JPH01250719A - Apparatus for measuring shape of hollow space in tunnel - Google Patents

Apparatus for measuring shape of hollow space in tunnel

Info

Publication number
JPH01250719A
JPH01250719A JP63076354A JP7635488A JPH01250719A JP H01250719 A JPH01250719 A JP H01250719A JP 63076354 A JP63076354 A JP 63076354A JP 7635488 A JP7635488 A JP 7635488A JP H01250719 A JPH01250719 A JP H01250719A
Authority
JP
Japan
Prior art keywords
tunnel
measurement
distance
measuring
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63076354A
Other languages
Japanese (ja)
Inventor
Yoshiharu Miyanaga
宮永 佳晴
Yoshinobu Imaizumi
義信 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Nikon Corp
Original Assignee
Electric Power Development Co Ltd
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Nikon Corp filed Critical Electric Power Development Co Ltd
Priority to JP63076354A priority Critical patent/JPH01250719A/en
Publication of JPH01250719A publication Critical patent/JPH01250719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To shorten a measuring time, by mounting the distance/angle measuring device mounted on an automatic collimator on a vehicle apparatus to move the same and measuring the hollow space in the tunnel by said device and the reflecting mirrors fixed at a plurality of measuring points. CONSTITUTION:Poles 2b having spherical pedestals 2a each having a reflecting mirror fixed thereto are embedded in the cross-sections I-IV of a tunnel 1 and a vehicle 5 wherein a distance/angle measuring device 3 is mounted on an automatic leveling arrangement 4 is introduced into the tunnel to be moved to a measuring position to measure the shape of the hollow space in the tunnel. As a result, the device 3 can be rapidly moved to each of measuring points and a measuring time can be shortened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、トンネルの内空形状を計測する装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for measuring the inner shape of a tunnel.

(従来の技術) 従来のこの種の計測は、トンネル壁面の同一断面上複数
位置に設置された測定用ピン間を、巻尺により計測して
いた。
(Prior Art) In this type of conventional measurement, a tape measure was used to measure between measurement pins installed at a plurality of positions on the same cross section of a tunnel wall surface.

(発明が解決しようとする問題点) しかしながら従来の計測においてはトンネル断面が小口
径の場合には有効であったが、断面が大きくなった場合
巻尺がたるんでしまい精度良い計測が出来ないという問
題点があった。
(Problem to be solved by the invention) However, although conventional measurements are effective when the tunnel cross section has a small diameter, when the cross section becomes large, the tape measure becomes slack and accurate measurements cannot be made. There was a point.

又この種の計測方法では測定の都度測定ピンに必ず作業
者が行かなければならず、測定ポイントが多い場合、作
業に多大な時間を必要とする上、危険も増える。
In addition, in this type of measurement method, a worker must go to the measurement pin every time a measurement is made, and when there are many measurement points, the work requires a lot of time and also increases the danger.

本発明はこの様な従来の問題点に鑑みてなされたもので
断面形状に左右されない測定精度の確保ならびに測定時
間の短縮のできるトンネルの内空形状測定装置を目的と
する。
The present invention has been made in view of these conventional problems, and an object of the present invention is to provide a tunnel internal shape measuring device that can ensure measurement accuracy independent of the cross-sectional shape and shorten the measurement time.

