JPH01249298A - Manufacture of metal powder flux cored wire - Google Patents
Manufacture of metal powder flux cored wireInfo
- Publication number
- JPH01249298A JPH01249298A JP7619288A JP7619288A JPH01249298A JP H01249298 A JPH01249298 A JP H01249298A JP 7619288 A JP7619288 A JP 7619288A JP 7619288 A JP7619288 A JP 7619288A JP H01249298 A JPH01249298 A JP H01249298A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- wire drawing
- metal powder
- flux
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 34
- 239000002184 metal Substances 0.000 title claims abstract description 34
- 239000000843 powder Substances 0.000 title claims abstract description 33
- 230000004907 flux Effects 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000005491 wire drawing Methods 0.000 claims abstract description 40
- 238000000137 annealing Methods 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 19
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 13
- 239000010959 steel Substances 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims description 12
- 238000003466 welding Methods 0.000 abstract description 20
- 239000002893 slag Substances 0.000 abstract description 7
- 229910001209 Low-carbon steel Inorganic materials 0.000 abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 208000026438 poor feeding Diseases 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 241000208202 Linaceae Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Nonmetallic Welding Materials (AREA)
- Metal Extraction Processes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はガスシールドアーク溶接用フラックス入りワイ
ヤに関し、詳細には軟鋼、高張力鋼などの溶接において
最近、使用されつつあるスラグの発生量の少ない金属粉
系フラックス入りワイヤ、特に、溶接鋼管を外皮とする
合わせ目のない、良好な溶接送給性を有するワイヤを、
生産性良く得る製造方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a flux-cored wire for gas-shielded arc welding, and more specifically, to a flux-cored wire for use in welding mild steel, high-strength steel, etc. We use flux-cored wires with a small amount of metal powder, especially wires with a welded steel pipe outer shell and no seams and good welding feedability.
This invention relates to a manufacturing method that provides high productivity.
最近、造船、鉄骨、橋梁などの各種溶接構造物において
、省力化及び生産能率向上の面からガスシールドアーク
溶接で行なうフラックス入りワイヤの使用が象、増して
いるが、その中で鉄粉をワイヤ中に多量含有するいわゆ
る金属粉系フラックス入りワイヤがスラグ発生量が少な
く、又ワイヤ溶着速度が速く能率的である点などの特徴
より、その使用が増加しつつある。Recently, the use of flux-cored wire, which is performed by gas-shielded arc welding, has been increasing in various welded structures such as shipbuilding, steel frames, and bridges in order to save labor and improve production efficiency. The use of so-called metal powder-based flux-cored wire, which contains a large amount of wire, is increasing because of its characteristics such as low slag generation and high wire welding speed and efficiency.
一方、このフラックス入りワイヤにおいて、溶接鋼管に
フラックス原料を充填して製造される合わせ目のないワ
イヤが、銅メツキが可能なことで耐サビ性がよく、又合
わせ目がないために、ワイヤ送給時のブレが起りにくい
などの特徴があり広く使用されつつある。On the other hand, this flux-cored wire is made by filling a welded steel pipe with flux raw material and has good rust resistance because it can be copper plated. It is becoming widely used due to its characteristics such as less chance of fluctuations in pay times.
しかしながら、この合わせ目のないフラックス入りワイ
ヤで前述の金属粉系フラックス入りワイヤを製造する場
合、従来の製造方法では仕上りワイヤに小さなくびれが
生じたり、又伸線中に断線などが頻発するので伸線の速
度を大幅に遅くして生産せざるをえず、その結果ワイヤ
コストの著しい増大をもたらし、又仕上りワイヤの溶接
時の送給性も悪く、溶接作業性が低下するという問題点
があった。However, when manufacturing the aforementioned metal powder-based flux-cored wire using this seamless flux-cored wire, the conventional manufacturing method results in small constrictions in the finished wire and frequent breakage during wire drawing. The wire has to be produced at a significantly slower speed, which results in a significant increase in wire cost.Furthermore, the feedability of the finished wire during welding is poor, reducing welding workability. Ta.
このような状況から、溶接作業性が良好でかつ生産性の
良好な合わせ目のないフラックス入りワイヤの開発が望
まれていた。Under these circumstances, it has been desired to develop a seamless flux-cored wire with good welding workability and productivity.
