JPH0124917Y2 - - Google Patents

Info

Publication number
JPH0124917Y2
JPH0124917Y2 JP9050483U JP9050483U JPH0124917Y2 JP H0124917 Y2 JPH0124917 Y2 JP H0124917Y2 JP 9050483 U JP9050483 U JP 9050483U JP 9050483 U JP9050483 U JP 9050483U JP H0124917 Y2 JPH0124917 Y2 JP H0124917Y2
Authority
JP
Japan
Prior art keywords
coating layer
insulating coating
protrusion
reactor
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9050483U
Other languages
Japanese (ja)
Other versions
JPS59195726U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9050483U priority Critical patent/JPS59195726U/en
Publication of JPS59195726U publication Critical patent/JPS59195726U/en
Application granted granted Critical
Publication of JPH0124917Y2 publication Critical patent/JPH0124917Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は絶縁性樹脂注形リアクトルに関するも
のである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an insulating resin casting reactor.

〔考案の技術的背景と問題点〕[Technical background and problems of the invention]

従来の直流送電用サイリスタバルブに使用され
る絶縁性樹脂注形リアクトルの一例を第1図に示
す。サイリスタバルブに使われるリアクトル1
は、電流が数kAであり、耐電圧的には十数kVを
必要とし、インダクタンス値が数百μHを必要と
される。これらの要求をみたすため、従来よりコ
イル2は銅管銅管2aを数十回巻き、発生する熱
を冷却するために液体を銅管2aの中に通し、ま
た耐電圧の面からはエポキシ樹脂で注形し、絶縁
被覆層3を形成していた。
An example of an insulating resin casting reactor used in a conventional thyristor valve for direct current power transmission is shown in FIG. Reactor 1 used in thyristor valves
requires a current of several kA, a withstand voltage of more than ten kV, and an inductance value of several hundred μH. In order to meet these requirements, the coil 2 has traditionally been made of a copper tube 2a wound several tens of times, and a liquid is passed through the copper tube 2a to cool the generated heat. The insulating coating layer 3 was formed by casting.

またこの種のリアクトルには、事故時に数十
kAの電流がコイル2に流れるため、第2図に示
すように絶縁被覆層3の内部にフアイバー4をコ
イル2のターン間に挿入して過電流衝撃に耐えう
る構造となつており、底部には支持板5に取付け
るための金具6が埋込まれている。
In addition, this type of reactor has dozens of
Since a current of kA flows through the coil 2, a fiber 4 is inserted between the turns of the coil 2 inside the insulating coating layer 3, as shown in Figure 2, to create a structure that can withstand overcurrent shock. A metal fitting 6 for attaching to the support plate 5 is embedded.

しかし、絶縁被覆層3の内部にフアイバー4を
入れた場合、真空脱気して注形しても完全なボイ
ドレスにすることが非常に困難であつた。
However, when the fiber 4 is placed inside the insulating coating layer 3, it is very difficult to make it completely void-free even after vacuum evacuation and casting.

さらに、サイリスタバルブに印加される電圧波
形を第3図に示すが、このように多くの高周波分
を含むため、絶縁被覆層3内部にボイド7があれ
ば、パツシエンの法則によりコロナ放電が発生
し、高周波により放電回数は加速される。
Furthermore, the voltage waveform applied to the thyristor valve is shown in Figure 3, and since it contains many high frequency components, if there is a void 7 inside the insulating coating layer 3, corona discharge will occur according to Patsien's law. , the number of discharges is accelerated by high frequency.

コロナ放電が発生すると、隣接する電子機器へ
ノイズを与えるとともに、長期にわたつてコロナ
放電が発生すると、コロナ放電発生箇所で絶縁被
覆層3の絶縁劣化が起こる。この絶縁劣化が進む
と耐電圧値以下又は使用電圧値においても絶縁破
壊を起す。絶縁被壊した場合、本来のリアクトル
の性能はなくなり、回路機能を破壊し、大事故に
到る恐れがある。
When corona discharge occurs, it gives noise to adjacent electronic equipment, and when corona discharge occurs for a long period of time, insulation deterioration of the insulating coating layer 3 occurs at the location where corona discharge occurs. As this insulation deterioration progresses, dielectric breakdown occurs even at lower withstand voltage values or at working voltage values. If the insulation is damaged, the reactor's original performance will be lost, the circuit function will be destroyed, and there is a risk of a major accident.

