JPH01249666A - Method for bonding ceramic by thermal spraying - Google Patents

Method for bonding ceramic by thermal spraying

Info

Publication number
JPH01249666A
JPH01249666A JP7847388A JP7847388A JPH01249666A JP H01249666 A JPH01249666 A JP H01249666A JP 7847388 A JP7847388 A JP 7847388A JP 7847388 A JP7847388 A JP 7847388A JP H01249666 A JPH01249666 A JP H01249666A
Authority
JP
Japan
Prior art keywords
bonding
joining
thermal spraying
ceramics
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7847388A
Other languages
Japanese (ja)
Inventor
Kouichirou Kataoka
厚一郎 片岡
Keisuke Asano
敬輔 浅野
Kazuo Hamai
浜井 和男
Shigemi Harada
原田 茂美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7847388A priority Critical patent/JPH01249666A/en
Publication of JPH01249666A publication Critical patent/JPH01249666A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/068Oxidic interlayers based on refractory oxides, e.g. zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/64Forming laminates or joined articles comprising grooves or cuts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the strength of a bonded body at high temp. by imparting surface roughness at a limited level to the bonding parts, and then applying building-up thermal spraying on the bonded part at the time of bonding the same or different ceramics. CONSTITUTION:When the same or different split ceramics are bonded, the surface roughness of 20-60mu Rmax is imparted to the bonding parts, and then building-up thermal spraying is applied on the bonded part. The same pretreatment as described above is applied to the parts of the same or different ceramics already bonded by an adhesive, etc., then building-up thermal spraying is applied on the bonded part, and the bonded part of the ceramics can be reinforced. In this ceramic bonding method, a groove or a groove having a flat face or a curved face is formed at the bonding parts, and then building-up thermal spraying is preferably applied on the bonded part.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミックとセラミックの接合方法及び予め
接合しているセラミックとセラミックの接合部の補強方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for joining ceramics and a method for reinforcing a joint between two ceramics that have been previously joined.

(従来の技術) 近年、セラミックは、高温下での強度力夫大きく、且つ
硬くて摩擦し難り、耐食性がよい等の特徴を有している
ので各種産業への用途開発が行われている。
(Prior Art) In recent years, ceramics have been developed for use in various industries because they have characteristics such as high strength under high temperatures, hardness, resistance to friction, and good corrosion resistance.

しかし、一般にセラミックは製造上の問題より大型複雑
形状の構造体を製造しに(い欠点を有していることから
、セラミックの接合技術の開発は重要な課題となってい
る(特開昭60−16883号公報)。
However, in general, ceramics have drawbacks that make it difficult to manufacture large, complex-shaped structures due to manufacturing problems, so the development of ceramic bonding technology has become an important issue (Japanese Patent Application Laid-Open No. 60-1970). -16883).

一般にセラミックの接合技術には、有機系接着材法、無
機系接着材法、ブレージング、メタライジング、拡散接
合法、圧着法、レーザー法、電接法等がある。上記接合
法の内、有機系接着材法、ブレージング、メタライジン
グ等は高温下(例えば600 ’C〜700 ’C以上
)での強度がない。
Ceramic bonding techniques generally include organic adhesive methods, inorganic adhesive methods, brazing, metallizing, diffusion bonding methods, pressure bonding methods, laser methods, electric bonding methods, and the like. Among the above bonding methods, organic adhesive methods, brazing, metallizing, etc. do not have strength at high temperatures (for example, 600'C to 700'C or higher).

すなわち、これらの接合では、接合材料かい異種材料で
ある為、高温下では母材と接合材料の熱応力が大きくな
り接合強度が小さい。更に、接合材は一般に母材と反応
性の高い活性な低融点材料を使用する為、接合部は高温
下で強度がない。
That is, in these joints, since the joining materials are different materials, the thermal stress between the base material and the joining material becomes large at high temperatures, resulting in a low joining strength. Furthermore, since the bonding material generally uses an active low melting point material that is highly reactive with the base material, the bonded portion lacks strength at high temperatures.

また、無機系接着材法は接合強度が母材に比較して非常
に小さい。拡散合法、圧着法、レーザー法、電接法は、
高温下での接合強度は大きいが、接合母材形状が限られ
且つ、大型の接合装置が必要であり実用化されていない
Furthermore, the bonding strength of the inorganic adhesive method is extremely low compared to that of the base material. Diffusion method, crimping method, laser method, electric welding method are
Although the bonding strength at high temperatures is high, the shape of the bonding base material is limited and a large bonding device is required, so it has not been put into practical use.