(問題点を解決する為の手段) 上記問題点の解決の為に本発明では、トンネルの同一断
面上に設計された測定点に固定され、任意の方向に回転
可能でかつ、測距測角儀により視準可能なターゲット仮
を有する反射鏡装置を用いてトンネルの内空形状を測定
する内空形状測定装置において、前記反射鏡装置(7,
11等)を用いて前記測定点の測距、測角を行ない、前
記測距、測角による測距値と測角値に基づいた測定点の
座標からトンネルの内空に係るデータを演算し、記憶、
表示する測距測角儀3と、前記測距測角儀を載置する載
置台を有し、該載置台を常に水平に維持する自動整準装
置4と、前記自動整準装置を載置してトンネル内を移動
する車両装置5と、を有することを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a system that can be fixed at measurement points designed on the same cross section of the tunnel, can be rotated in any direction, and can be used for distance measurement and angle measurement. In the inner space shape measuring device for measuring the inner space shape of a tunnel using a reflector device having a temporary target that can be collimated by a mirror device, the reflector device (7,
11, etc.) to measure the distance and angle of the measurement point, and calculate data related to the inner sky of the tunnel from the coordinates of the measurement point based on the distance measurement and angle measurement values obtained by the distance measurement and angle measurement. ,Memory,
A distance measuring goniometer 3 for displaying, an automatic leveling device 4 having a mounting table on which the distance measuring angle measuring device is placed and always keeping the mounting table horizontal, and an automatic leveling device 4 on which the automatic leveling device is mounted. The present invention is characterized in that it has a vehicle device 5 that moves in a tunnel.

(作用) 本発明によれば、自動整準装置に!!置した測距測角儀
を車両装置に載置して移動するので、迅速な移動が可能
であり、トンネルの地盤が悪く、車両装置が傾いても、
測距測角儀は自動整準装置に載置されているので、整準
作業を不用とし、測定には何の支障もない。
(Function) According to the present invention, an automatic leveling device! ! Since the distance and goniometer is placed on the vehicle and moved, it is possible to move quickly, even if the ground in the tunnel is poor and the vehicle is tilted.
Since the range finder and goniometer is mounted on an automatic leveling device, there is no need for leveling work and there is no problem with measurements.

そして、測距測角儀により測定点の遠隔測定が行なえる
ので、危険がなく、断面形状に左右されずに測定精度が
確保でき(2点間に障害物がある場合でも精度良く測定
できる)、かつ測定時間の短縮ができる。
Furthermore, since the measurement point can be remotely measured using a rangefinder, there is no danger and measurement accuracy can be ensured regardless of the cross-sectional shape (accurate measurement can be made even if there is an obstacle between two points). , and measurement time can be shortened.

処理装置に記憶された測定点間の距離は、トンネルのあ
る断面の形状に対応しているので、同一の測定点間距離
の経時変化を測定することによって、トンネルの内空変
位を知ることもできる。
The distance between the measurement points stored in the processing device corresponds to the shape of the cross section of the tunnel, so by measuring the change over time in the distance between the same measurement points, it is also possible to know the internal displacement of the tunnel. can.

(実施例) 第1図は本発明の一実施例の装置を用いてトンネルの内
空形状を測定している側面図、第2図はトンネルの■断
面を示した図、第3図は測定の原理を説明するための図
、第4図は反射鏡の固定装置を示した断面図、第5図は
第4図のA矢視部分断面図、第6図はトンネル内の台座
に反射鏡の固定装置を固定する状態を示す固定装置の要
部断面図、第7図は反射鏡の固定装置の正面図、第8図
は整準装置の断面図、第9図は第8図のA矢視図、第°
10図は第9図のB−B矢視断面図である。
(Example) Fig. 1 is a side view of measuring the inner shape of a tunnel using a device according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of the tunnel, and Fig. 3 is a measurement Figure 4 is a sectional view showing the fixing device for the reflecting mirror, Figure 5 is a partial sectional view taken in the direction of arrow A in Figure 4, and Figure 6 is a sectional view of the reflecting mirror fixed on the pedestal in the tunnel. 7 is a front view of the fixing device for the reflecting mirror, FIG. 8 is a sectional view of the leveling device, and FIG. 9 is A of FIG. 8. Arrow view, °°
FIG. 10 is a sectional view taken along the line B--B in FIG. 9.

さて、第1図において、トンネル1内の断面I、■、■
、■、■にはそれぞれ第2図に示したように、先端に球
形台座2aを有するボール2bが複数個埋め込まれてい
る。
Now, in Fig. 1, cross sections I, ■, ■ in tunnel 1
As shown in FIG. 2, a plurality of balls 2b each having a spherical pedestal 2a at its tip are embedded in , ■, and ■.

