JPH11319634A - Recovering method of valuable metal from cobalt enriched crust - Google Patents

Recovering method of valuable metal from cobalt enriched crust

Info

Publication number
JPH11319634A
JPH11319634A JP15063598A JP15063598A JPH11319634A JP H11319634 A JPH11319634 A JP H11319634A JP 15063598 A JP15063598 A JP 15063598A JP 15063598 A JP15063598 A JP 15063598A JP H11319634 A JPH11319634 A JP H11319634A
Authority
JP
Japan
Prior art keywords
cobalt
useful
crust
gangue
roughed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15063598A
Other languages
Japanese (ja)
Inventor
Mitsuru Sawada
満 澤田
Hiroichi Miyashita
博一 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP15063598A priority Critical patent/JPH11319634A/en
Publication of JPH11319634A publication Critical patent/JPH11319634A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To recover a valuable noble metal by ore floatation by pulverizing a cobalt enriched cost to prepare a slurry, adding a foaming agent and a collector to rough, recovering the roughed precipitation as the useful part and further recovering the selected precipitation as a useful part. SOLUTION: A cobalt enriched crust ore is pulverized with a gangue part up to <= about 6 mesh under in the whole quantity with a crusher (S1, S2) and is ground with the addition of artificial sea water by a ball mill. The pulp after ground is charged to a cell for floatation and conditioned (S3) with the addition of the foaming agent and the synthetic sulfonic acid collector, roughed (S4) to be separated into a floated part and a precipitated part to recover (S5, S6) as the useful part. After that, the roughed and floated pulp is conditioned (S7, S8) with the addition of sodium silicate, selected (S9) to recover (S10, S6) the precipitated part as the useful part and the floated part is made tailing (S11, S12).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コバルトリッチク
ラストからコバルト、ニッケル、銅などの有価金属を浮
遊選鉱により回収する方法に関する。
The present invention relates to a method for recovering valuable metals such as cobalt, nickel and copper from a cobalt-rich crust by flotation.

【0002】[0002]

【従来の技術】コバルトリッチクラスト、マンガンノジ
ュール等に代表される海洋底鉱物資源は、1970年代
頃より、積極的に探査が続けられてきているももの、現
在に至るまで商業生産に用いられる鉱物資源には至って
いない。なかでも、コバルトリッチクラストは、マンガ
ンノジュールと比べて水深の浅い場所に賦存している点
で、および稀少元素であるコバルトに富む点において有
望視されている。
2. Description of the Related Art Marine bottom mineral resources such as cobalt-rich crust and manganese nodule have been actively explored since the 1970s, but minerals used for commercial production up to the present. Resources have not been reached. Above all, cobalt-rich crust is promising in that it is present in shallower places than manganese nodules and rich in the rare element cobalt.

【0003】しかしながら、マンガンノジュールが団塊
状で賦存しているのに対して、コバルトリッチクラスト
は、一部を除き、有用部の大半が比較的平坦な基盤岩の
表面に殻状でへばりついた形で存在している。このた
め、現在考えられている採鉱法では、有用な殻状の部分
のみを選択的に採鉱することは難しく、脈石となる基盤
岩がある程度混入するものと予想され、その分だけ物量
が大きくなり、有用金属成分の品位が低下することとな
る。さらに、一部に存在する団塊状のコバルトリッチク
ラストに関しても、表層の殻状部分に有価金属が含有さ
れており、マンガンノジュールに比べて、殻状部以外の
脈石となる核部が大きく、この点からも脈石の混入割合
は、増加するものと思われる。
[0003] However, while the manganese nodules are present in a nodular form, most of the useful parts of the cobalt-rich crust, except for a part, adhere to the surface of the relatively flat basement rock in a shell-like manner. Exist in shape. For this reason, it is difficult to selectively mine only useful shell-shaped parts using the mining methods currently considered, and it is expected that basement rocks, which will be gangue, will be mixed to some extent, and the volume will increase accordingly. As a result, the grade of the useful metal component is reduced. Furthermore, regarding the nodular cobalt-rich crust that is present in some parts, the valuable metal is contained in the shell part of the surface layer, and the core part that becomes gangue other than the shell part is larger than the manganese nodule, From this point, it is considered that the mixing ratio of gangue increases.