一方、溶射技術は、ガス溶射、プラズマ溶射等があるが
、何れも耐食性または耐摩耗性を目的とした、セラミッ
クもしくは金属等のコーティング技術の1つとして存在
する。しかし、溶射膜厚が1 mm以下と薄い為、厚膜
肉盛溶射へ適用した場合、何らかの解決手段をとらない
と、熱応力の為母材と溶射接合層は剥離しまた溶射接合
層が応力割れを起こす。
On the other hand, thermal spraying techniques include gas spraying, plasma spraying, etc., and all of them exist as coating techniques for ceramics, metals, etc. for the purpose of corrosion resistance or wear resistance. However, since the sprayed film thickness is as thin as 1 mm or less, when applied to thick film deposition, unless some solution is taken, the base material and the sprayed bonding layer will separate due to thermal stress, and the sprayed bonding layer will become stressed. cause cracks.

ところで、金属材料同志の場合には溶射接合が見られる
が、金属材料は熱応力に対して容易に塑性変形するので
、母材と溶射接合層の剥離及び溶射接合層の応力割れは
緩和でき大きな問題でない。
By the way, thermal spray bonding is seen in the case of metal materials, but since metal materials easily deform plastically due to thermal stress, separation between the base material and the thermal spray bonding layer and stress cracking in the thermal spray bond layer can be alleviated and large It's not a problem.

しかし、セラミックは脆性材料なので塑性変形し難く、
熱能力緩和が困難であるので、溶射によるセラミックの
接合技術は、ただ単に金属の溶射肉盛技術を適用するの
みでは成し遂げられない。
However, since ceramic is a brittle material, it is difficult to deform plastically.
Because thermal capacity mitigation is difficult, ceramic bonding techniques by thermal spraying cannot be achieved by simply applying metal thermal spray overlay techniques.

従って、高温下で高接合強度を容易に得ることができる
セラミックの接合技術は一般化されていない。
Therefore, ceramic bonding techniques that can easily obtain high bonding strength at high temperatures have not been generalized.

(発明が解決しようとする課題) 前述のごとく、高温下で接合強度が大きい接合技術は限
られており、例え存在していても施工法が容易でなく且
つ母材形状が制限されている。
(Problems to be Solved by the Invention) As described above, there are a limited number of bonding techniques that provide high bonding strength under high temperatures, and even if they exist, the construction method is not easy and the shape of the base material is limited.

従って、本発明の目的はこれら多くの問題を解決した高
温下で高強度を有するセラミックの接合方法を提供する
ことにある。
Therefore, an object of the present invention is to provide a method for joining ceramics that has high strength at high temperatures and solves many of these problems.

(課題を解決するだめの手段) 本発明は、第1図に示したように同種もしくは異種成分
のセラミック同志をつなぎ合わせ、必要であれば開先部
もしくは開先部分にフラット面あるいは曲面を有する開
先形状を設け、その開先部分(被溶射面)に表面粗度2
0〜60μの事前処理をプラスI−等により施し、必要
であれば溶射接合層/母材の熱膨張差を減少させる為、
母材を一定温度以上に予熱及び雰囲気調整をして、接合
材料を溶射により肉盛接合する方法である。
(Means for Solving the Problems) The present invention, as shown in FIG. A groove shape is provided, and the groove part (surface to be thermally sprayed) has a surface roughness of 2.
Perform pre-treatment of 0 to 60 μ using plus I-, etc., if necessary, to reduce the thermal expansion difference between the thermal sprayed bonding layer/base material.
In this method, the base material is preheated to a certain temperature or higher, the atmosphere is adjusted, and the bonding material is deposited by thermal spraying.

母材/溶射接合層の熱応力を緩和させる為、接合後必要
であれば、接合部を一定温度一定時間以」二熱処理及び
徐冷を実施する。熱処理及び徐冷ば、溶射接合層の鉱物
変化(相変態)を誘起し、その結果、体積変化を起こさ
せる為、熱応力緩和に有効である。
In order to alleviate the thermal stress of the base material/sprayed bonding layer, if necessary after bonding, the bonded portion is heat treated at a constant temperature for a certain period of time and then slowly cooled. Heat treatment and slow cooling induce a mineral change (phase transformation) in the thermally sprayed bonding layer, resulting in a volume change, which is effective in alleviating thermal stress.