トンネルl内には測距測角儀3を載置する載置台を常に
水平に維持する自動整準装置4を載せた車両5が導入さ
れている。車両5は測定位置まで移動して停止後、ジヤ
ツキ6で固定され、測定時の振動が除去されるようにな
っている。
A vehicle 5 carrying an automatic leveling device 4 that always maintains a mounting base on which a range finder 3 is placed horizontally is introduced into the tunnel 1. After the vehicle 5 moves to the measurement position and stops, it is fixed with jacks 6 to eliminate vibrations during measurement.

各断面1.n、■、■、■上の測定点に固定した球形台
座2aには第4図から第7図に示した反射鏡の取付装置
が固定される。
Each cross section 1. The reflecting mirror mounting device shown in FIGS. 4 to 7 is fixed to the spherical pedestal 2a fixed at the measurement points on points n, ■, ■, and ■.

すなわち、反射鏡7は反射鏡の固定部として設けられた
反射鏡保持部材9の取付ねじ9aに螺合して固定されて
いる。反射鏡保持部材9からは反射鏡7の保護のために
、反射鏡7の側面を囲むようにフード8が設けられてい
る。
That is, the reflecting mirror 7 is fixed by being screwed into a mounting screw 9a of a reflecting mirror holding member 9 provided as a fixing portion of the reflecting mirror. A hood 8 is provided from the reflector holding member 9 so as to surround the side surface of the reflector 7 in order to protect the reflector 7.

反射鏡保持部材9の取付ねじ9aが形成された端部とは
反対側には、ボール2bの先端の球形台座2aの挿入用
開口9dが形成されると共に、反射鏡保持部材9の一側
面には、台座2aを円錐状当接面9bまで導入するため
の案内溝9Cが形成されている。
An opening 9d for inserting the spherical pedestal 2a at the tip of the ball 2b is formed on the opposite end of the reflector holding member 9 from the end where the mounting screw 9a is formed. A guide groove 9C is formed for introducing the pedestal 2a to the conical contact surface 9b.

第5図及び第6図に示した第1回転軸14には、押え部
材13が台座2aの挿入用開口9dを開閉する方向に回
転するように結合している。押え部材13には、押え部
材13が台座2aの挿入用開口9dを閉じたときに、円
錐状当接面9bに当接している台座2aに当接する凸部
13aが形成され、また、回転軸14に結合している部
分とは反対側の端部からは、嵌入溝13bが形成されて
いる。
A presser member 13 is coupled to the first rotating shaft 14 shown in FIGS. 5 and 6 so as to rotate in the direction of opening and closing the insertion opening 9d of the base 2a. The holding member 13 is formed with a convex portion 13a that comes into contact with the pedestal 2a that is in contact with the conical contact surface 9b when the holding member 13 closes the insertion opening 9d of the pedestal 2a. A fitting groove 13b is formed from the end portion opposite to the portion connected to 14.

また、反射鏡保持部材3の第2回転軸17にはつまみ1
6の螺合されたねじ部材15が回転自在に取り付けられ
ており、押え部材13の凸部13aが台座2aの挿入用
開口9dに入り込んだ状態において、ねじ部材15の第
2回転軸17とつまみ16との間が嵌入溝13bに嵌入
するようになっている。この嵌入後、つまみ16を回転
してねじ部材15の軸方向へ進ませ(締め付け)、押え
部材13の凸部13aと円錐状当接面9bとの間に台座
2aを堅固に挟持することができる。
Further, a knob 1 is attached to the second rotating shaft 17 of the reflecting mirror holding member 3.
The threaded screw member 15 of No. 6 is rotatably attached, and when the convex portion 13a of the presser member 13 enters the insertion opening 9d of the base 2a, the second rotating shaft 17 of the screw member 15 and the knob 16 is adapted to fit into the fitting groove 13b. After this fitting, the knob 16 is rotated to advance (tighten) the screw member 15 in the axial direction, and the base 2a is firmly held between the convex portion 13a of the presser member 13 and the conical contact surface 9b. can.

