JPH01249178A - Method for concentrating cobalt-rich crust ore - Google Patents
Method for concentrating cobalt-rich crust oreInfo
- Publication number
- JPH01249178A JPH01249178A JP63075959A JP7595988A JPH01249178A JP H01249178 A JPH01249178 A JP H01249178A JP 63075959 A JP63075959 A JP 63075959A JP 7595988 A JP7595988 A JP 7595988A JP H01249178 A JPH01249178 A JP H01249178A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- rich
- ore
- crust
- beneficiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010941 cobalt Substances 0.000 title claims abstract description 34
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 34
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims description 32
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 18
- 239000011707 mineral Substances 0.000 claims description 18
- 230000005291 magnetic effect Effects 0.000 claims description 14
- 239000011435 rock Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 239000011572 manganese Substances 0.000 claims description 7
- 239000010433 feldspar Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 238000005065 mining Methods 0.000 claims description 5
- 229910052586 apatite Inorganic materials 0.000 claims description 4
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 239000002367 phosphate rock Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 206010039509 Scab Diseases 0.000 claims 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 4
- 239000000463 material Substances 0.000 claims 4
- 238000000605 extraction Methods 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- 238000007873 sieving Methods 0.000 abstract description 2
- 241001283150 Terana caerulea Species 0.000 description 9
- 238000003723 Smelting Methods 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 4
- 238000005188 flotation Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 235000008429 bread Nutrition 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005456 ore beneficiation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000616 Ferromanganese Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Combined Means For Separation Of Solids (AREA)
- Disintegrating Or Milling (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は海洋底の海山上に賦存し、コバルト等のレアメ
タルに富んだフェロマンガニーズ富コバルト鉱石の選鉱
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for beneficiation of ferromanganese-rich cobalt ore, which exists on seamounts on the ocean floor and is rich in rare metals such as cobalt.
富コバルトクラスト鉱床は、深海のマンガンノジュール
鉱床、海底熱水床に次ぐ第三の海底鉱物資源として近時
世界の注目を浴びるようになった。Cobalt-rich crust deposits have recently attracted worldwide attention as the third undersea mineral resource, following deep-sea manganese nodule deposits and submarine hydrothermal beds.
冨コバルト鉱床は、太平洋等深海の海山の山頂や山腹(
例えば水深1000〜2000m )に分布し主に赤道
域の海山に品位の高い鉱床が分布しているとされ、この
冨コバルトクラストは海水中に含まれたコバルト等のレ
アメタル分が特殊な海洋環境のもとに、海山の基盤岩な
どに析出して形成されたものである。Cobalt-rich deposits are found on the peaks and slopes of seamounts in the deep ocean such as the Pacific Ocean.
For example, high-grade ore deposits are said to be distributed at seamounts in the equatorial region at depths of 1,000 to 2,000 meters (1,000 to 2,000 meters deep), and this rich cobalt crust is made up of rare metals such as cobalt contained in seawater that form in a special marine environment. Originally, it was formed by precipitation in the bedrock of seamounts.
このような基盤岩を多(含むコバルトクラストの選鉱法
については、通常の鉱山等で利用されている、比重選鉱
法、浮遊選鉱法、等多くの方法が考えられるが、これま
で、富コバルトクラストの選鉱についての研究例はほと
んど皆無であった。Regarding the beneficiation method for such cobalt-rich crust containing a large amount of bedrock, there are many methods used in ordinary mines, such as the specific gravity beneficiation method and the flotation method. There were almost no examples of research on ore beneficiation.
但し、米国のソルトレーク研究センターでは−150メ
ツシユ位の富コバルトクラスト粉砕鉱石の浮遊選鉱を試
みてはいるが、成功はしていない。However, the Salt Lake Research Center in the United States has attempted flotation of -150 mesh rich cobalt crust crushed ore, but has not been successful.