ZrO2、MgO等の高融点接合材料を使用する場合は
、溶射機として、プラズマ溶射機を用いる。プラズマ溶
射機はフレーム温度が高く且つ溶射スピードが速い為、
高融点+A料の溶融状態を制御でき且つ緻密で強度の大
きい溶射接合層を形成できる。
When using a high melting point bonding material such as ZrO2 or MgO, a plasma spraying machine is used as the spraying machine. Plasma spraying machines have high flame temperatures and high spraying speeds, so
The melting state of the high melting point +A material can be controlled and a dense and strong thermal sprayed bonding layer can be formed.

接合材料は金属系、セラミック系、サーメット系何れも
よいが、母材との熱膨張率、弾性率等の物性を適合させ
る為、母材と同系の材料が好ましい。
The joining material may be metal, ceramic, or cermet, but a material of the same type as the base material is preferred in order to match the physical properties such as thermal expansion coefficient and elastic modulus with the base material.

溶射接合層は、溶射条件により完全溶融あるいは半溶融
を選択でき、それにより高強度の緻密接合層からスポー
ルに強い半紙密接合層へと制御できる。
The thermal sprayed bonding layer can be completely melted or semi-melted depending on the thermal spraying conditions, and thereby can be controlled from a high-strength dense bonding layer to a semi-paper tight bonding layer that is resistant to spalling.

溶射によるセラミックの補強法は、基本的に上記と同等
な方法で、予め接着材等で接合されている接合部を溶射
により肉盛補強する方法である。
The method of reinforcing ceramics by thermal spraying is basically the same method as above, and is a method of reinforcing a joint that has been previously joined with an adhesive or the like by overlaying by thermal spraying.

本発明に係わる被接合母材は、酸化物セラミ・ンク、非
酸化物セラミックを言う。
The base material to be joined according to the present invention is an oxide ceramic or a non-oxide ceramic.

(実施例) 第1図は、接合概念図である。1は被接合セラミックで
あり、予めブラストにより表面粗度を設LJた開先を形
成させである。2は溶射装置であり、開先部に肉盛溶射
15する。
(Example) FIG. 1 is a conceptual diagram of joining. 1 is a ceramic to be joined, and a groove with a surface roughness LJ was previously formed by blasting. Reference numeral 2 denotes a thermal spraying device, which performs overlay thermal spraying 15 on the groove.

第2図は、接合装置の構成図であり、ここではプラズマ
溶射機を用いた場合を示した。1は被接合セラミック母
材であり、事前予熱、接合後の熱処理あるいは保熱ある
いは徐冷を可能とし、且つ雰囲気調整を可能とした炉1
0の中にセットしである。
FIG. 2 is a block diagram of the bonding apparatus, and here the case where a plasma spraying machine is used is shown. 1 is a ceramic base material to be joined, and a furnace 1 is capable of preheating, post-joining heat treatment, heat retention, or slow cooling, and allows atmosphere adjustment.
Set it to 0.

尚、雰囲気制御炉を用いて接合する場合は、溶射機の炉
の中に入れたまま、もしくは炉外より溶射接合する2通
りの方法がある。3はプラズマ溶射ガンであり、プラズ
マジェット流は、プラズマガス4と制御装W5でコント
ロールされる。更に、接合ヰA籾を溶射ガンに供給する
為の粉末供給装置6で構成されている。
When bonding is performed using an atmosphere-controlled furnace, there are two methods: by spraying the parts while they are in the furnace of a thermal spray machine, or by spraying them from outside the furnace. 3 is a plasma spray gun, and the plasma jet flow is controlled by a plasma gas 4 and a control device W5. Furthermore, it is comprised of a powder supply device 6 for supplying the bonded rice to the thermal spray gun.

(実施例1) 母材ば、Zr0z系セラミツクとし、接合部に開先を設
けた。接合材料は、母相と同系のZrO。
(Example 1) The base material was Zr0z ceramic, and a groove was provided at the joint. The bonding material is ZrO, which is the same type as the parent phase.

−3Ap、、O,・2SiOz系とした。表1に、母材
及び接合材料の化学成分を示した。
-3Ap,,O,.2SiOz system. Table 1 shows the chemical components of the base material and bonding material.