フード8と反射鏡保持部材9とによって形成される環状
溝には、ターゲット板11の保持部材IOが回転自在に
嵌合し、クランプ12によって固定することができる。
The holding member IO of the target plate 11 is rotatably fitted into the annular groove formed by the hood 8 and the reflector holding member 9, and can be fixed by the clamp 12.

このような構造であるから、第6図のようにねじ部材1
5と押え部材13とを開いた状態にして、反射鏡保持部
材9を台座2a及びポール2bの方向に移動し、台座2
aが円錐状当接面9bに当接した状態になし、その後、
押え部材13を回転させて凸部13aを台座2aに当接
させ、ついで、ねじ部材15を回転させてねじ15を嵌
入溝13bに嵌入させて後、つまみ16を回転させて押
え部材13の凸部13aと円錐状当接面9bとの間に台
座2aを堅固に挟持する。つまみ16を少し緩めれば、
台座2aに対して反射鏡保持部材9が第4図の矢印19
、第5図の矢印18の方向に回転できるようになるので
、反射鏡7の向きを調節することができる。
Because of this structure, the screw member 1 as shown in FIG.
5 and the holding member 13 are opened, move the reflector holding member 9 in the direction of the pedestal 2a and the pole 2b, and press the pedestal 2.
a is brought into contact with the conical contact surface 9b, and then,
The holding member 13 is rotated to bring the convex portion 13a into contact with the base 2a, then the screw member 15 is rotated to fit the screw 15 into the insertion groove 13b, and then the knob 16 is rotated to make the convex part of the holding member 13 contact. The base 2a is firmly held between the portion 13a and the conical contact surface 9b. If you loosen knob 16 a little,
The reflector holding member 9 is positioned at the arrow 19 in FIG. 4 with respect to the pedestal 2a.
, the direction of the reflecting mirror 7 can be adjusted because it can be rotated in the direction of the arrow 18 in FIG.

また、クランプ12を緩めれば、反射鏡7の中心を回転
中心としてターゲット板11を回転し、ターゲットの向
きを調節することができる。
Furthermore, by loosening the clamp 12, the target plate 11 can be rotated about the center of the reflecting mirror 7, and the orientation of the target can be adjusted.

第8図、第9図、第10図は、自動整準装置4の具体例
を示す図である。第8図において、紙面に垂直な方向を
X、紙面左右方向をYとすれば、載置台23は第9図に
示したようにX方向に一対の第1の回転軸23b、23
b′を有し、中央部にはレベル、七オドライト等の測量
機を固定するための取付ねじ23aが設けられている。
FIG. 8, FIG. 9, and FIG. 10 are diagrams showing specific examples of the automatic leveling device 4. In FIG. 8, if the direction perpendicular to the plane of the paper is X and the horizontal direction of the plane is Y, then the mounting table 23 has a pair of first rotating shafts 23b, 23 in the X direction as shown in FIG.
b', and a mounting screw 23a is provided in the center for fixing a surveying instrument such as a level or heptadrite.

また、載置台23には振り子棒22aが載置台23の表
面に垂直に固定され、振り子棒22aの下端には錘り2
2が設けられて振り子が形成され、この振り子がバラン
スウェイトとして機能する。
Further, a pendulum bar 22a is fixed perpendicularly to the surface of the mounting table 23, and a weight 2 is attached to the lower end of the pendulum bar 22a.
2 is provided to form a pendulum, which functions as a balance weight.

第9図に示したように、第1の回転軸23bは、中間部
材27にベアリング26と支持部材3oによって支持さ
れている。第1の回転軸23b′についても同様であっ
て、第9図には支持部材3゜に対応する支持部材30’
が現われている。
As shown in FIG. 9, the first rotating shaft 23b is supported by the intermediate member 27 by a bearing 26 and a support member 3o. The same applies to the first rotating shaft 23b', and FIG. 9 shows a support member 30' corresponding to the support member 3°.
is appearing.

