され、例えばDMSO等が挙げられる。上記有機第3級
塩基も通常無水状態に乾燥して用いられる。この第3級
塩基は、触媒および/または塩基性調整剤として用いら
れ、例えばジアルキルアミノピリジン、トリエチルアミ
ン(以下TEAという)等が挙げられる。上記ジアルキ
ルアミノピリジンとしてはジメチルアミノピリジン(以
下DMAPという)が好ましいがこれに限定されない。
The above-mentioned denatured proteins and the like are usually dried before being subjected to the reaction step (1) above. This is because the next reaction step (1) proceeds under anhydrous conditions, and by performing this drying treatment, the reaction proceeds efficiently. This drying treatment can be carried out, for example, by drying the sample with dimethyl sulfoxide (hereinafter referred to as D
For example, it may be dissolved in a solvent such as M SO or hexafluoroisopropanol (hereinafter referred to as HFIP) and dried under reduced pressure. The denatured protein etc. obtained by such anhydrous treatment is then subjected to the reaction step (1). That is, this denatured protein etc. is treated with acetic anhydride in an anhydrous aprotic solvent in the presence of an organic tertiary base, and the terminal carpoxyl group is converted to an acetyl group. This reaction process utilizes the so-called Dakin-West reaction. The anhydrous aprotic solvent used here is selected from those capable of dissolving the target protein, such as DMSO. The above-mentioned organic tertiary base is also usually used after being dried to an anhydrous state. This tertiary base is used as a catalyst and/or a basicity regulator, and includes, for example, dialkylaminopyridine, triethylamine (hereinafter referred to as TEA), and the like. The dialkylaminopyridine is preferably dimethylaminopyridine (hereinafter referred to as DMAP), but is not limited thereto.

上記反応に用いられる無水酢酸も通常無水状態に乾燥し
て用いられる。この無水酢酸は反応成分として用いられ
る。
Acetic anhydride used in the above reaction is also usually dried to an anhydrous state before use. This acetic anhydride is used as a reaction component.

この反応工程の条件としては、例えば無水かつ塩基性雰
囲気下で50℃程度で1〜3時間保持する等が挙げられ
る。詳しくは後述する実施例の記載が参照される。上記
反応工程で用いる反応試薬および反応成分等を厳密に乾
燥して用いることにより、反応収率を向上することがで
き供試されるタンパク質等の微量化がはかれることとな
る。
Conditions for this reaction step include, for example, holding at about 50° C. for 1 to 3 hours in an anhydrous and basic atmosphere. For details, refer to the description of Examples described later. By strictly drying the reaction reagents, reaction components, etc. used in the above reaction step, the reaction yield can be improved and the amount of protein, etc. to be tested can be reduced.

この発明の方法において、上記の反応工程で得られる生
成物は、加水分解に付される。該加水分解は、目的の加
水分解物の性質上酸性条件下で進行され、通常塩酸を用
いて行われるが、塩酸以外の酸であってもよい。またさ
らにこの加水分解は加水分解物の安定性の点からしばし
ば減圧上封管て進行される。上記加水分解処理としては
例えば、塩酸で所定のpHに調整した後、減圧下封管状
態で110℃、12時間保持する等が挙げられる。この
ような処理により(1)の反応工程で得られた生成物は
加水分解され、面記C末端を育する末端アミノ酸部分に
相当するアミノケトン体が、この処理によって同時に遊
離される他のアミノ酸と共に混合物として得られろ。
In the method of this invention, the product obtained in the above reaction step is subjected to hydrolysis. The hydrolysis is carried out under acidic conditions due to the nature of the desired hydrolyzate, and is usually carried out using hydrochloric acid, but acids other than hydrochloric acid may be used. Furthermore, this hydrolysis is often carried out under reduced pressure and in a sealed tube from the viewpoint of stability of the hydrolyzate. Examples of the above-mentioned hydrolysis treatment include adjusting the pH to a predetermined value with hydrochloric acid, and then holding it at 110° C. for 12 hours in a sealed tube under reduced pressure. Through this treatment, the product obtained in the reaction step (1) is hydrolyzed, and the aminoketone body corresponding to the terminal amino acid moiety that grows the C-terminus is released together with other amino acids simultaneously released by this treatment. Obtain it as a mixture.