プラズマ溶射条件は、次に示した通りとした。The plasma spraying conditions were as shown below.

溶射距離       :10cm 溶射ガン移動速度   : 50 cm /sec粉末
供給速度     : 55 g /minプラズマ溶
射ガン出力 :40Kw プラズマガス      :Ar−H2肉盛接合前処理
として、ブラストにまり接合面(被溶射面)にRmax
 : 5〜80μの表面粗度をイ(]けた。表面粗度は
ブラスト材(A/7.03−3iC)を#10〜#30
00に変えることにより制御した。
Thermal spraying distance: 10cm Thermal spraying gun movement speed: 50cm/sec Powder supply rate: 55 g/min Plasma spraying gun output: 40Kw Plasma gas: Ar-H2 As a pre-treatment for overlay bonding, the joint surface (surface to be thermally sprayed) gets stuck in the blast to Rmax
: A surface roughness of 5 to 80μ was obtained.The surface roughness was #10 to #30 using blasting material (A/7.03-3iC).
This was controlled by changing the value to 00.

第3図は平板に溶射した場合の、母材/溶射層の接着剪
断強度と母材の表面粗度の関係であるが、高強度が得ら
れたのは20μ≦Rmax≦60μであった。接合4.
t IIの粒子径が30μであるので、その大きさの1
/2〜2の母材表面粗度が有効である。
Figure 3 shows the relationship between the adhesive shear strength of the base material/sprayed layer and the surface roughness of the base material when thermally sprayed onto a flat plate, and high strength was obtained when 20μ≦Rmax≦60μ. Joining 4.
Since the particle size of t II is 30 μ, 1 of that size
A base material surface roughness of /2 to 2 is effective.

また、この時第4図に示したように母材の温度は800
°C以上が必要であった。予熱は、溶射直後の溶射接合
層と母材の温度差を低減でき、熱応力を緩和する効果が
ある。特に、ZrO,のような熱膨張率が大きい(10
X 10−6/’C)材料に有効である。
Also, at this time, as shown in Figure 4, the temperature of the base material was 800°C.
°C or higher was required. Preheating can reduce the temperature difference between the thermally sprayed bonding layer and the base material immediately after thermal spraying, and has the effect of alleviating thermal stress. In particular, materials such as ZrO, which have a large coefficient of thermal expansion (10
X 10-6/'C) material.

上記の条件で前処理及び予熱を行った後、接合を実施し
、その後予熱温度より10’C/minで徐冷した。徐
冷は、熱膨張の大きい接合体に耐スポール効果がある。
After pretreatment and preheating were performed under the above conditions, bonding was performed, and then the materials were slowly cooled at 10'C/min from the preheating temperature. Slow cooling has an anti-spalling effect on joined bodies with large thermal expansion.

得られた接合体を40 X 4 X 3 rflmの形
状に切り出し、4点曲げ強度を測定した。
The obtained joined body was cut into a shape of 40 x 4 x 3 rflm, and the four-point bending strength was measured.

第5図は、開先角度と接合強度の関係を示した結果であ
るが、開先角度60°以下では溶射接合層が緻密化しな
い為接合せず、良好な接合の為には120a以上必要と
した。
Figure 5 shows the relationship between the groove angle and the bonding strength. If the groove angle is less than 60°, the thermal sprayed bonding layer will not become dense and will not be bonded. For a good bond, 120a or more is required. And so.

〜9− また、第6図に示した開先部分をフラットにした接合体
も良好な接合強度が得られた。溶射接合層と母材の密着
性あるいは溶射接合層の緻密性が良好である条件は、溶
射フレームが母材の被溶射面に対して少なくとも60°
以上必要であり、垂直に近いほど良好である理由による
~9- In addition, good joint strength was also obtained in the joined body shown in FIG. 6 in which the groove portion was made flat. The conditions for good adhesion between the sprayed bonding layer and the base material or the density of the sprayed bonding layer are such that the spray frame is at an angle of at least 60° to the sprayed surface of the base material.
This is because the above is necessary, and the closer to the vertical, the better.

従って、第5図のような単純開先形状の場合、60°以
上必要で、120°以上が良好である。
Therefore, in the case of a simple groove shape as shown in FIG. 5, 60° or more is required, and 120° or more is preferable.