中間部材27は、第1の回転軸23b、23b’の方向
(X方向)に直交するY方向に設けられた一対の第2の
回転軸27a、27a′を有する。
The intermediate member 27 has a pair of second rotation shafts 27a, 27a' provided in the Y direction orthogonal to the direction (X direction) of the first rotation shafts 23b, 23b'.

第2の回転軸27aは、第10図に示したように、台座
24にベアリング25によって支持されている。
The second rotating shaft 27a is supported by a bearing 25 on the pedestal 24, as shown in FIG.

また、第1の回転軸23bと中間部材27との間には、
第1の回転軸23bのまわりの載置台23の回転を阻止
するために、第1の回転軸23bに一体の制動板28と
、制動板28を中間部材27の凸部27bとの間に挟み
込むために、中間部材27のどて部27cにねじ込まれ
た固定ねじ29と、を有する。
Moreover, between the first rotating shaft 23b and the intermediate member 27,
In order to prevent rotation of the mounting table 23 around the first rotation shaft 23b, the brake plate 28 is integrated with the first rotation shaft 23b, and the brake plate 28 is sandwiched between the convex portion 27b of the intermediate member 27. For this purpose, a fixing screw 29 is screwed into the end portion 27c of the intermediate member 27.

また、第2の回転軸27aと台座24との間にも、第2
の回転軸27aのまわりの中間部材27の回転を阻止す
るために、第2の回転軸27に一体の制動板280と制
動板280を台座24の凸部24aとの間に挟み込むた
めに、台座24のどて部24bにねじ込まれた固定ねじ
290と、を有する。
Further, there is also a second
In order to prevent rotation of the intermediate member 27 around the rotation shaft 27a of the second rotation shaft 27, a brake plate 280 is integrated with the second rotation shaft 27 and the brake plate 280 is sandwiched between the convex portion 24a of the base 24. 24, and a fixing screw 290 screwed into the end portion 24b of 24.

なお、第10図に示したように、第1の回転軸23b′
の側及び、第2の回転軸27a′の側にも同様の回転を
阻止する部材が設けられており、対応する部材には同符
号にダッシュを付して示しである。
Note that, as shown in FIG. 10, the first rotating shaft 23b'
Similar members for preventing rotation are provided on the side of the rotor and the second rotation shaft 27a', and corresponding members are indicated by the same reference numerals with a dash attached.

台座24は、円筒形状をした筐体20により支持され、
筺体20の下部には基台21がある。載置台23に固定
された振り子棒22aは筐体2゜の内部を通り、錘り2
2は筺体20の内部に封入した粘性液体23に浸されて
いる。
The pedestal 24 is supported by a cylindrical housing 20,
A base 21 is provided at the bottom of the housing 20. The pendulum rod 22a fixed to the mounting table 23 passes through the inside of the housing 2°, and the pendulum rod 22a is attached to the weight 2.
2 is immersed in a viscous liquid 23 sealed inside the housing 20.

このような構成であるから、振り子22.22a及び載
置台23は、筺体20に対して第1の回転軸23b、2
3b’、第2の回転軸27a、27a’のまわりに回転
自在であって、その結果、振り子22.22aは常に鉛
直方向を向くように動作する。筺体20が傾斜した直後
や外部振動等によって、振り子22.22aはある周期
によって振動を始めるが、粘性液体23に錘り22が浸
されているため、このような振動はすみやかに減衰する
With such a configuration, the pendulum 22.22a and the mounting table 23 are aligned with the first rotation shafts 23b, 2 with respect to the housing 20.
3b', is rotatable about the second rotation axis 27a, 27a', and as a result, the pendulum 22.22a always operates in a vertical direction. Immediately after the housing 20 is tilted or due to external vibration, the pendulum 22.22a starts to vibrate at a certain period, but since the weight 22 is immersed in the viscous liquid 23, such vibration is quickly damped.

なお、この液体は、振動の減衰時間を決定する要素の一
つのため、使用目的に応じて適当な粘性係数を有するも
のを選択すればよい。
Note that this liquid is one of the factors that determines the damping time of vibration, so it is sufficient to select a liquid having an appropriate viscosity coefficient depending on the purpose of use.