この発明の方法において、上記のごとく遊離された目的
のアミノケトン体は、これのみと選択的に反応して池の
アミノ酸等の夾雑物から容易に検出てきうろ誘導体化を
経て分離同定される。この誘導体化としては、ヒドラゾ
ン誘導体またはオキシム誘導体への誘導体化が連択され
る。このうちヒドラゾン誘導体のほうが後述する点で有
効である。上記分離同定は、クロマトグラフィの手法を
用いて行われることが好ましい。この場合液体クロマト
グラフィ(以下HPLCという)の手法を用いることが
、この発明の方法を自動分析化する点から好ましい。上
記の分離同定の1つの好ましい例としては、前記加水分
解の結果夾雑物と共に得られる目的のアミノケトン体を
、特定波長に吸収極大を有する2、4−ジニトロフェニ
ルヒドラゾンに誘導した後、HPLCにより分離精製す
ると共に、該誘導体が有する特定波長の吸収に基づいて
検出されろ保持時間から同定する方法が挙げられる。こ
の同定は標準物質の各アミノ酸の保持時間との比較によ
って行われる。
In the method of the present invention, the aminoketone of interest liberated as described above reacts selectively with only this aminoketone, is easily detected from impurities such as amino acids in the pond, and is separated and identified through scale derivatization. This derivatization includes derivatization into hydrazone derivatives or oxime derivatives. Among these, hydrazone derivatives are more effective in the points described below. The separation and identification described above is preferably performed using a chromatography technique. In this case, it is preferable to use liquid chromatography (hereinafter referred to as HPLC) from the viewpoint of automatic analysis of the method of the present invention. As one preferable example of the above separation and identification, the target aminoketone obtained together with impurities as a result of the hydrolysis is induced into 2,4-dinitrophenylhydrazone having an absorption maximum at a specific wavelength, and then separated by HPLC. Examples include a method of purifying the derivative, detecting it based on absorption at a specific wavelength, and identifying it from the retention time. This identification is performed by comparison with the retention time of each amino acid in the standard substance.

なお、上記のごとくこの発明の方法を自動分析イ゛ヒす
る場合、供されるタンパク質等の試料は、その分子量が
10,000〜20,000のものが好適である。
In addition, when carrying out automatic analysis using the method of the present invention as described above, it is preferable that the sample of protein, etc. to be provided has a molecular weight of 10,000 to 20,000.

また、加水分解により得られるアミノケトン体の分析は
、質量スペクトル(F A B−tv[ass)をクロ
マトグラフィに替えてまたはこれらを組み合わせて用い
ることも可能である。またさらに、ヒドラゾン特有の蛍
光を利用してより高感度の検出・分析を行うことも可能
である (ホ)作用 この発明によれば、C末端を有して予め変性されたタン
パク質またペプチドが、無水の非プロトン性溶媒中で有
機第3級塩基の存在下無水酢酸と処理されて、末端カル
ボキシル基がアセチル基に変換され、次いで加水分解に
付され、遊離した末端アミノ酸部分に相当するアミノケ
トン体が、ヒドラゾン誘導体もしくはオキシム誘導体に
導かれた後、分離同定されることとなる。
Furthermore, for analysis of aminoketone bodies obtained by hydrolysis, it is also possible to use mass spectrometry (F A B-tv[ass) instead of chromatography or a combination thereof. Furthermore, it is also possible to perform more sensitive detection and analysis by utilizing the unique fluorescence of hydrazone. Treatment with acetic anhydride in the presence of an organic tertiary base in an anhydrous aprotic solvent converts the terminal carboxyl group into an acetyl group, which is then subjected to hydrolysis to liberate an aminoketone corresponding to the terminal amino acid moiety. will be separated and identified after being guided to a hydrazone derivative or oxime derivative.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 材料の調製 リボヌクレアーゼA〔ウノすい臓(BovineP a
ncreas )から、I−A型〕は、5回再結晶した
らのをシグマ社から購入した( lot 77F−03
40)。
(f) Preparation of Example Materials Ribonuclease A [BovineP a
ncreas), type I-A] was purchased from Sigma after recrystallizing 5 times (lot 77F-03).
40).