〔発明が解決しようとする課題]
本発明は以上の如き現況に鑑みてなされたものであって
、その目的とするところはワイヤにくびれなどがな(、
送給性が良好でかつ伸線時断線などがなく生産性のよい
安価な、合わせ目のない金属粉系フラックス入りワイヤ
の製造方法を提供するにある。[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned current situation, and its purpose is to eliminate constrictions in the wire (,
To provide an inexpensive method for producing seamless metal powder-based flux-cored wire with good feedability, no wire breakage during wire drawing, high productivity, and no joints.
〔課題を解決するための手段〕
本発明は、金属粉の割合が90%以上からなるフラック
ス原料を溶接鋼管外皮に10〜25%充填してなる金属
粉系フラックス入りワイヤの製造方法において、伸線過
程中に実施される焼鈍工程の焼鈍温度を下記(1)式の
範囲としかつ焼鈍後の伸線工程の減面率を30〜75%
の範囲とすることを特徴とするワイヤ径2.0 lll
l11φ以下の金属粉系フラックス入りワイヤの製造方
法を要旨とするものである。[Means for Solving the Problems] The present invention provides a method for manufacturing a metal powder-based flux-cored wire in which a welded steel pipe jacket is filled with a flux raw material containing 90% or more of metal powder in an amount of 10 to 25%. The annealing temperature in the annealing process carried out during the wire process is within the range of formula (1) below, and the area reduction rate in the wire drawing process after annealing is 30 to 75%.
The wire diameter is within the range of 2.0 lll.
The gist of this invention is a method for manufacturing a metal powder-based flux-cored wire with a diameter of 11φ or less.
(1)式;
ここで丁(’C):焼鈍温度
R(%):焼鈍後の伸線減面率
〔作用〕
本発明者らは、まず溶接鋼管に多量の金属粉を含むフラ
ックス原料を充填してなる金属粉系ワイヤの場合、通常
の連続伸線機を使用する伸線工程において伸線時に断線
が多発する現象を認め、その原因を種々のワイヤの縦断
面を切断して観察し検討した。その結果、伸線時の断線
は以下の理由によることをつきとめた。すなわち、従来
の製造条件下での製造時に断線したワイヤの縦断面を観
察すると伸線過程の経過にともない外皮とともに圧縮、
伸展されるべき充填フラックスが数閣間隔で分離し、空
隙部を形成し伸展していない状態がみられる。このよう
な状態になる理由は、非金属成分(酸化物、弗化物)が
多い通常のフラックス入りワイヤの場合は、焼鈍過程中
に充填フラックスの固着化は起らず、伸線時にフラック
ス粉体は容易に流動し、伸線過程の経過にともない外皮
とともに圧縮、伸展されて、充填フラックスの分離が起
らないのに対して、金属粉の割合が多いと焼鈍過程中に
金属粉相互の固着化が起り、伸線時にこれが分離し、空
隙を作るためである。Equation (1); Here, C: Annealing temperature R (%): Wire drawing area reduction rate after annealing [Function] The present inventors first applied a flux raw material containing a large amount of metal powder to a welded steel pipe. In the case of filled metal powder wire, we observed a phenomenon in which wire breakage occurred frequently during wire drawing using a regular continuous wire drawing machine, and the cause of this was observed by cutting longitudinal sections of various wires. investigated. As a result, we found that wire breakage during wire drawing was due to the following reasons. In other words, when observing the longitudinal cross section of a wire that was broken during manufacturing under conventional manufacturing conditions, as the wire drawing process progresses, it compresses together with the outer skin.
It can be seen that the filling flux that should be expanded is separated at several intervals, forming voids and not being expanded. The reason for this situation is that in the case of ordinary flux-cored wires that contain many nonmetallic components (oxides, fluorides), the filling flux does not solidify during the annealing process, and the flux powder forms during wire drawing. Flux flows easily and is compressed and expanded together with the outer skin as the wire drawing process progresses, so that separation of the filling flux does not occur.However, if the proportion of metal powder is high, the metal powders will stick to each other during the annealing process. This is because this occurs and separates during wire drawing, creating voids.
しかして、前記の如きワイヤの伸線時の断線は、伸線過
程においてフラックス原料が分離した空隙部と充填部を
形成するため、ダイスにおける抵抗が強弱の波状を示し
、このうち、フラックス充填部でその抵抗が象、増する
ために起こることを確かめた。However, in the case of wire breakage during wire drawing as described above, the flux raw material forms separated voids and filled parts during the wire drawing process, so the resistance at the die exhibits a wavy pattern of strength and weakness, and among these, the flux filled part It was confirmed that this resistance was caused to increase.