その結果、筐体20が傾斜しても、振り子22.22a
は常に垂力方向を向くので、載置台23の表面は水平面
となり、その上の測量機は、整準されることになる。
As a result, even if the housing 20 is tilted, the pendulum 22.22a
Since it always faces in the direction of normal force, the surface of the mounting table 23 becomes a horizontal surface, and the surveying instrument on it is leveled.

このような構造であるから、トンネル1内で車両5を走
らせ、適当な位置、例えば第1図の断面Iを測定する場
合には、断面!上に設定された測定点のターゲットが視
準しうる位置に車両5を停止させ、ジヤツキ6により車
両5を停止させる。
Because of this structure, when the vehicle 5 is run inside the tunnel 1 and the measurement is made at an appropriate position, for example, the cross section I in FIG. 1, the cross section! The vehicle 5 is stopped at a position where the target of the measurement point set above can be sighted, and the jack 6 is used to stop the vehicle 5.

ついで、球形台座2aに取り付けたターゲットを視準し
く第1図ではターゲット板は不図示)、測距、測角を行
なう。
Next, the target mounted on the spherical pedestal 2a is collimated (the target plate is not shown in FIG. 1), and distance and angle measurements are performed.

第3図に示したように、例えば、断面■の測定点P+ 
、Pz間の距離を求める場合、まず測距測角儀3により
測定点P、を視準し、測距、測角を行なうことにより得
られるデータは、距離SD、、水平角HA2、高度角V
A、であり、次に、測定点P2を視準し、測距、測角を
行ない、距離SD、、水平角HA! 、高度角VA、を
得る。
As shown in Fig. 3, for example, the measurement point P+ of cross section ■
, Pz, first sight the measurement point P with the range finder 3 and measure the distance and angle.The data obtained is the distance SD, horizontal angle HA2, and altitude angle. V
A, then sight the measuring point P2, measure the distance, and measure the angle to find the distance SD, horizontal angle HA! , altitude angle VA, are obtained.

測距測角儀3のある点を原点0(0,0,0)とし、測
定点P、 、P、の座標をそれぞれP+(Xi 、、)
’+ % 21 )、P2  (xz、)’!、2z)
とすば、点P響 (x8、yi、zム)の座標は、Xi
 =soi X5in(VAt) Xcos(HAt)
y H=SD、 X5in(VAi)  X5in(H
At)z  1   =SDI   Xcos(VAN
)で表わされるので、測定点p、 、p、の2点間距離
りは、 として求める。
A certain point of the rangefinder goniometer 3 is set as the origin 0 (0, 0, 0), and the coordinates of the measurement points P, , P, are P+(Xi , , ), respectively.
'+% 21), P2 (xz,)'! , 2z)
Then, the coordinates of point P (x8, yi, z) are Xi
=soi X5in(VAt) Xcos(HAt)
y H=SD, X5in(VAi) X5in(H
At)z 1 =SDI Xcos(VAN
), the distance between the two measurement points p, , p is determined as follows.

測距測角儀3は、反射鏡に向けて変調光を射出し、反射
鏡からの反射光と射出光との位相差に基づいて測定点ま
での距離を求める周知の光波測距機能と、視準望遠鏡の
水平軸及び鉛直軸まわりの回転角を測定する角度測定機
能の他に、得られた距離、水平角、高度角を記憶し、各
種演算を行なう演算機能と、を有している。
The distance measuring goniometer 3 has a well-known light wave ranging function that emits modulated light toward a reflecting mirror and calculates the distance to the measurement point based on the phase difference between the reflected light from the reflecting mirror and the emitted light. In addition to the angle measurement function that measures the rotation angle around the horizontal and vertical axes of the sighting telescope, it also has a calculation function that stores the obtained distance, horizontal angle, and altitude angle and performs various calculations. .