このため従来は、内部のボイド7にかかる電圧
を低くするためフアイバー4を挿入した絶縁被覆
層3の厚さl1を大きくする方法が採用されてい
た。しかし、この方法では、絶縁被覆層を厚くす
ることで更にボイド7がふえるため、多くのエポ
キシ樹脂材を必要とし、製造費用も高く、重量、
体積も大きくなる欠点があり、この改善が望まれ
ていた。
For this reason, conventionally, in order to lower the voltage applied to the internal voids 7, a method has been adopted in which the thickness l1 of the insulating coating layer 3 into which the fibers 4 are inserted is increased. However, with this method, the number of voids 7 increases as the insulation coating layer becomes thicker, so a large amount of epoxy resin material is required, the manufacturing cost is high, and the weight and weight are increased.
There is also a drawback that the volume is large, and improvement of this problem has been desired.

なお第1図中符号9は端子を示す。 Note that the reference numeral 9 in FIG. 1 indicates a terminal.

〔考案の目的〕[Purpose of invention]

本考案の目的は、絶縁被覆層を厚くすることな
くコロナ放電も抑制できる高信頼性の絶縁性樹脂
注形のリアクトルを提供することにある。
An object of the present invention is to provide a highly reliable insulating resin cast reactor that can suppress corona discharge without increasing the thickness of the insulating coating layer.

〔考案の概要〕[Summary of the idea]

本考案は、フアイバーをコイルのターン間に挿
入し絶縁性樹脂を注形固化した絶縁被覆層を有す
るリアクトルに、フアイバーの混入しない突起部
を形成した点に特徴を有するものである。
The present invention is characterized in that a protrusion that does not contain fibers is formed on a reactor that has an insulating coating layer in which fibers are inserted between turns of a coil and an insulating resin is cast and solidified.

〔考案の実施例〕[Example of idea]

以下本考案の一実施例を図面について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図と同一部分に同符号を付して
説明を省略した第4図に於て、絶縁被覆層3の下
部にフアイバー4の混入しない突起部12を設け
る。
In FIG. 4, in which the same parts as in FIGS. 1 and 2 are given the same reference numerals and their explanations are omitted, a protrusion 12 in which no fibers 4 are mixed is provided at the lower part of the insulating coating layer 3.

ここで突起部12にフアイバー4を混入させな
いために、第5図に示すように凹部13aが形成
された底面の型13に、絶縁布(又は紙)14を
のせ、その上にフアイバー4で包まれたコイル2
をのせ、真空脱気した後、エポキシ樹脂を流し込
む。
In order to prevent the fibers 4 from getting mixed into the protrusion 12, as shown in FIG. coil 2
After vacuum degassing, pour in the epoxy resin.

このようにフアイバー4の混入しない突起部1
2を設けることにより、ボイドレスの絶縁被覆層
を付加したこととなり、フアイバー4の混入した
絶縁被覆層内のボイドにかかる電圧は低減され
る。本考案者らの実験結果によれば、フアイバー
の混入した絶縁被覆層の厚さl1が3mmの場合の突
起部12の長さlとコロナ放電消滅電圧の関係は
第6図に示すようになつた。突起部12の長さが
0の場合(従来例と同じ)ではコロナ消滅電圧は
1kVと低いが突起部12の長さが大きくなるにつ
れてコロナ消滅電圧は上昇する。AC8kVでコロ
ナフリーの絶縁性樹脂注形リアクトルを得たい場
合には、フアイバー4の混入しない突起部12
は、6mm以上あればよい。
In this way, the protrusion 1 that does not contain the fiber 4
2, a void-free insulating coating layer is added, and the voltage applied to the voids in the insulating coating layer in which the fibers 4 are mixed is reduced. According to the experimental results of the present inventors, the relationship between the length l of the protrusion 12 and the corona discharge extinction voltage when the thickness l 1 of the insulating coating layer containing fibers is 3 mm is as shown in Figure 6. Summer. When the length of the protrusion 12 is 0 (same as the conventional example), the corona extinction voltage is
Although it is as low as 1 kV, the corona extinction voltage increases as the length of the protrusion 12 increases. If you want to obtain a corona-free insulating resin casting reactor at AC8kV, the protrusion 12 that does not contain the fiber 4
should be at least 6 mm.