これは富コバルトクラスト鉱石の比表面積が200rd
/gr以上と大きく浮選用の薬剤消費量が大きい上に、
硫化鉱よりも技術的に難しいとされている酸化鉱である
こと等の理由による。又、浮選は、薬剤を多く使用する
ので、海洋環境の汚染や、海上波動による船舶上での施
設、運転上の問題等多くの欠点をもっている。This is because the specific surface area of rich cobalt crust ore is 200rd.
/gr or more, and the consumption of flotation chemicals is large, and
This is due to the fact that it is an oxide ore, which is technically more difficult than sulfide ore. Furthermore, since flotation requires a large amount of chemicals, it has many drawbacks, such as pollution of the marine environment and problems with facilities and operation on ships due to sea waves.
その他の選鉱技術についての研究は皆無で、とくに本発
明の選択破砕、粉砕技術おび、低磁力、高磁力選鉱技術
による冨コバルトクラストの選鉱方法はこの分野におい
て従来技術には全く見られないところである。There is no research on other beneficiation techniques, and in particular, the present invention's selective crushing, crushing technology, and the beneficiation method for rich cobalt crust using low magnetic force and high magnetic force beneficiation techniques are completely absent from the prior art in this field. .
海山上に試作する冨コバルトクラストを採鉱するのに連
続パケット法や採鉱ロボット法等があるが、海山の富コ
バルトクラスト鉱石が基盤岩の上に成長した鉱物である
ため、基盤岩の混入はさけられないという問題点がある
。Continuous packet methods and mining robot methods are used to mine cobalt-rich crust to be prototyped on seamounts, but since the seamount cobalt-rich crust ore is a mineral that has grown on bedrock, contamination with bedrock cannot be avoided. There is a problem.
一般に鉱石の中の基盤岩の量は20%から43%である
と報告されている。Generally, the amount of basement rock in ore is reported to be 20% to 43%.
本発明者らが経験した悪い例では、1986年のファル
ネラ号によるジョンストン島付近での採取鉱石で、70
%もの基盤岩を含んでいた。In a bad example experienced by the present inventors, in 1986, 70
% of basement rock.
このような大量の基盤岩は、船舶等による輸送にも影響
し非経済的であり、かつ製錬工程においても極端な効率
低下をきたし、基盤岩の効率的分離技術は、冨コバルト
クラストを開発する上できわめて重要な課題となってい
る。Such a large amount of bedrock is uneconomical as it affects transportation by ships, etc., and it also causes an extreme drop in efficiency in the smelting process. This has become an extremely important issue.
なお、基盤岩の種類は、玄武岩、ハイアロクラスタイト
(玄武岩の熔岩流が水中を流れた時に、水により表皮が
急冷、破砕されて生じたガラス質の小暑からなる岩石)
、燐鉱石、粘土岩、泥岩、石灰岩その他である。The types of bedrock are basalt and hyaloclastite (a glassy rock formed when basalt lava flowed underwater, and the surface layer was rapidly cooled and fractured by water).
, phosphate rock, claystone, mudstone, limestone, and others.
このような基盤岩の中には、硬度差等によって、自由落
下程度の破砕エネルギーでも分離できるものもあるが、
大部分は、この程度の分離方法で選別することは不可能
である。これは硬度差や比重差が比較的小さい上に、ク
ラスト鉱石が基盤の小さい(ぼみ等の小さい凹部にも多
く入り込んでいるためである。Some of these bedrock rocks can be separated with the same amount of crushing energy as free fall due to differences in hardness, etc.
Most of them cannot be sorted out using this level of separation method. This is because the difference in hardness and specific gravity is relatively small, and the crust ore often penetrates into small depressions such as depressions in the base.
本発明はこのような大量に含まれる分離困難な基盤岩を
、比較的小型で船舶等に塔載可能な装置により、しかも
効率的に分離し、富コバルトクラスト中のコバルト、マ
ンガン、銅、ニッケル等の有価金属成分を高品位にかつ
高回収率で得る方法を提供するものであり、採取船上や
現地付近、又は製錬工場における製錬の前工程で、採取
され起富コバルト鉱石の中から基盤岩やその他の不要な
鉱物を効率よく除去することにより、輸送上の非経済的
な問題点も同時に解決せしめることを目的とするもので
ある。The present invention efficiently separates such large amounts of bedrock that is difficult to separate using a relatively small device that can be mounted on ships, etc. This method provides a method for obtaining high-grade and high-recovery valuable metal components such as Kitomi cobalt ore, which is collected on board a collection vessel, near the site, or in the pre-smelting process at a smelting factory. The aim is to simultaneously solve uneconomic transportation problems by efficiently removing bedrock and other unnecessary minerals.