従って、上述の2点間距離りは、上述の演算機能を果す
ためのコンピュータにより演算され、記憶される。この
ようにして得られた2点間距離はトンネル形状に対応し
ている。
Therefore, the above-mentioned distance between two points is calculated and stored by a computer for performing the above-mentioned calculation function. The distance between two points obtained in this way corresponds to the tunnel shape.

そしてまた、この2点間距離の時間変化を測定すること
により、トンネルの内空変位を測定することもできる。
Furthermore, by measuring the temporal change in the distance between the two points, it is also possible to measure the internal displacement of the tunnel.

この場合にはコンピュータは、ある時間1.での距離L
1と別の時間t2での同一測定点間の距離L2との差を
演算すればよい。
In this case, the computer will run 1. distance L at
1 and the distance L2 between the same measurement points at another time t2.

以上の説明では、2つの測定点間の距離をあるトンネル
断面の形状に対応させた簡単な例で説明したが、より多
くの測定点のデータによって、トンネル断面形状をより
正確にモニターすることができる。
In the above explanation, we used a simple example in which the distance between two measurement points corresponds to the shape of a certain tunnel cross-section, but it is possible to monitor the tunnel cross-section shape more accurately by using data from more measurement points. can.

(発明の効果) 以上の様に本発明によれば測定断面形状に左右されずに
、トンネル断面形状の測定が可能となる。
(Effects of the Invention) As described above, according to the present invention, the cross-sectional shape of a tunnel can be measured without being influenced by the measured cross-sectional shape.

又、自動整準装置あるいは車両処理装置を用いることで
従来のテープによる測定に比べ大巾な時間の短縮ならび
に測定人員の削減が可能という効果もある。
Furthermore, by using an automatic leveling device or a vehicle processing device, it is possible to significantly reduce the time and the number of measuring personnel compared to conventional tape measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置を用いてトンネルの内
空形状を測定している側面図、第2図はトンネルのI断
面を示した図、第3図は測定の原理を説明するための図
、第4図は反射鏡の固定装置を示した断面図、第5図は
第4図のA矢視部分断面図、第6図はトンネル内の台座
に反射鏡の固定装置を固定する状態を示す固定装置の要
部断面図、第7図は反射鏡の固定装置の正面図、第8図
は整準装置の概略断面図、第9図は第8図のA矢視図、
第10図は第9図のB−B矢視断面図である。 (主要部分の符号の説明) 2a・・・球形台座、3・・・測距測角儀、4・・・自
動整準装置、5・・・車両、7・・・反射鏡。 〜 第q 図 第7O図
Fig. 1 is a side view of the inner shape of a tunnel being measured using a device according to an embodiment of the present invention, Fig. 2 is a diagram showing an I section of the tunnel, and Fig. 3 is an explanation of the principle of measurement. Figure 4 is a sectional view showing the fixing device for the reflecting mirror, Figure 5 is a partial sectional view taken in the direction of arrow A in Fig. 4, and Figure 6 is a sectional view showing the fixing device for the reflecting mirror on the pedestal in the tunnel. 7 is a front view of the fixing device for the reflecting mirror, FIG. 8 is a schematic sectional view of the leveling device, and FIG. 9 is a view taken in the direction of arrow A in FIG. 8. ,
FIG. 10 is a sectional view taken along the line BB in FIG. 9. (Explanation of symbols of main parts) 2a... Spherical pedestal, 3... Range finder and goniometer, 4... Automatic leveling device, 5... Vehicle, 7... Reflector. ~ Figure q Figure 7O

Claims (1)