次に本発明者らは上述の断線原因の解析をもとに種々の
製造条件を検討する実験を行ない、以下の手段が断線防
止に有効であるとの着想を得、本発明を完成するに至っ
た。Next, the present inventors conducted experiments to consider various manufacturing conditions based on the above analysis of the cause of wire breakage, and came up with the idea that the following means are effective in preventing wire breakage, and completed the present invention. It's arrived.
(1)焼鈍後の伸線加工度(減面率)をできるだけ少な
くし伸線時の充填フラックスの分離を少なくする。(1) Minimize the degree of wire drawing (area reduction rate) after annealing to reduce separation of the filling flux during wire drawing.
(2)焼鈍温度をできるだけ下げ、金属粉相互の固着化
を少なくする。(2) Lower the annealing temperature as much as possible to reduce mutual adhesion of metal powders.
(3)焼鈍温度の上限は、焼鈍後の伸線減面率によって
変化し、次の式を満足する焼鈍とする。(3) The upper limit of the annealing temperature changes depending on the wire drawing area reduction rate after annealing, and is annealing that satisfies the following formula.
以下に本発明の構成、作用を説明する。The structure and operation of the present invention will be explained below.
まず、本発明は金属粉の割合が90%以上からなるフラ
ックス原料を10〜25%充填してなる金属粉系フラッ
クス入りワイヤに限定される。これらの限定は金属粉系
フラックス入りワイヤの本来の特徴すなわち、スラグが
少なく、能率的でかつ溶接作業性が良好である等の特徴
がなくなるものであるが、フラックス原料中の金属粉の
割合が90%未満の場合、必然的にアーク安定剤、スラ
グ形成剤であるアルカリ又はアルカリ土類金属酸化物あ
るいはTiO□、 SiO□などの酸化物などが多くな
るため、スラグ量を増加させ、金属粉系フラックス入り
ワイヤの本来の特性がなくなるので好ましくない。又、
充填率の上限を25%としたのは、これを超えると外皮
金属の肉厚が、うずくなりすぎ、ワイヤが軟弱になると
ともに、伸線工程においていかなる条件下でも断線して
しまい、もはや伸線ができなくなるためである。First, the present invention is limited to a metal powder-based flux-cored wire filled with 10 to 25% of a flux raw material containing 90% or more of metal powder. These limitations eliminate the original characteristics of metal powder-based flux-cored wire, such as low slag, high efficiency, and good welding workability, but the ratio of metal powder in the flux raw material If it is less than 90%, the amount of alkali or alkaline earth metal oxides or oxides such as TiO□ and SiO□, which are arc stabilizers and slag forming agents, will inevitably increase, so the amount of slag will increase and the metal powder will This is not preferable because the original characteristics of the flux-cored wire will be lost. or,
The reason why we set the upper limit of the filling rate to 25% is that if it exceeds this, the thickness of the outer metal will become too thick, the wire will become soft and weak, and the wire will break under any conditions during the wire drawing process, so it is no longer possible to draw the wire. This is because it becomes impossible to do so.
一方、充填率が10%未満になると、鉄粉を主体とする
金属粉、アーク安定剤、少量必要となるスラグ形成剤成
分などのフラックス原料の十分な添加調整ができなくな
る。On the other hand, if the filling rate is less than 10%, it becomes impossible to sufficiently adjust the addition of flux raw materials such as metal powder mainly consisting of iron powder, arc stabilizer, and slag forming agent components that are required in small amounts.
焼鈍後の伸線減面率を30〜75%の範囲に限定する理
由は、30%未満ではワイヤが軟かすぎ、溶接時コンジ
ットケーブル内で座屈し易く、送給不良となるためであ
り、一方、75%以下にするのは、これを超える減面率
の場合、焼鈍温度を450 ”C以下に下げないと、伸
線過程において充填フラックス中の金属粉相互が固着し
ているため、伸線時これが分離し、これが原因で断線し
てワイヤが製造できなくなるか、もしくはくびれ状のワ
イヤとなり、溶接時にワイヤの送給性を悪くするからで
ある。The reason why the wire drawing area reduction rate after annealing is limited to a range of 30 to 75% is that if it is less than 30%, the wire will be too soft and will easily buckle in the conduit cable during welding, resulting in poor feeding. On the other hand, the reason why it is set to 75% or less is because if the area reduction exceeds this, the metal powder in the filling flux will stick to each other during the wire drawing process unless the annealing temperature is lowered to 450"C or less. This is because when the wire separates, the wire breaks, making it impossible to manufacture the wire, or creating a constricted wire, which impairs wire feedability during welding.