富コバルトクラストの中に含まれた泥分は水洗により、
また特に硬く、破砕しにくい安山岩等は破砕法により、
未破砕部の岩石として篩分等の通常の選鉱により分離で
きる。しかし、硬度や比重が近い、燐鉱石や石灰石等は
通常の破砕法や比重法では分離は困難である。The mud contained in the cobalt-rich crust is washed away with water.
In addition, andesite, which is particularly hard and difficult to crush, can be processed using the crushing method.
As uncrushed rock, it can be separated by normal beneficiation such as sieving. However, it is difficult to separate phosphate rock, limestone, etc., which have similar hardness and specific gravity using normal crushing methods or specific gravity methods.
本発明者らは、富コバルトクラスト部が燐鉱石等に比べ
て結晶度が低く、細粒の粉砕領域で粉砕性に差が出るこ
とに着目し、適切な選択的粉砕方法、すなわち粉砕時間
と粉砕後の篩分粒度の選定によって、不要鉱物を篩上に
選別、分離できることを見い出し本発明に到達した。The present inventors focused on the fact that the cobalt-rich crust has a lower crystallinity than phosphate ore, etc., and that there is a difference in crushability in the fine-grain crushing region. It was discovered that unnecessary minerals can be sorted and separated on a sieve by selecting the sieve particle size after crushing, and the present invention was achieved.
すなわち、成る程度粉砕を進めていくと約48メツシユ
程度の篩上に結晶度の高い、P JpSi、 Ca等を
多く含む燐鉱物や長石類が残り、冨コバルトクラスト部
と分離できることが認められた。In other words, it was observed that as the crushing progressed to a certain extent, highly crystalline phosphorus minerals and feldspars containing a large amount of PJpSi, Ca, etc. remained on a sieve of approximately 48 meshes, and could be separated from the rich cobalt crust. .
また、P 、 Si、 Caの一部にはFeを多く含む
鉱物部が存在することがEPMA等の顕微鏡分析等によ
り判明し、この鉱物を分離するのは2000ガウス以下
の低磁力による磁力選鉱法が有効であることが見い出さ
れ、この方法を併用することは好ましい。In addition, microscopic analysis such as EPMA has revealed that some of P, Si, and Ca contain minerals containing a large amount of Fe, and these minerals can be separated using magnetic beneficiation using a low magnetic force of 2000 Gauss or less. was found to be effective, and it is preferable to use this method in combination.
さらに、EPMAの解析では、Co、 Ni等の強磁性
原子がCLI、 Mn、と共存していることも判明し、
この有価成分の濃縮に、2000ガウス以上、望ましく
はio、 oooガウス以上の高磁力選鉱法が有効であ
るのでこれを併用することも好ましいことである。Furthermore, EPMA analysis revealed that ferromagnetic atoms such as Co and Ni coexist with CLI and Mn.
Since a high magnetic force beneficiation method of 2000 Gauss or more, preferably io, ooo Gauss or more is effective for concentrating this valuable component, it is also preferable to use this method in combination.
本発明の選鉱法は、乾式のみならず、湿式でも十分効果
的で、船舶、あるいは海岸立地の工場で実施することが
可能である。The ore beneficiation method of the present invention is sufficiently effective not only in a dry method but also in a wet method, and can be carried out on a ship or in a factory located on the coast.
このように選鉱された、−48メツシュ程度の高品位の
富コバルトクラスト粉鉱は亜硫酸ガス(So= )を用
いた、製錬力等の工程に移され、有価金属が抽出回収さ
れることになる。The high-grade cobalt-rich cobalt crust powder ore, which is concentrated in this way and has a size of about -48 mesh, is transferred to processes such as smelting using sulfur dioxide gas (So = ), where valuable metals are extracted and recovered. Become.