【特許請求の範囲】 トンネルの同一断面上に設定された測定点に固定され、
任意の方向に回転可能でかつ、測距測角儀により視準可
能なターゲット板を有する反射鏡装置を用いてトンネル
の内空形状を測定する内空形状測定装置において、 前記反射鏡装置を用いて前記測定点の測距、測角を行な
い、前記測距、測角による測距値と測角値に基づいた測
定点の相対座標から前記測定点間の距離を演算し、記憶
表示する測距測角儀と、前記測距測角儀を載置する載置
台を有し、該載置台を常に水平に維持する自動整準装置
と、前記自動整準装置を載置してトンネル内を移動する
車両装置と、 を有することを特徴とする内空形状測定装置。
[Claims] Fixed at measurement points set on the same cross section of the tunnel,
An interior shape measuring device that measures the interior shape of a tunnel using a reflector device that has a target plate that can be rotated in any direction and that can be collimated with a rangefinder and goniometer, comprising: using the reflector device; A measurement method that measures distances and angles of the measurement points using the distance measurement and angle measurement, calculates the distance between the measurement points from the relative coordinates of the measurement points based on the distance measurement and angle measurement values, and stores and displays the distances. It has a range finder, a mounting table on which the range finder and goniometer is placed, an automatic leveling device that always maintains the mounting table horizontally, and an automatic leveling device on which the automatic leveling device is placed to move inside the tunnel. An inner space shape measuring device comprising: a moving vehicle device;
JP63076354A 1988-03-31 1988-03-31 Apparatus for measuring shape of hollow space in tunnel Pending JPH01250719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076354A JPH01250719A (en) 1988-03-31 1988-03-31 Apparatus for measuring shape of hollow space in tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076354A JPH01250719A (en) 1988-03-31 1988-03-31 Apparatus for measuring shape of hollow space in tunnel

Publications (1)

Publication Number Publication Date
JPH01250719A true JPH01250719A (en) 1989-10-05

Family

ID=13603027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076354A Pending JPH01250719A (en) 1988-03-31 1988-03-31 Apparatus for measuring shape of hollow space in tunnel

Country Status (1)

Country Link
JP (1) JPH01250719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128415A (en) * 1989-10-13 1991-05-31 Mitsui Constr Co Ltd Method for forming topographical chart
JPH0599670A (en) * 1991-10-04 1993-04-23 Kajima Corp Internal space displacement measuring method for tunnel and measuring reflecting plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128415A (en) * 1989-10-13 1991-05-31 Mitsui Constr Co Ltd Method for forming topographical chart
JPH0599670A (en) * 1991-10-04 1993-04-23 Kajima Corp Internal space displacement measuring method for tunnel and measuring reflecting plate

Similar Documents

Publication Publication Date Title
CN1071898C (en) Measuring ball reflector
CN105698713B (en) A kind of device and scaling method of calibrating precise shafting axis of rotation
US6138367A (en) Tilt prediction for total station
JPH04220514A (en) Apparatus for obtaining center of ground measuring instrument with respect to specified measuring point of ground surface
JP2846950B2 (en) Apparatus for forming or defining the position of a measuring point
CN114754738A (en) Simple bridge pier column verticality measuring device and measuring method
JPH01250719A (en) Apparatus for measuring shape of hollow space in tunnel
Allan The principles of theodolite intersection systems
JP2001091249A (en) Hollow cross section measuring device
CN108489396A (en) A kind of two dimension turn top accuracy checking method
US3001290A (en) Gyroscopic compass
JP3481324B2 (en) Method of measuring mechanical height of surveying instrument and measuring instrument
US2407960A (en) Transit level
KR880000774A (en) Method and apparatus for quickly measuring azimuth using strap-down gyroscope
RU2408843C1 (en) Analytical gyro-compass for quasi-static measurements
RU2093794C1 (en) Gear testing geodetic level
JP3151150B2 (en) Surveying instrument accuracy inspection method and its inspection device
JPH0754255B2 (en) Position measurement method for cylindrical structures
JPH04198809A (en) Instrument for measuring height of machine
CN108344427A (en) A kind of calibration method and calibration mechanism of the pitching speculum of star sensor
US20240044642A1 (en) Orbital Goniometer Autocollimation Device
US2607260A (en) Optical leveling instrument
JPH01184411A (en) Height and distance measuring meter
RU2711165C1 (en) Method of contactless determination of distance between two points
US20240125597A1 (en) In-the-field leveling calibration of a surveying instrument