ヘキサフルオロイソプロパツール(以下HFTPという
)はセントラル硝子社のものをそのまま用いた。ツメチ
ルスルホキシド(以下DMSOという)は、ピアース(
P 1erce)社のシリレーショングレード(sil
ylation grade)のものをそのまま用いた
。無水酢酸はトルエンにより酢酸を共沸で取り除いた後
、さらに精留したものを用いた(b、p、138〜13
9℃)。トリエチルアミン(以下TEAという)は無水
炭酸カリウムで乾燥したものに、無水安息香酸を加えて
蒸留しさらに精留したちのを用いた( b、p、89〜
90°C)。ジメチルアミノピリジン(以下D M A
 Pという)はジクロルメタンから1回再結晶したもの
を用いた(m、p、112.5〜114.5°C)。塩
酸は6Nのものを2回蒸留した乙のを用いた。2.4−
ジニトロフェニルヒドランン(以下D N P Hとい
う)は、エタノールから1回再結晶したものを用いた(
m、p、200〜202.5°C)。液体クロマトグラ
フィ(以下HP、 L Cという)用の水は、ウォータ
ズ(Waters)社のミリ−Q(Milli−Q)ン
ステムにより精製したものを用いた。アセトニトリルは
片山化学(株)からHPLCグレードのものを購入し、
そのまま用いた。
Hexafluoroisopropanol (hereinafter referred to as HFTP) was a product from Central Glass Co., Ltd. and was used as it was. Dimethyl sulfoxide (hereinafter referred to as DMSO) is manufactured by Pierce (
Sillation grade (sil) manufactured by P.
ylation grade) was used as it was. Acetic anhydride was obtained by azeotropically removing acetic acid with toluene and then rectifying it (b, p, 138-13
9℃). Triethylamine (hereinafter referred to as TEA) was dried with anhydrous potassium carbonate, benzoic anhydride was added, distilled, and then rectified (b, p, 89-
90°C). Dimethylaminopyridine (hereinafter referred to as DMA
P) was recrystallized once from dichloromethane (m, p, 112.5-114.5°C). Hydrochloric acid used was 6N, twice distilled. 2.4-
Dinitrophenylhydrane (hereinafter referred to as DNPH) was recrystallized once from ethanol (
m, p, 200-202.5°C). Water for liquid chromatography (hereinafter referred to as HP, LC) was purified using a Milli-Q system manufactured by Waters. HPLC grade acetonitrile was purchased from Katayama Chemical Co., Ltd.
Used as is.

装置 HP L Cはギルソン(G 1lson)社のものを
用いた。カラムはワコージル(Wakosil) 5 
Cl8S(4,6mmX 250mm)を用いた。
The apparatus HPLC was manufactured by Gilson. Column is Wakosil 5
Cl8S (4.6 mm x 250 mm) was used.

方法 過ギ酸酸化したりホヌクレアーゼA260μg(約20
nmol )をHFIP50μ(に溶解し、50〜70
℃で減圧乾固した。この操作を2回繰り返した。これを
DMSO50μl:溶解し、DMAP50μg(400
nmol) 、無水酢酸5μC(50,czmol)、
TEA5tt(l  <40ttmoI)を加えよく撹
拌した後、50’Cで3時間反応さ+i′jl。その後
メタノールlOμρを加えて反応を停止し、濃縮遠心器
で乾固した。
Method Performic acid oxidation or honuclease A 260 μg (approximately 20
nmol) in HFIP50μ(, 50-70
It was dried under reduced pressure at °C. This operation was repeated twice. Dissolve this in 50 μl of DMSO and 50 μg of DMAP (400 μl).
nmol), acetic anhydride 5 μC (50, czmol),
After adding 5tt of TEA (l<40ttmoI) and stirring well, the mixture was reacted at 50'C for 3 hours +i'jl. Thereafter, the reaction was stopped by adding 10μρ of methanol, and the mixture was dried in a concentrating centrifuge.