なお、本発明において、頭初の粗砕に当っては、例えば
ショークラッシャー、インペラーブレーカ−、コーンク
ラッシャー、ブレッドホードブレーカ−等の破砕機が好
適である。In the present invention, for initial coarse crushing, crushers such as a show crusher, an impeller breaker, a cone crusher, and a bread hoard breaker are suitable.
〔実施例1〕
本実施例で原料として使用した富コバルトクラスト鉱石
(1986年米国船ファルネラ号により採取されたもの
)は、基盤岩が多く含まれ、その品位は、Co:0.0
7〜0.28%、Cu:0.01〜0.06%、Ni:
0.01〜0.17%、Mn:1.80〜10.7%、
Fe:6〜9%、P:2〜4.5%、Si:9〜14%
、Ca:8〜11%であった。[Example 1] The cobalt-rich crust ore used as a raw material in this example (collected by the US ship Farnera in 1986) contains a large amount of basement rock, and its grade is Co: 0.0.
7-0.28%, Cu: 0.01-0.06%, Ni:
0.01-0.17%, Mn: 1.80-10.7%,
Fe: 6-9%, P: 2-4.5%, Si: 9-14%
, Ca: 8 to 11%.
この鉱石の中から2種類のサンプル、A、Bを選び各々
ショークラッシャーで10mm以下に破砕し、2kgを
内寸305 X305 Lのスチール製ボールミルに、
スチールボール20kgと一緒に入れ、70rp−で回
転させながら10分間粉砕を行ない、全量4日×メツシ
ュで篩分けした。Two types of samples, A and B, were selected from this ore and crushed to 10 mm or less using a show crusher, and 2 kg was placed in a steel ball mill with internal dimensions of 305 x 305 L.
The mixture was placed together with 20 kg of steel balls, and pulverized for 10 minutes while rotating at 70 rpm, and the entire amount was sieved through a 4-day mesh.
二のときの篩上をさらに同じ装置条件で20分間粉砕篩
分けし、また篩上をさらに30分間粉砕、篩分けした。The surface of the sieve in Step 2 was further crushed and sieved for 20 minutes under the same equipment conditions, and the surface of the sieve was further crushed and sieved for 30 minutes.
このときの、48メツシユ以下の粉砕品の品位と、最後
に残った48メツシユ篩土産物の品位をA、Bのサンプ
ルについて表1に示した。Table 1 shows the quality of the crushed product of 48 mesh or less and the quality of the 48 mesh souvenir that remained at the end for samples A and B.
48メツシユの篩上に残った産物にはA、BともにGo
、 Co、 Ni、 Mnの有価金属成分をほとんど含
まず、P 、 Si、 Caの不要成分を濃縮すること
ができた。この産物をX線回折で調べたところ、燐灰石
、長石等の結晶度の高い鉱物であることも確認された。48 For the products remaining on the sieve, both A and B are Go.
, Co, Ni, and Mn, and was able to concentrate unnecessary components such as P, Si, and Ca. When this product was examined by X-ray diffraction, it was confirmed that it was a highly crystalline mineral such as apatite or feldspar.
〔実施例2〕
海洋上23に浮かぶ採鉱船22では、長いローブ1につ
けたチェーンパケット2により、海底から富コバルトク
ラスト鉱石4が採取され、チェーンパケット2の底3を
開いて冨コバルトクラスト鉱石4を船内のコンベヤー5
に落されるが、移送される際、海水6を噴射し、泥分を
7として洗い落す。[Example 2] In a mining ship 22 floating on the ocean 23, cobalt-rich crust ore 4 is collected from the seabed using a chain packet 2 attached to a long robe 1, and the bottom 3 of the chain packet 2 is opened to collect the cobalt-rich crust ore 4. Onboard conveyor 5
However, when being transported, seawater 6 is sprayed to wash away the mud as 7.