焼鈍温度を450°C以上にするのは、これより低くす
ると焼鈍時ワイヤ中のH2の逸散が不十分となり、溶接
待溶着金属中の拡散性水素量が多くなり、H2による低
温割れあるいはブローホールなどの欠陥を生じるためで
ある。The reason why the annealing temperature is set to 450°C or higher is that if the annealing temperature is lower than this, the dissipation of H2 in the wire during annealing will be insufficient, the amount of diffusible hydrogen in the deposited metal will increase, and cold cracking or blowing due to H2 will occur. This is because defects such as holes occur.
焼鈍温度の上限を下記式
により限定したのは焼鈍温度(T)と焼鈍後の伸線減面
率(R)を種々変化させて得た多くの実験データから得
た経験式であり、この焼鈍温度の上限を超えて焼鈍され
ると前述の伸線時断線が多発するか、ワイヤにくびれな
どが生し使用できない状態となるためである。The upper limit of the annealing temperature is limited by the following formula, which is an empirical formula obtained from a lot of experimental data obtained by varying the annealing temperature (T) and the wire drawing area reduction rate (R) after annealing. This is because if the wire is annealed at a temperature exceeding the upper limit, the aforementioned wire breakage will occur frequently during wire drawing, or the wire will become constricted, making it unusable.
以下に本発明を実施例によって説明する。 The present invention will be explained below by way of examples.
なお、焼鈍前工程までの製造条件は以下に示す通常の製
造方法で行なっている。Note that the manufacturing conditions up to the pre-annealing process are the following normal manufacturing method.
(i)使用した溶接鋼管は外径12.7 Mφ、肉厚2
+mnの軟鋼材である。(i) The welded steel pipe used has an outer diameter of 12.7 Mφ and a wall thickness of 2
+mn mild steel material.
(ii )溶接鋼管内に充填するフラ・ンクス原料は第
1表に示すAとBの2種のものを使用した。(ii) Two types of flax raw materials, A and B shown in Table 1, were used to fill the welded steel pipes.
そのうちAは、本発明が対象とする金属粉系フラックス
入りワイヤのフラ・ンクス原料配合比を示すもので、金
属粉の添加量は合計95%である。Bは通常のフラ・ン
クス入りワイヤの配合比を示し、金属粉の添加量は38
%である。Among these, A indicates the blending ratio of flux raw materials for the metal powder-based flux-cored wire to which the present invention is directed, and the total amount of metal powder added is 95%. B shows the blending ratio of normal flanx-cored wire, and the amount of metal powder added is 38
%.
(iii )フラックス原料はバインダーとして水ガラ
スを添加し、造粒、焼成してつくられ、その粒度は20
メツシユ以下のものとした。(iii) The flux raw material is made by adding water glass as a binder, granulating and firing, and the particle size is 20
It was defined as something below Metsushiyu.
(iv)溶接鋼管へのフラックス原料は[特公昭45−
30937号公報記載と同様の振動充填法によって行な
った。フラックス充填率は15%とした。(iv) The flux raw material for welded steel pipes is
This was carried out using the same vibratory filling method as described in Publication No. 30937. The flux filling rate was 15%.
実験は焼鈍温度及び焼鈍前までの伸線径を変えて、焼鈍
以後の伸線の減面率を種々変化させた。In the experiment, the annealing temperature and the wire drawing diameter before annealing were changed, and the area reduction rate of the wire drawing after annealing was varied.
第2表にそれらの実験条件と実験結果を示した。Table 2 shows the experimental conditions and experimental results.
なお焼鈍時間は3時間で行った。The annealing time was 3 hours.
実験結果は、伸線時の断線の有無と仕上りワイヤの外観
及び溶接時のワイヤ送給性の良、不良と溶接金属の拡散
性水素量(JIS Z311Bによる〕を示し、それら
をまとめた総合判定を行なった。The experimental results show the presence or absence of wire breakage during wire drawing, the appearance of the finished wire, the good or bad wire feedability during welding, and the amount of diffusible hydrogen in the weld metal (according to JIS Z311B), and a comprehensive judgment is made by summarizing them. I did it.