6N塩酸を100μ夕加え、減圧上封管し、110°C
て12時間加水分解を行った。その後塩酸は減圧下に留
去した。D N P 820μg (100n100n
を、エタノールニリン酸=1=1の混合溶媒10μρに
溶かしたものを加え撹拌した後、50°Cで30分間反
応させた。その後アセトンIOμgを加え、さらに50
℃で30分間反応さけた。エタノールおよびアセトンを
減圧下留去し、メタノール90μgを加え、そのうちの
10μQをHPLCの試料に供した。
Add 100μ of 6N hydrochloric acid, seal the tube under reduced pressure, and heat at 110°C.
Hydrolysis was carried out for 12 hours. Thereafter, hydrochloric acid was distilled off under reduced pressure. DNP 820μg (100n100n
was dissolved in 10 μρ of a mixed solvent of ethanolonilic acid=1=1, and the mixture was stirred and reacted at 50° C. for 30 minutes. Then add IO μg of acetone and add 50 μg of acetone.
The reaction was allowed to proceed at ℃ for 30 minutes. Ethanol and acetone were distilled off under reduced pressure, 90 µg of methanol was added, and 10 µQ of this was used as an HPLC sample.

結果 上記の方法により得られたものを下記条件でHPLCに
付したところ、第1図に示すクロマトグラムが得られた
。これは各標準アミノケトン(それぞれ500pmol
 )の同条件下(ただし移動相はアセトニトリル)のH
PLCによる分析結果のクロマトグラム(第2図)から
、バリン(V)のアミノケトン誘導体であることが同定
された。収率はピークの高さから計算し190pmol
 (10%)であった。
Results When the product obtained by the above method was subjected to HPLC under the following conditions, the chromatogram shown in FIG. 1 was obtained. This contains each standard aminoketone (500 pmol each)
) under the same conditions (but the mobile phase was acetonitrile).
From the chromatogram (FIG. 2) of the PLC analysis results, it was identified as an aminoketone derivative of valine (V). The yield is calculated from the peak height and is 190 pmol.
(10%).

〔分析条件〕〔Analysis conditions〕

HPLC: G I LSON カラム: Wakosil 5 C1g−5移動相: 
lomMギ酸緩衝液CpH3,5)流   量・ 1m
12/min 検出波長: 350nm Aufs=O,(18 なお、第2図中(イ)はアセトニトリルの濃度(左側の
数値)を示した乙のであり、またこの図中に用いた略記
号は以下に示すものである。
HPLC: GI LSON Column: Wakosil 5 C1g-5 Mobile phase:
lomM formic acid buffer CpH 3,5) Flow rate 1 m
12/min Detection wavelength: 350 nm Aufs=O, (18 In Figure 2, (A) indicates the concentration of acetonitrile (number on the left), and the abbreviations used in this figure are as follows. It shows.

K :リジン(Lysine) D :アスパラギン酸(Aspartic acid)
E :グルタミン酸(Glutamic acid)E
o:グルタミン酸の第2生成物 A :アラニン(Alanine) Y :チロシン(Tyros ine )v ・バリン
(Valine) M :メチオニン(Methionine)] ・イソ
ロイシン(l5oleucine)L :ロイシン(L
eucine) Nle :ノルロイシン(Norleucine)F 
:フェニルアラニン(Phenylalanine)以
上の結果から、この方法によればタンパク質等のC末端
に相当するアミノ酸を決定することができる。
K: Lysine D: Aspartic acid
E: Glutamic acid E
o: Second product of glutamic acid A: Alanine Y: Tyrosine v ・Valine M: Methionine] ・Isoleucine L: Leucine
eucine) Nle: Norleucine F
: Phenylalanine From the above results, according to this method, it is possible to determine the amino acid corresponding to the C-terminus of proteins, etc.