その後ブレッドホードブレーカ−8に入れ落下による破
砕(粗砕)を行ない、円筒型篩9へ送られる。ここでは
海水10による洗浄が加えられ、安山岩等の硬い岩石に
付着した冨コバルトクラストが篩下へ洗い落される。篩
上の安山岩等は11として除去される。Thereafter, it is placed in a bread hoard breaker 8 and crushed (roughly crushed) by falling, and then sent to a cylindrical sieve 9. Here, washing with seawater 10 is added, and rich cobalt crust adhering to hard rocks such as andesite is washed off to the bottom of the sieve. Andesite, etc. on the sieve is removed as 11.
次に富コバルトクラストは振動ミル12によって湿式粉
砕されて、振動篩13へ送られる。ここで燐灰石、長石
、石灰石等の不要鉱物は、この振動篩13で48メツシ
ユで篩分けられ砂状の鉱物部4として除去される。The cobalt-rich crust is then wet-milled by a vibrating mill 12 and sent to a vibrating screen 13. Here, unnecessary minerals such as apatite, feldspar, and limestone are sieved with 48 meshes using this vibrating sieve 13 and removed as a sand-like mineral portion 4.
篩下の冨コバルトクラストは、さらに1000ガウスの
低磁力選鉱機15によって処理され、鉄分を多く含む燐
灰石、長石、石灰石等の着磁性不要鉱物16として除去
される。The rich cobalt crust under the sieve is further processed by a 1000 Gauss low magnetic force separator 15 and removed as magnetizable unnecessary minerals 16 such as apatite, feldspar, and limestone containing a large amount of iron.
最後により一膚品位を高め、不要鉱物を除去するために
10.000ガウスの高磁力選鉱機17で選別され、不
要鉱物は非磁性側18へ、品位向上した富コバルトクラ
ストは次工程の脱水機19で脱水20され船種に精鉱2
1として貯鉱され、製錬場まで輸送される。Finally, in order to further improve the quality and remove unnecessary minerals, they are sorted by a 10,000 gauss high magnetic force separator 17, the unnecessary minerals are transferred to the non-magnetic side 18, and the improved cobalt-rich crust is sent to the dehydrator for the next process. 19 dehydrated 20 and ship type concentrate 2
The ore is stored as 1 and transported to the smelter.
この実施例において、実施例1で用いたサンプルよりC
,Dの2種類を選び300 kg/HR処理量で行った
場合の、不要鉱物1図中14.16および18、さらに
富コバルトクラスト精鉱21の品位を第2表に示した。In this example, C
, D were selected and the treatment was carried out at a treatment rate of 300 kg/HR, and Table 2 shows the grades of unnecessary minerals 14.16 and 18 in Figure 1, as well as cobalt-rich crust concentrate 21.
産物14にはP 、 Sl、 Caが集まり、産物16
にはFeを多く含むP 、 Si、 Caが集まり産物
18にはPが集まっている。その結果精鉱21には、P
。P, Sl, and Ca gather in product 14, and product 16
In the product 18, P, Si, and Ca, which contain a large amount of Fe, are collected, and in the product 18, P is collected. As a result, concentrate 21 contains P
.
Si、 Caが少なくなり、Go、 Cu、 Ni、
Mnの有価金属品位の高い産物を回収することができた
。Si, Ca decreases, Go, Cu, Ni,
A product with high Mn valuable metal quality could be recovered.
本発明によれば、富コバルトクラスト鉱床開発の最大の
問題点である基盤岩の除去方法において、きわめて効率
よく分離除去することが可能となった。According to the present invention, in the method of removing bedrock, which is the biggest problem in the development of cobalt-rich crust deposits, it has become possible to separate and remove it extremely efficiently.
そのため、船舶による輸送容積の減少や、製錬前処理と
しての効率化等が、採鉱船上や付近の基地等で実施する
ことが可能となり、鉱床開発の経済性を非常に有利にで
きる等、本発明の効果はきわめて大きい。Therefore, it becomes possible to reduce the transport volume by ship and improve the efficiency of smelting pretreatment, etc., on board the mining ship or at nearby bases, making the economics of ore deposit development extremely advantageous. The effects of the invention are extremely large.