また、第6図に示した形状の開先は、溶射フレームが母
材の被溶射面に対して60″以上となる形状が必要であ
った。15は溶射層である。
Further, the groove shape shown in FIG. 6 required a shape in which the spray frame was 60'' or more with respect to the sprayed surface of the base material. 15 is a sprayed layer.

第7図は開先角度120°の接合体の熱間1000°C
迄の接合強度を示した結果であるが、接合強度は、常温
で15kg/mm”であり、1000°C熱間で12k
g/胴2であった。
Figure 7 shows a joint with a groove angle of 120° heated at 1000°C.
The results show the bonding strength up to this point, and the bonding strength is 15kg/mm'' at room temperature and 12k at 1000°C.
g/body 2.

(実施例2) ZrO□のような高融点材料でないセラミックの接合の
場合は、プラズマ溶射を適用しなくてもプロパンガス溶
射等で接合が可能である。表2は示したように、母材ば
Ajl!zOs  ・TiO□系セラミック、接合材料
は母材と同系とした。
(Example 2) In the case of joining ceramics such as ZrO□ which are not high melting point materials, it is possible to join by propane gas spraying or the like without applying plasma spraying. As shown in Table 2, if the base material is Ajl! The zOs/TiO□-based ceramic was used, and the bonding material was the same as the base material.

表2 (wt%) プ1コパンガス溶射接合条件は、次に示した通りとした
Table 2 (wt%) Copan gas spray bonding conditions were as shown below.

溶射距離       :10cm 溶射ガン移動速度   : 50 cm/sec粉末供
給速度     : 25 g /minガス    
     :プロパンー酸素母材表面粗度     :
3oμ 開先角度       :120’ Aj2203 ・TiO□は熱膨張率が小さいので予熱
は必要なく常温で接合可能であった。また、徐冷、保熱
、熱処理ば必要ではなかった。(実施例1)と同様に接
合体の接合強度を評価した結果、4点曲げ常温強度”?
: 3.5kg/mm2.1000 ’C熱間で3.0
kg / mm ” と母材の強度4.5kg / m
m ” と近い値を示した。
Spraying distance: 10cm Spraying gun movement speed: 50cm/sec Powder supply rate: 25g/minGas
: Propane-oxygen base material surface roughness :
3oμ Bevel angle: 120'Aj2203 Since TiO□ has a small coefficient of thermal expansion, it was possible to bond at room temperature without requiring preheating. Moreover, slow cooling, heat retention, and heat treatment were not necessary. As a result of evaluating the joint strength of the joined body in the same manner as in (Example 1), it was found that the four-point bending strength at room temperature was "?"
: 3.5kg/mm2.1000'C hot 3.0
kg/mm” and base material strength 4.5kg/m
m''.

(実施例3) 現状技術では非酸化物セラミックの溶射は困難である為
、非酸化物セラミック母材を接合する場合、接合材料は
母材と同系の材料を適用できないが、雰囲気調整炉の中
で溶射接合することにより、母材と同質系に近い材料で
接近することが可能となった。
(Example 3) Since it is difficult to thermally spray non-oxide ceramics with current technology, when joining non-oxide ceramic base materials, it is not possible to use a material similar to the base material as the joining material. By thermal spray bonding, it became possible to use a material that is close to the same material as the base material.

ここでは、表3に成分を示したように、母材は反応焼結
のSi3N4とし、接合材料はAI!、203  3A
i!z O3/2S 102  Aj!  S i系複
合材料とした。
Here, as shown in Table 3, the base material is reactive sintered Si3N4, and the bonding material is AI! , 203 3A
i! z O3/2S 102 Aj! It was made into an Si-based composite material.

表3      (wt%) プラズマ溶射接合条件は、次に示した通りとした。Table 3 (wt%) The plasma spray bonding conditions were as shown below.

溶射距離       :10cm 溶射ガン移動速度   : 5 Q cm/sec粉末
供給速度     : 30 g /minプラズマ溶
射ガン出力 :40Kw プラズマガス      :Nz−H□母材表面粗度 
    :30μ 開先角度       :120゜ 接合は、溶射材料のA!、SiがN2と反応してAEN
、Si3N4 となって溶射接合層を形成するよう、母
材をN2雰囲気1000°Cの炉の中へ母材を設置した
まま炉内で行った。
Spraying distance: 10cm Spraying gun movement speed: 5 Q cm/sec Powder supply rate: 30 g/min Plasma spraying gun output: 40Kw Plasma gas: Nz-H□ Base material surface roughness
: 30μ Bevel angle: 120°Jointing is A for thermal sprayed materials! , Si reacts with N2 to form AEN
, Si3N4 to form a thermally sprayed bonding layer.