ここでワイヤ送給性の判定は次の溶接条件で行なった。Here, the wire feedability was determined under the following welding conditions.
〈溶接条件〉
極性:DCワイヤ(+)、
シールドガス:CO□、25ff/分、溶接電流:38
〇八(1,6φ) 、 280^(1,2φ)コンジン
ト長さ、3m(コンジット、市販品)、ストレート
第2表の実験条件と実験結果から以下のごとく考察でき
る。<Welding conditions> Polarity: DC wire (+), Shield gas: CO□, 25ff/min, Welding current: 38
〇8 (1,6φ), 280^ (1,2φ) conduit length, 3m (conduit, commercially available), straight From the experimental conditions and experimental results in Table 2, the following can be considered.
(1) No、3 、 No、6 、 NO,10お
よび陥、12は本発明で規定する要件を全て満足する実
施例であり、伸線時の断線もなく、又ワイヤの仕上り外
観、溶接時のワイヤ送給性、いずれも良好であり、又、
拡散性水素量も5cc/100g以下であり、総合判定
として、満足するものである。(1) No. 3, No. 6, No. 10, and No. 12 are examples that satisfy all the requirements stipulated by the present invention, and there is no wire breakage during wire drawing, and the finished appearance of the wire and the welding time are excellent. wire feedability is good, and
The amount of diffusible hydrogen is also 5 cc/100 g or less, which is satisfactory as an overall judgment.
(2) No、2. No、5.及びN011は、焼
鈍後の減面率は75%以下であるが焼鈍温度が(1)式
を満足しないため、伸線時断線多数となるものである。(2) No, 2. No, 5. and No. 11 has a reduction in area after annealing of 75% or less, but the annealing temperature does not satisfy formula (1), resulting in many wire breaks during wire drawing.
(3) No、4は焼鈍温度は(1)式を満足するが
、焼鈍後の減面率が84%と75%を越えているため、
これも伸線時の断線多数となっている。(3) For No. 4, the annealing temperature satisfies formula (1), but the area reduction rate after annealing exceeds 84% and 75%, so
This also resulted in a large number of wire breaks during wire drawing.
(4) kl、 No、8及びNo、 9は焼鈍温度
及び減面率とも本発明要件を満足せず、伸線時の断線多
数となっている。(4) Kl, No. 8, and No. 9, both the annealing temperature and area reduction ratio did not satisfy the requirements of the present invention, and many wires were broken during wire drawing.
(5) No、7は、焼鈍温度が低すぎ、拡散性水素
量が高くなり低温割れの危険があり、使用ができないも
のである。(5) No. 7 cannot be used because the annealing temperature is too low and the amount of diffusible hydrogen increases, leading to the risk of low-temperature cracking.
(6) No、 13は減面率が低すぎ、ワイヤが軟
かすぎて溶接待座屈を起こし、送給不良となっている。(6) In No. 13, the area reduction rate was too low and the wire was too soft, causing buckling during welding, resulting in poor feeding.
(7) No、 14及びNα15はワイヤ処方が、
非金属粉系である比較例であり、この場合は伸線、ワイ
ヤ仕上り外観、ワイヤ送給性及び拡散性水素量とも良好
な結果であるが、スラグ量が多く、金属粉系フランクス
入りワイヤとしての特徴がみられないものである。(7) For No. 14 and Nα15, the wire prescription is
This is a comparative example of a non-metallic powder-based wire, and in this case, the wire drawing, finished wire appearance, wire feedability, and amount of diffusible hydrogen were all good, but the amount of slag was large, making it difficult to use as a metal powder-based franked wire. These characteristics are not observed.
(発明の効果〕
本発明によれば、従来通常の製造条件では断線が生じた
り、くびれが生じて製造することができなかった、溶接
鋼管を外皮とした合わせ目のない金属粉系フラックス入
りワイヤを高い生産性で製造できるので、産業上碑益す
るところがきわめて大である。(Effects of the Invention) According to the present invention, a seamless metal powder-based flux-cored wire with a welded steel pipe outer shell, which could not be manufactured due to breakage or constriction under normal manufacturing conditions. Since it can be manufactured with high productivity, it has enormous industrial benefits.