図面は本発明を採鉱船上で実施する一例を示す概略的説
明図である。
2・・・冨コバルトクラスト鉱石採取パケット、4・・
・クラスト鉱石、6,10・・・海水、8・・・破砕機
、9・・・円筒型篩、11・・・基盤岩、12・・・振
動ミル、13・・・振動機、14・・・不要鉱物、15
・・・低磁力選鉱機、16・・・着磁性不要鉱物、17
・・・高磁力選鉱機、18・・・不要鉱物、19・・・
脱水機、21・・・精鉱。The drawing is a schematic explanatory diagram showing an example of implementing the present invention on a mining ship. 2...Fuji Cobalt Crust Ore Collection Packet, 4...
・Crust ore, 6, 10... Seawater, 8... Crusher, 9... Cylindrical sieve, 11... Base rock, 12... Vibration mill, 13... Vibrator, 14.・Unnecessary minerals, 15
...Low magnetic force separator, 16...Mineral that does not require magnetization, 17
...High magnetic force separator, 18...Unnecessary minerals, 19...
Dehydrator, 21... Concentrate.
Claims (1)
を、水洗して泥分を除去した後破砕機により粗砕し、次
いでこれを篩分機にかけて前記鉱石に随伴する堅い安山
岩等の基盤岩を除去した後、篩下をボールミル又は振動
ミル等の粉砕機により粉砕してさらに、好ましくは略4
8メッシュ程度の、篩にかけ、クラストに比して結晶度
が高く堅い燐鉱石、長石等の脈石を篩上産物として除去
し、コバルト等のレアメタル成分を多く含有するクラス
トを篩下産物として、選択的に粉砕し回収することを特
徴とする富コバルトクラストの選鉱方法。 2、原料富コバルト鉱石を全量粉砕したもの又は最後に
回収された富コバルトクラストを2000ガウス以上の
高磁力選鉱処理し、コバルト、ニッケル、マンガン等に
富む鉱石を着磁物として回収し、コバルト、ニッケル、
マンガン等の有価金属成分の品位を高める請求項1記載
の富コバルトクラストの選鉱方法。 3、2000ガウス以上の高磁力選鉱で処理する前の粉
砕鉱石又は処理された後の回収着磁物から、2000ガ
ウス以下の低磁力の磁力選鉱法により鉄分を多く含有す
るP、Si、Caより成る燐灰石、長石等の脈石鉱物を
着磁物側に除去し、非着磁物としてコバルト、マンガン
等の有価金属成分の品位を高める請求項2に記載の富コ
バルトクラストの選鉱方法。 4、採取直後の湿状態にある富コバルト鉱石を採鉱船上
で選鉱処理することにより、船上での収容体積を大きく
減少させる請求項1〜3記載の富コバルトクラストの選
鉱方法。[Claims] 1. Cobalt-rich crust ore collected from a seamount on the ocean floor is washed with water to remove mud, and then coarsely crushed using a crusher, and then sieved to remove hard andesite accompanying the ore. After removing the base rocks such as
Pass through a sieve of about 8 mesh to remove gangue such as phosphorite and feldspar, which have a higher degree of crystallinity and are harder than the crust, as a product on the sieve, and produce a crust containing a large amount of rare metal components such as cobalt as a product on the sieve. A method for beneficiation of cobalt-rich crust characterized by selective crushing and recovery. 2. The raw material cobalt-rich ore is completely pulverized or the final recovered cobalt-rich crust is treated with a high magnetic force of 2000 Gauss or more, and ore rich in cobalt, nickel, manganese, etc. is recovered as a magnetized material, and cobalt, nickel,
The method for beneficiation of cobalt-rich crust according to claim 1, which improves the quality of valuable metal components such as manganese. 3. From crushed ore before processing with high magnetic force of 2000 gauss or more or recovered magnetized material after processing, from P, Si, Ca containing a large amount of iron by magnetic beneficiation method with low magnetic force of 2000 gauss or less. 3. The method for beneficiation of cobalt-rich crust according to claim 2, wherein gangue minerals such as apatite and feldspar are removed to the side of the magnetized material to improve the quality of valuable metal components such as cobalt and manganese as non-magnetized materials. 4. The method for beneficiation of cobalt-rich crust according to claims 1 to 3, wherein the cobalt-rich ore in a wet state immediately after extraction is beneficently treated on a mining ship, thereby greatly reducing the storage volume on the ship.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63075959A JPH01249178A (en) | 1988-03-31 | 1988-03-31 | Method for concentrating cobalt-rich crust ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63075959A JPH01249178A (en) | 1988-03-31 | 1988-03-31 | Method for concentrating cobalt-rich crust ore |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01249178A true JPH01249178A (en) | 1989-10-04 |