また溶射接合後、未反応のAI!、、Siを完全に窒化
させる為、溶射後接合体は1000 ’C以上の熱処理
及び徐冷を行った。
Also, after thermal spray bonding, unreacted AI! In order to completely nitride the Si, the bonded body after thermal spraying was heat treated at 1000'C or higher and slowly cooled.

上記の予熱及び熱処理及び徐冷を行った溶射接合層は気
孔が少なく強固に接合しており、常温接合強度1.5k
g/mm2、熱間接合強度6.8kg/+++o+2で
あった。
The sprayed bonding layer that has undergone the above preheating, heat treatment, and slow cooling has few pores and is strongly bonded, with a room temperature bonding strength of 1.5K.
g/mm2, and the hot bonding strength was 6.8 kg/+++o+2.

予熱及び熱処理をしない接合体は、常温接合強度は、4
.1kg/mm2であったが、熱間1000 ’Cでは
接合強度はなかった。これは、熱間では溶射接合層のN
2と未反応の、6−f2.Stの強度がない為である。
The bonded body without preheating or heat treatment has a room temperature bonding strength of 4.
.. 1 kg/mm2, but there was no bonding strength at 1000'C hot. This is due to the N
2 and unreacted, 6-f2. This is because it does not have the strength of St.

熱処理は、1000 ’C以上必要であるカベ時間は溶
射接合層の量に支配され、ここでは11)1以上必要と
した。
The heat treatment required 1000'C or more. The wall time was controlled by the amount of the thermally sprayed bonding layer, and here 11) 1 or more was required.

(実施例4) 大型形状母材を接合する場合は、第8図に示したように
接合部を温度制御炉10のtljに入れたまま溶射肉盛
接合した。接合母材1及び接合材料1′の成分は、(実
施例1)に示したZr0z系とし、接合条件も同様とし
た。その結果、第8図に示した3 00 X 50 X
 50 mmの接合体で9.5kg/n+m2の接合強
度を得た。15は溶射接合層、16は溶射用の窓、3は
溶射機を示す。
(Example 4) When joining large-sized base materials, thermal spray overlay joining was performed while the joint portion was placed in the tlj of the temperature-controlled furnace 10, as shown in FIG. The components of the bonding base material 1 and the bonding material 1' were the Zr0z series shown in (Example 1), and the bonding conditions were also the same. As a result, 300 x 50 x shown in Figure 8
A bonding strength of 9.5 kg/n+m2 was obtained with a 50 mm bonded body. 15 is a thermal spray bonding layer, 16 is a window for thermal spraying, and 3 is a thermal spraying machine.

(実施例5) 第9図に予め無機接着材法にて接合されている接合体1
.1′を、溶射にて補強する方法を示した。母材及び接
合材料は、(実施例2)と同じとした。接合部にブラス
トによりRmax30μの表面粗度を設&Jた後、接合
部を(実施例3)に示した条件にて溶射肉盛補強15し
た。その結果、接合体の接合強度を現状の無機接着材法
から大幅に向」二できた。
(Example 5) As shown in Fig. 9, the joined body 1 is joined in advance by the inorganic adhesive method.
.. A method of reinforcing 1' by thermal spraying was shown. The base material and bonding material were the same as in (Example 2). After setting a surface roughness of Rmax 30μ on the joint by blasting, the joint was reinforced by thermal spray overlay 15 under the conditions shown in Example 3. As a result, the bonding strength of the bonded body was significantly improved compared to the current inorganic adhesive method.

以上水したように、溶射によるセラミックの接合方法に
より、高温下で強度が大きい接合方法が達成できた。本
発明によって、接合によるセラミックの大型構造体、例
えば、セラミックの単管の製造等が可能となったので、
第10図a、b、cに見られるような高温流体輸送用セ
ラミック配管、セラミック製熱交換機、セラミックエン
ジンの製造への期待がもてる。また、耐熱性の不足して
いる接合部の補強へ技術適用でき、設備メンテナンス費
用の削減が期待できる。
As mentioned above, by using a ceramic bonding method using thermal spraying, we were able to achieve a bonding method that has high strength at high temperatures. The present invention has made it possible to manufacture large ceramic structures, such as single ceramic tubes, by bonding.
There is hope for manufacturing ceramic piping for high-temperature fluid transport, ceramic heat exchangers, and ceramic engines as shown in Figures 10a, b, and c. Additionally, the technology can be applied to strengthen joints that lack heat resistance, and is expected to reduce equipment maintenance costs.