Claims (1)
接鋼管外皮に10〜25%充填してなる金属粉系フラッ
クス入りワイヤの製造方法において、伸線過程中に行わ
れる焼鈍工程の焼鈍温度を下記(1)式の範囲としかつ
焼鈍後の伸線工程の減面率を30〜75%の範囲とする
ことを特徴とするワイヤ径2.0mmφ以下の金属粉系
フラックス入りワイヤの製造方法。 450≦T(℃)≦7500/R(%)+460…(1
)式ここでT(℃):焼鈍温度 R(%):焼鈍後の伸線減面率[Scope of Claims] In a method for manufacturing a metal powder-based flux-cored wire in which a welded steel pipe jacket is filled with a flux raw material containing 90% or more of metal powder at 10 to 25%, annealing performed during the wire drawing process. A metal powder-based flux-cored wire with a wire diameter of 2.0 mmφ or less, characterized in that the annealing temperature in the process is within the range of formula (1) below, and the area reduction rate in the wire drawing process after annealing is in the range of 30 to 75%. Method of manufacturing wire. 450≦T(℃)≦7500/R(%)+460...(1
) formula where T (℃): Annealing temperature R (%): Wire drawing area reduction rate after annealing
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7619288A JPH0645080B2 (en) | 1988-03-31 | 1988-03-31 | Method for manufacturing wire containing metal powder flux |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7619288A JPH0645080B2 (en) | 1988-03-31 | 1988-03-31 | Method for manufacturing wire containing metal powder flux |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01249298A true JPH01249298A (en) | 1989-10-04 |
JPH0645080B2 JPH0645080B2 (en) | 1994-06-15 |
Family
ID=13598273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7619288A Expired - Lifetime JPH0645080B2 (en) | 1988-03-31 | 1988-03-31 | Method for manufacturing wire containing metal powder flux |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645080B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03281092A (en) * | 1990-03-28 | 1991-12-11 | Nippon Steel Weld Prod & Eng Co Ltd | Production of metallic powder flux cored wire |
CN104400261A (en) * | 2014-11-14 | 2015-03-11 | 天津市旭智机电设备开发有限公司 | Flux-cored wire powder feeder with powder feeding shaft |
-
1988
- 1988-03-31 JP JP7619288A patent/JPH0645080B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03281092A (en) * | 1990-03-28 | 1991-12-11 | Nippon Steel Weld Prod & Eng Co Ltd | Production of metallic powder flux cored wire |
CN104400261A (en) * | 2014-11-14 | 2015-03-11 | 天津市旭智机电设备开发有限公司 | Flux-cored wire powder feeder with powder feeding shaft |
Also Published As
Publication number | Publication date |
---|---|
JPH0645080B2 (en) | 1994-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6399984B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6399983B2 (en) | Flux-cored wire for gas shielded arc welding | |
JPS5944159B2 (en) | Flux-cored wire for gas shield arc welding | |
MXPA01004916A (en) | Weld wire with enhanced slag removal. | |
JP2017024032A (en) | Flux-cored wire for gas shielded arc welding | |
JPH09277087A (en) | Flux cored wire for arc welding | |
JPH01249298A (en) | Manufacture of metal powder flux cored wire | |
CN106794559B (en) | Flux-cored wire for gas-shielded arc welding | |
CN104942466B (en) | A kind of self-shielded welding wire and preparation method thereof | |
JPH0520198B2 (en) | ||
JP7092571B2 (en) | Manufacturing method of metal-based flux-cored wire and metal-based flux-cored wire | |
JP2650601B2 (en) | Manufacturing method of thick wall large diameter steel pipe by welding | |
JPS6125470B2 (en) | ||
CN110936050A (en) | Stranded welding wire for high-strength steel and preparation process thereof | |
JP3481476B2 (en) | Flux-cored wire for gas shielded arc welding and method for producing the same | |
JPS62248597A (en) | Flux cored wire for gas shielded arc welding | |
JPH08197283A (en) | Flux cored wire for mig welding by which high-toughness weld zone having lessened welding deformation is obtainable | |
JP3718464B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2742957B2 (en) | Manufacturing method of metal powder based flux cored wire | |
JPS5940556B2 (en) | High toughness seamless wire for arc welding | |
KR20130125166A (en) | Filler for cored wire and flux cored wire for overlay welding with low dilution rate | |
JPS5832583A (en) | Tube welding method for large diameter steel tube | |
JPS6045992B2 (en) | Automatic welding wire used for welding spheroidal graphite cast iron | |
JPH09239589A (en) | Manufacture of welding flux cored wire | |
JP6765259B2 (en) | Seamless wire with flux for welding |