Family
ID=13591270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63075959A Pending JPH01249178A (en) | 1988-03-31 | 1988-03-31 | Method for concentrating cobalt-rich crust ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01249178A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5753576A (en) * | 1995-05-18 | 1998-05-19 | Arco Chemical Technology, L.P. | Regeneration of a titanium-containing molecular sieve |
CN111715374A (en) * | 2020-05-08 | 2020-09-29 | 桂林理工大学 | Method for efficiently grinding smelting slag |
-
1988
- 1988-03-31 JP JP63075959A patent/JPH01249178A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5753576A (en) * | 1995-05-18 | 1998-05-19 | Arco Chemical Technology, L.P. | Regeneration of a titanium-containing molecular sieve |
CN111715374A (en) * | 2020-05-08 | 2020-09-29 | 桂林理工大学 | Method for efficiently grinding smelting slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Houot | Beneficiation of iron ore by flotation—review of industrial and potential applications | |
CN104023851B (en) | ore processing | |
JP5923039B2 (en) | Soil purification method | |
JP2013117058A (en) | Apparatus for producing iron-based material and regenerated sand | |
KR101710593B1 (en) | Method for collecting high grade scheelite concentrate and collecting facilities of scheelite concentrate | |
CN110575904A (en) | Spodumene grading-grade dual medium-flotation beneficiation method | |
CN105689126B (en) | A kind of oolitic hematite ore-dressing technique | |
CN101487081A (en) | Dephosphorization method for oolitic high phosphorus iron ore | |
CN111715398B (en) | Method for efficiently recovering rare earth, fluorite and barite from rare earth tailings | |
CN112791848B (en) | Method for reducing ilmenite flotation difficulty in process of recycling ilmenite from iron ore dressing tailings | |
CN112169974B (en) | Processing technology of iron ore waste soil and stone | |
CN110038717A (en) | Vanadium titano-magnetite spoil reclaming technique | |
JPH01249178A (en) | Method for concentrating cobalt-rich crust ore | |
AU667635B2 (en) | Process for the recovery of silver by flotation from the residue from the wet extraction of zinc | |
CN117295557A (en) | Mineral separation process | |
CN112718231B (en) | Mineral separation method of molybdenite of magnesium-rich mineral | |
CN106423554B (en) | Combine the method for selected potassium albite in powder processed using CHARACTERISTICS OF TAILINGS SAND | |
JPH11319634A (en) | Recovering method of valuable metal from cobalt enriched crust | |
Khoshjavan et al. | Beneficiation of refractory rock phosphate by calcination and flotation | |
CN104084292A (en) | Method for manufacturing construction sand by virtue of copper ore dump leaching slag | |
CN104017990B (en) | A kind of Ore hydrometallurgy leaching method | |
Ito et al. | Estimation of degree of liberation in a coarse crushed product of cobalt-rich ferromanganese crust/nodules and its gravity separation | |
JP2000129371A (en) | Method for recovering valuable metal from cobalt rich crust | |
CN109967225A (en) | Apatite mine ore-dressing technique | |
Upadhyay et al. | Relevance of geological aspects and ore mineralogy in selecting beneficiation methods for processing of eastern Indian iron ores |