(発明の効果) 本発明はW−膜肉盛溶射によって高温下で高強度を有す
るセラミックの結合をうることができる。
(Effects of the Invention) The present invention can obtain a ceramic bond having high strength at high temperatures by W-film overlay thermal spraying.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明図、第2図は本発明の詳細な説明
図、第3図は表面粗度と接着剪断強度の図表、第4図は
母材予熱温度と接着剪断強度の図表、第5図は開先角度
と接合強度の図表、第6図は開先部接合体の説明図、第
7図は試験温度と接合強度との図表、第8図は本発明の
実施例の模式図、第9図は本発明の他の実施例の説明図
、第10図a、b、cは本発明の詳細な説明図である。 代理人 弁理士 茶 野 木 立 夫 (21/を暉Cメ)■乳せ妊 (2警78N)ダ藪せ姓 (2雰ゲeJ)双襲押(1v (β壓ム)鐸腸刷W貢 (a) (看)      (C)
Figure 1 is an explanatory diagram of the present invention, Figure 2 is a detailed diagram of the invention, Figure 3 is a diagram of surface roughness and adhesive shear strength, and Figure 4 is a diagram of base material preheating temperature and adhesive shear strength. , Fig. 5 is a diagram of the groove angle and joint strength, Fig. 6 is an explanatory diagram of the groove joint, Fig. 7 is a diagram of the test temperature and joint strength, and Fig. 8 is a diagram of the example of the present invention. A schematic diagram, FIG. 9 is an explanatory diagram of another embodiment of the present invention, and FIGS. 10 a, b, and c are detailed explanatory diagrams of the present invention. Agent Patent Attorney Tatsuo Chanoki (21/C) ■ Breast pregnancy (2nd grade 78N) Daabuse surname (2nd atmosphere game eJ) Double attack push (1v (β)) tribute (a) (watch) (C)

Claims (1)

【特許請求の範囲】 1 同種もしくは異種成分の分割されたセラミック同志
を接合するに当り、接合部にRmax20〜60μの表
面粗度を形成し、接合部へ肉盛溶射したことを特徴とす
るセラミックの接合方法。 2 予め接着材等により接合している同種もしくは異種
成分のセラミック同志の接合部に、Rmax20〜60
μの表面粗度を形成し、接合部へ肉盛溶射し、接合部を
補強したことを特徴とするセラミックの接合方法。 3 接合部に開先部もしくは開先部分にフラット面ある
いは曲面を有する開先形状を形成せしめ、しかる後に接
合部へ肉盛溶射することを特徴とする請求項1又は2に
記載するセラミックの接合方法。 4 接合母材を予熱した後、肉盛溶射することを特徴と
する請求項1又は2に記載するセラミックの接合方法。 5 接合母材をO_2、H_2、N_2、減圧等の雰囲
気調整できる炉の中へいれたまま、肉盛溶射することを
特徴とする請求項1又は2に記載するセラミックの接合
方法。 6 溶射接合後、接合部を熱処理あるいは保熱あるいは
除冷を施することを特徴とする請求項1又は2に記載す
るセラミックの接合方法。
[Claims] 1. A ceramic characterized by forming a surface roughness of Rmax 20 to 60μ on the joint part and thermally overlaying the joint part when joining divided ceramics of the same or different components. joining method. 2 Rmax 20 to 60 at the joint between ceramics of the same or different components that have been joined in advance with an adhesive, etc.
A method for joining ceramics, which is characterized by forming a surface roughness of μ, and applying overlay thermal spraying to the joint to reinforce the joint. 3. Ceramic joining according to claim 1 or 2, characterized in that a groove shape having a flat surface or a curved surface is formed in a groove portion or a groove portion in the joint portion, and then overlay thermal spraying is applied to the joint portion. Method. 4. The ceramic joining method according to claim 1 or 2, wherein the joining base material is preheated and then overlay thermal spraying is applied. 5. The ceramic joining method according to claim 1 or 2, characterized in that the overlay thermal spraying is carried out while the joining base material is placed in a furnace where the atmosphere can be adjusted to O_2, H_2, N_2, reduced pressure, etc. 6. The method for joining ceramics according to claim 1 or 2, characterized in that after the thermal spray joining, the joined portion is subjected to heat treatment, heat retention, or gradual cooling.
JP7847388A 1988-03-31 1988-03-31 Method for bonding ceramic by thermal spraying Pending JPH01249666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7847388A JPH01249666A (en) 1988-03-31 1988-03-31 Method for bonding ceramic by thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7847388A JPH01249666A (en) 1988-03-31 1988-03-31 Method for bonding ceramic by thermal spraying