(ト)発明の効果 この発明の方法は、従来法では決定できないタンパク質
またはペプチドにも用いてそのC末端に相当するアミノ
酸を決定することができ、タンパク質またはペプチドの
一次構造の決定に好適な方法を提供することができる。
(g) Effects of the invention The method of the invention can be used for proteins or peptides that cannot be determined by conventional methods to determine the amino acid corresponding to the C-terminus, and is a suitable method for determining the primary structure of proteins or peptides. can be provided.

また分子量が10,000〜20,000程度のタンパ
ク質またはペプチドに有効なものである。またさらに液
体クロマトグラフィによる分析が可能となり、従ってタ
ンパク質もしくはペプチドの微量化に対応可能な分析方
法を提供することができる。
It is also effective for proteins or peptides with a molecular weight of about 10,000 to 20,000. Furthermore, analysis by liquid chromatography becomes possible, and therefore an analysis method that can handle miniaturization of proteins or peptides can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法により得られたアミノケトンの
ヒドラゾン誘導体の、液体クロマトグラム図、第2図は
各Elアミノケトンのヒドラゾン誘導体についての液体
クロマトグラム図である。 第 1 図
FIG. 1 is a liquid chromatogram diagram of the hydrazone derivative of aminoketone obtained by the method of the present invention, and FIG. 2 is a liquid chromatogram diagram of each hydrazone derivative of El aminoketone. Figure 1

Claims (1)

【特許請求の範囲】 1、予め変性した末端にカルボキシル基を有する変性タ
ンパク質もしくは変性ペプチドを、無水の非プロトン性
溶媒中、有機第3級塩基の存在下無水酢酸と処理して末
端カルボキシル基をアセチル基に変換し、得られたこの
生成物を加水分解に付し、次に遊離した末端アミノ酸部
分に相当するアミノケトン体を、ヒドラゾン誘導体もし
くはオキシム誘導体に導いて、これを分離同定すること
を特徴とするタンパク質等のC末端アミノ酸の決定方法
。 2、ヒドラゾン誘導体をクロマトグラフィに付して分離
し、得られるクロマトグラムに基づいて同定することを
特徴とする請求項1のC末端アミノ酸の決定方法。 3、ヒドラゾン誘導体が、2,4−ジニトロフェニルヒ
ドラゾンである請求項2のC末端アミノ酸の決定方法。
[Scope of Claims] 1. A denatured protein or a denatured peptide having a carboxyl group at the terminal which has been denatured in advance is treated with acetic anhydride in the presence of an organic tertiary base in an anhydrous aprotic solvent to remove the terminal carboxyl group. It is characterized by converting it into an acetyl group, subjecting the obtained product to hydrolysis, and then converting the released aminoketone corresponding to the terminal amino acid moiety into a hydrazone derivative or oxime derivative, which is then isolated and identified. A method for determining the C-terminal amino acid of a protein, etc. 2. The method for determining a C-terminal amino acid according to claim 1, wherein the hydrazone derivative is separated by chromatography and identified based on the obtained chromatogram. 3. The method for determining a C-terminal amino acid according to claim 2, wherein the hydrazone derivative is 2,4-dinitrophenylhydrazone.
JP8032188A 1988-03-31 1988-03-31 Method of determining c-terminal amino acid of protein or the like Pending JPH01250863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8032188A JPH01250863A (en) 1988-03-31 1988-03-31 Method of determining c-terminal amino acid of protein or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8032188A JPH01250863A (en) 1988-03-31 1988-03-31 Method of determining c-terminal amino acid of protein or the like

Publications (1)

Publication Number Publication Date
JPH01250863A true JPH01250863A (en) 1989-10-05

Family

ID=13714994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8032188A Pending JPH01250863A (en) 1988-03-31 1988-03-31 Method of determining c-terminal amino acid of protein or the like

Country Status (1)