【0004】[0004]

【発明が解決しようとする課題】したがって、揚鉱鉱石
をそのまま製錬原料とする場合、脈石の混入により大規
模な製造装置を必要とし、操業費の高騰が予想される。
したがって、商業生産に当たっては、採鉱船上にて、海
洋底より揚鉱されたコバルトリッチクラスト鉱石から、
有価金属成分を含まない脈石を何らかの選別方法で除去
することにより、製錬費および陸上の製錬施設までの輸
送費の低減をはかることが有効であると考えられる。し
かしながら、この選別方法い関し、現在まで、種々の方
法が提案されているものの、未だ確立されているとは言
えない。
Therefore, in the case where the ore ore is used as a smelting raw material as it is, a large-scale production apparatus is required due to the mixing of gangue, and a rise in operating costs is expected.
Therefore, in commercial production, on a mining ship, cobalt-rich crust ore unloaded from the ocean floor,
It is considered effective to reduce smelting costs and transportation costs to on-site smelting facilities by removing gangue containing no valuable metal components by some sort of sorting method. However, although various methods have been proposed to date for this selection method, they have not yet been established.

【0005】したがって、本発明の目的は、コバルトリ
ッチクラストからコバルト、ニッケル、銅などの有価貴
金属を浮遊選鉱により回収する方法を提供することにあ
る。
Accordingly, an object of the present invention is to provide a method for recovering valuable precious metals such as cobalt, nickel and copper from a cobalt-rich crust by flotation.

【0006】[0006]

【課題を解決するための手段】前述の目的を達成するた
めに、本発明の方法は、脈石とともに海底より揚鉱され
たコバルト、ニッケル、銅等の有価金属を含むコバルト
リッチクラストを粉砕し、スラリーとした後、ポリグリ
コールエステル系水溶性起泡剤と、補収剤を添加し粗選
を行い、粗選沈降を有用部分として回収し、さらに精選
沈降を有用部分として回収することを特徴とするコバル
トリッチクラストと脈石の分離方法、即ち、有価金属の
回収方法である。なお、本発明においては、補収剤とし
て、合成スルホン酸塩もしくはオレイン酸ナトリウムを
用いるのが好ましい。
In order to achieve the above-mentioned object, a method of the present invention is to pulverize a cobalt-rich crust containing valuable metals such as cobalt, nickel, and copper, which are mined from the seabed together with gangue. , After slurrying, a polyglycol ester-based water-soluble foaming agent and a scavenger are added to carry out rough selection, and the rough sedimentation is collected as a useful part, and the fine sedimentation is collected as a useful part. Is a method of separating cobalt rich crust and gangue, that is, a method of recovering valuable metals. In the present invention, it is preferable to use a synthetic sulfonate or sodium oleate as the collecting agent.

【0007】[0007]

【発明の実施の形態】本発明は、最初に、コバルトリッ
チクラストを通常使用されるクラッシャおよびミル等を
使用して80%通過粒子径で100μm程度に粉砕した
後、パルブ濃度を40〜50%となるように調整する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, first, a cobalt-rich crust is pulverized to about 100 μm with a particle diameter of 80% using a commonly used crusher, mill or the like, and then the pulp concentration is reduced to 40 to 50%. Adjust so that

【0008】次いで、そのパルプに補収剤として合成ス
ルホン酸塩もしくはオレイン酸ナトリウム、起泡剤とし
てポリグリコールエステル系水溶性起泡剤を適当量添加
し、粗選となる浮遊選鉱を行い、沈降部を有用部分とし
てまず回収する。
Next, an appropriate amount of a synthetic sulfonate or sodium oleate as a collecting agent and an appropriate amount of a water-soluble polyglycol ester-based foaming agent as a foaming agent are added to the pulp, and flotation as coarse screening is performed. The part is collected first as a useful part.

【0009】さらに、粗選の浮鉱に対して、抑制剤とし
て珪酸ナトリウムを添加して精選を行い、精選沈降部を
有用部分として回収する。
Further, sodium silicate is added as a suppressor to the flotation in the rough screening to carry out the fine screening, and the fine sedimentation part is recovered as a useful part.

【0010】本発明の2回の浮選選鉱条件において、有
用鉱物を含む殻状部分は、共に沈降部である粗選沈降と
精選沈降に濃縮される。一方、除去されるべき脈石は、
精選の浮鉱に濃縮される。
[0010] Under the two flotation conditions of the present invention, the shell-like portion containing useful minerals is both concentrated in the sedimentation part, the coarse sedimentation and the fine sedimentation. On the other hand, the gangue to be removed is
It is concentrated in well-selected flotation.

【0011】コバルトリッチクラストにおける主な有用
成分は、コバルト、ニッケル、銅のほか、白金、ロジウ
ムである。これらの大部分が、殻状部分中に固溶状態で
含有されている。したがって、物理選別によって、殻状
部分を構成するマンガン酸化物および鉄酸化物から有用
成分を分離することは実際上不可能である。
The main useful components in the cobalt-rich crust are platinum, rhodium, in addition to cobalt, nickel and copper. Most of these are contained in a solid solution state in the shell-like portion. Therefore, it is practically impossible to separate useful components from manganese oxide and iron oxide constituting the shell-like portion by physical sorting.