〔考案の効果〕[Effect of idea]

以上のように本考案は構成されているから、ボ
イドのコロナ抑制し、長期にわたり高信頼性を有
する絶縁性樹脂注形リアクトルを提供することが
できる。
Since the present invention is configured as described above, it is possible to provide an insulating resin casting reactor that suppresses the corona of voids and has high reliability over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁性樹脂注形のリアクトルを
示す斜視図、第2図は第1図のA−A線に沿つて
矢印方向に示す断面図、第3図は直流送電用のサ
イリスタバルブ用に使用したときリアクトルにか
かる代表的な電圧波形を示す説明図、第4図は本
考案の一実施例を示す斜視図、第5図は本考案の
一実施例の製造方法を示す説明図、第6図は本考
案の一実施例に関連する突起部の長さとコロナ消
滅電圧との関係を示す線図である。 2……コイル、3……絶縁被覆層、4……フア
イバ、12……突起部。
Figure 1 is a perspective view showing a conventional insulating resin cast reactor, Figure 2 is a sectional view taken along line A-A in Figure 1 in the direction of the arrow, and Figure 3 is a thyristor valve for DC power transmission. Fig. 4 is a perspective view showing an embodiment of the present invention, and Fig. 5 is an explanatory diagram showing a manufacturing method of an embodiment of the present invention. , FIG. 6 is a diagram showing the relationship between the length of the protrusion and the corona extinction voltage related to one embodiment of the present invention. 2...Coil, 3...Insulating coating layer, 4...Fiber, 12...Protrusion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導体を巻回したコイルにフアイバーが混入され
た絶縁被覆層を形成させたものにおいて、この絶
縁被覆層の接地面と接触する外側部に前記フアイ
バーの混入しない突起部を形成したことを特徴と
する絶縁性樹脂注形リアクトル。
A coil in which a conductor is wound is formed with an insulating coating layer containing fibers, characterized in that a protrusion that does not contain the fibers is formed on the outer side of the insulating coating layer that contacts the ground plane. Insulating resin casting reactor.
JP9050483U 1983-06-15 1983-06-15 Insulating resin casting reactor Granted JPS59195726U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9050483U JPS59195726U (en) 1983-06-15 1983-06-15 Insulating resin casting reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9050483U JPS59195726U (en) 1983-06-15 1983-06-15 Insulating resin casting reactor

Publications (2)

Publication Number Publication Date
JPS59195726U JPS59195726U (en) 1984-12-26
JPH0124917Y2 true JPH0124917Y2 (en) 1989-07-27

Family

ID=30220431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9050483U Granted JPS59195726U (en) 1983-06-15 1983-06-15 Insulating resin casting reactor

Country Status (1)

Country Link
JP (1) JPS59195726U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968626B2 (en) * 2008-03-07 2012-07-04 住友電気工業株式会社 Coil molded body and reactor
JP5092848B2 (en) * 2008-04-03 2012-12-05 住友電気工業株式会社 Reactor and reactor coils
JP4973890B2 (en) * 2009-01-16 2012-07-11 住友電気工業株式会社 Reactor and coil molding
JP2014146657A (en) * 2013-01-28 2014-08-14 Toyota Industries Corp Guidance system

Also Published As

Publication number Publication date
JPS59195726U (en) 1984-12-26

Similar Documents

Publication Publication Date Title
WO2006016554A1 (en) Reactor
US6185811B1 (en) Method for making a transformer
US2817066A (en) Electric transformer
JPH0124917Y2 (en)
GB1172181A (en) Method of Constructing Cast Electrical Bushings
EP0025951B1 (en) Single-phase transformer having windings encapsulated in resin
US3705372A (en) Cast-type winding structure for electrical inductive apparatus
US3821678A (en) Transformer having a cast winding structure with integral insulating barriers
RU2107350C1 (en) Molten transformer
DE3214866A1 (en) Ignition system for internal combustion engines
EP4099348B1 (en) Dry-type transformer and winding method thereof
JP3048851B2 (en) Through-type current transformer
JPH0211777Y2 (en)
JPH05336615A (en) Thrust coil for superconducting magnetic levitation railway
JPS62229813A (en) Foil-wound transformer
EP4009339A1 (en) Capacitor assembly, method of manufacturing the same, and converter assembly including the capacitor assembly
US3011012A (en) Shielded electrical leads
JPS61166015A (en) High tension transformer
JPS61245509A (en) High voltage transformer and insulation thereof
JPH10189346A (en) Electric device
JPH0567534A (en) Stationary induction apparatus
RU2678U1 (en) CAST TRANSFORMER
JPS62185Y2 (en)
JPH0611009B2 (en) Resin mold coil
JPS62145608A (en) Molded bushing