Country Link
JP (1) JPH01250863A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041388A (en) * 1989-12-21 1991-08-20 Applied Biosystems, Inc. C-terminal peptide sequencing, activated support and reagent system therefor, and method of producing the activated support
US5049507A (en) * 1989-12-21 1991-09-17 Applied Biosystems, Inc. Method of C-terminal peptide sequencing
US5064767A (en) * 1990-06-21 1991-11-12 The Board Of Trustees Of The Leland Stanford Junior University Carboxyl-terminal protein sequencing method and kit
US5468843A (en) * 1994-09-08 1995-11-21 Perkin-Elmer Acetic anhydride activation for C-terminal protein sequencing
US6046053A (en) * 1996-05-24 2000-04-04 Seiko Instruments Inc. Method for amino acid sequencing of protein or peptide from carboxy terminus thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041388A (en) * 1989-12-21 1991-08-20 Applied Biosystems, Inc. C-terminal peptide sequencing, activated support and reagent system therefor, and method of producing the activated support
US5049507A (en) * 1989-12-21 1991-09-17 Applied Biosystems, Inc. Method of C-terminal peptide sequencing
US5064767A (en) * 1990-06-21 1991-11-12 The Board Of Trustees Of The Leland Stanford Junior University Carboxyl-terminal protein sequencing method and kit
WO1991019984A1 (en) * 1990-06-21 1991-12-26 The Board Of Trustees Of The Leland Stanford Junior University Carboxyl-terminal protein sequencing method and apparatus
US5468843A (en) * 1994-09-08 1995-11-21 Perkin-Elmer Acetic anhydride activation for C-terminal protein sequencing
US6046053A (en) * 1996-05-24 2000-04-04 Seiko Instruments Inc. Method for amino acid sequencing of protein or peptide from carboxy terminus thereof

Similar Documents

Publication Publication Date Title
US4837165A (en) Method for sequencing of peptides by carboxyl terminus degradation
Fraenkel-Conrat et al. [13] Hydrazinolysis
Hansen et al. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N-or S-nucleophiles
Laursen [30] Coupling techniques in solid-phase sequencing
Fontana et al. [26] Cleavage at tryptophan with o-iodosobenzoic acid
WO1992014702A1 (en) Compounds and methods for sequencing amino acids
Bailey et al. Automated carboxy‐terminal sequence analysis of peptides and proteins using diphenyl phosphoroisothiocyanatidate
JP2602461B2 (en) Amino acid thiohydantoin method and reagents
JPH01250863A (en) Method of determining c-terminal amino acid of protein or the like
JP2544286B2 (en) Cleavage method for acylthiohydantoins and use of the method for C-terminal peptide sequencing
WO1989008830A1 (en) Thioacylation peptide sequencing with alcoholysis of thiazolinones
JP4627086B2 (en) Protein or peptide C-terminal modification method, C-terminal immobilization method, and analysis method
US7041472B2 (en) Method for selectively collecting N-terminal peptide fragment of protein
JP4120580B2 (en) Method for selectively recovering N-terminal fragments of proteins
JP4556473B2 (en) Method for modifying C-terminus of protein or peptide
Gibson et al. Carboxyl group modification and amide assignments in automated sequencing of proteins
Mo et al. Chemical carboxy-terminal sequence analysis of peptides using acetyl isothiocyanate
Matsunaga et al. Boron Trifluoride‐Etherate (Lewis Acid) as an Efficient Acid at Cyclization/Cleavage Reaction of d/l‐Amino Acids Affording the Retention of their Original Configuration in the Edman Sequencing Method of Peptides
Li et al. C-terminal sequence analysis of peptides using triphenylgermanyl isothiocyanate
JP2732377B2 (en) D / L-amino acid sequence analysis of peptides and proteins
Casazza et al. Investigation of crudes of synthesis of neuropeptide Y by high-performance liquid chromatography-electrospray mass spectrometry
Samy et al. The terminal amino acid residues of ovine interstitial cell-stimulating hormone and its subunits
JP4505905B2 (en) Method for determining the amino acid sequence of a peptide
Iida et al. Semi-automatic amino acid sequencing and D/L-configuration determination of peptides with detection of liberated N-terminal phenylthiocarbamoylamino acids
RAJAGOPALAN et al. Use of the 3‐nitro‐2‐pyridine sulfenyl protecting group to introduce Nε‐branching at lysine during solid‐phase peptide synthesis I. Application to the synthesis of a peptide template containing two addressable sites