Publications (1)

Publication Number Publication Date
JPH01249666A true JPH01249666A (en) 1989-10-04

Family

ID=13662986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7847388A Pending JPH01249666A (en) 1988-03-31 1988-03-31 Method for bonding ceramic by thermal spraying

Country Status (1)

Country Link
JP (1) JPH01249666A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251476A (en) * 1988-08-12 1990-02-21 Tokai Carbon Co Ltd Method for bonding ceramic materials
US5537508A (en) * 1993-03-22 1996-07-16 Applied Materials, Inc. Method and dry vapor generator channel assembly for conveying a liquid from a liquid source to a liquid vaporizer with minimal liquid stagnation
EP1310466A3 (en) * 2001-11-13 2003-10-22 Tosoh Corporation Quartz glass parts, ceramic parts and process of producing those
KR20180026398A (en) * 2015-07-03 2018-03-12 플란제 에스이 Refractory metal container

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251476A (en) * 1988-08-12 1990-02-21 Tokai Carbon Co Ltd Method for bonding ceramic materials
JPH0530794B2 (en) * 1988-08-12 1993-05-10 Tokai Kaabon Kk
US5537508A (en) * 1993-03-22 1996-07-16 Applied Materials, Inc. Method and dry vapor generator channel assembly for conveying a liquid from a liquid source to a liquid vaporizer with minimal liquid stagnation
EP1310466A3 (en) * 2001-11-13 2003-10-22 Tosoh Corporation Quartz glass parts, ceramic parts and process of producing those
KR20180026398A (en) * 2015-07-03 2018-03-12 플란제 에스이 Refractory metal container
JP2018528321A (en) * 2015-07-03 2018-09-27 プランゼー エスエー Refractory metal container
US10730111B2 (en) 2015-07-03 2020-08-04 Plansee Se Container of refractory metal

Similar Documents

Publication Publication Date Title
JP5809901B2 (en) Laminate and method for producing laminate
US4562090A (en) Method for improving the density, strength and bonding of coatings
JPS641551B2 (en)
JPH01249666A (en) Method for bonding ceramic by thermal spraying
US8747946B2 (en) Pre-treatment apparatus and method for improving adhesion of thin film
GB2060436A (en) Method of applying a ceramic coating to a metal workpiece
US3415631A (en) Protective coated article
CN110004372A (en) A kind of high temperature resistant, anti-oxidant, wear-resisting metallurgy roller and preparation method thereof
JPS61159566A (en) Coating method of metallic or ceramic base material
CN105568203A (en) Plasma-spray-based manufacturing method of scratch-resistant insulating mirror plate
JPH05271900A (en) Heating and pressurizing method of thermally sprayed film
JP2702738B2 (en) Thermal spraying method
RU2115740C1 (en) Method of preparation for operation of blast-furnace tuyere
CN109457209A (en) A kind of preparation method of thermal spraying ceramic composite coating
CN109913787A (en) A kind of preparation method of the wear resistant corrosion resistant composite coating of metallurgical bonding
SU1475973A1 (en) Method of producing coatings
RU2728068C1 (en) Method of producing thick-wall ceramic heat-resistant, heat-shielding and erosion-resistant coatings
RU2828807C1 (en) Method of producing hybrid thermal barrier coating
JPH0229740B2 (en) MITSUCHAKUSEINISUGURETAYOSHASONOKEISEIHOHO
Henne et al. Coating on a Substrate and Process for Its Manufacture
JPS61206604A (en) Manufacture of ceramic pipe
JPH0230773A (en) Method for coating metal having high melting point with oxide ceramics
US20140093653A1 (en) Method for modification of the surface and subsurface regions of metallic substrates
JPS58122077A (en) Melt spraying method of two layers
JPH02184588A (en) Method for flame spraying application to ceramics