【0012】コバルトリッチクラストは、殻状部分およ
び脈石部分からなるが、特に団塊状のコバルトリッチク
ラストの場合、脈石はリン灰石を主体とする鉱物からな
る。
The cobalt-rich crust is composed of a shell-like portion and a gangue portion. In particular, in the case of a nodular cobalt-rich crust, the gangue is composed of a mineral mainly composed of apatite.

【0013】発明者等の研究の結果、このような場合、
合成スルホン酸もしくはオレイン酸ナトリウムを補収剤
とした浮遊選鉱において、脈石の方が殻状部分に比べて
浮遊し易いことを見いだし、さらに、珪酸ナトリウムの
添加により殻状部分の浮遊性を抑制させられる性質を利
用するものである。
As a result of the inventors' research, in such a case,
In flotation using synthetic sulfonic acid or sodium oleate as a scavenger, gangue was found to float more easily than the shell, and the addition of sodium silicate suppressed the floating of the shell. This is to take advantage of the property that is caused.

【0014】以上により、本発明は、脈石を浮遊させる
逆浮遊選鉱の条件とし、粗選において脈石とともに浮遊
した殻状部分を、精選により珪酸ナトリウムで沈降させ
るものである。
As described above, in the present invention, the conditions of the reverse flotation for suspending gangue are settled, and the shell-like portion suspended along with the gangue in the roughing is sedimented with sodium silicate by selective screening.

【0015】[0015]

【実施例】(実施例1)本発明の実施例1を図1に示す
フローチャートを参照して説明する。太平洋底より得ら
れたコバルトリッチクラスト鉱石を脈石部と共に、クラ
ッシャにて全量6メッシュ篩下となるまで粉砕した後
(ステップS1、ステップS2)、250gを秤量し、
250ccの人工海水を加えボールミルによって80重
量%粒子径で100μm以下まで磨鉱した。
(Embodiment 1) Embodiment 1 of the present invention will be described with reference to the flowchart shown in FIG. After crushing the cobalt-rich crust ore obtained from the Pacific Ocean bottom together with the gangue part by a crusher until the total amount becomes under a 6-mesh sieve (Step S1, Step S2), 250 g is weighed,
250 cc of artificial seawater was added, and the mixture was ground by a ball mill to a particle diameter of 80% by weight to 100 μm or less.

【0016】磨鉱後のパルプを浮遊選鉱用セルに入れ、
鉱石重量あたり、起泡剤としてCytec社製の”AE
ROFROTH65”を128g/ton、合成スルホ
ン酸塩補収剤として、同社製の”AEROPROMOT
OR845”を1500g/ton加えて、3分間条件
付け(ステップS3)を行った後、10分間粗選を行い
(ステップS4)、浮鉱部と沈降部に分離し、沈降部を
有用部分として回収した(ステップS5、ステップS
6)。
The pulp after grinding is put into a flotation cell,
"AE" manufactured by Cytec as a foaming agent per ore weight
ROFROTH65 ”is 128g / ton. As a synthetic sulfonate scavenger,“ AEROPROMOT ”
OR845 ″ was added at 1500 g / ton, conditioning was performed for 3 minutes (step S3), then rough selection was performed for 10 minutes (step S4), the sediment was separated into a flotation part and a sedimentation part, and the sedimentation part was collected as a useful part. (Step S5, Step S
6).

【0017】その後、粗選浮鉱のパルプに珪酸ナトリウ
ムを2500g/ton添加し、3分間条件付けした後
(ステップS7、ステップS8)、5分間精選を行い
(ステップS9)、沈降部を有用部分として回収し(ス
テップS10、ステップS6)、浮鉱部を尾鉱とした
(ステップS11、ステップS12)。以上の処理結果
を別紙の表1に示す。
Thereafter, sodium silicate is added to the pulp of the rough flotation at 2500 g / ton and conditioning is performed for 3 minutes (steps S7 and S8), and the pulp is finely filtered for 5 minutes (step S9). It was collected (Step S10, Step S6), and the flotation was used as tailing (Step S11, Step S12). Table 1 shows the results of the above processing.

【0018】表1より、コバルト0.40%、ニッケル
0.39%、銅0.06%を含有するコバルトリッチク
ラスト鉱石を浮遊選鉱処理して、実収率がそれぞれコバ
ルト:79.96%、ニッケル:80.13%、銅:8
0.18%であり、歩留りが57.41%の産物が得ら
れた。
According to Table 1, a cobalt-rich crust ore containing 0.40% of cobalt, 0.39% of nickel, and 0.06% of copper was subjected to flotation treatment, and the actual yield was 79.96% for cobalt and 79.96% for nickel, respectively. : 80.13%, copper: 8
A product with a yield of 57.41% was obtained with a yield of 0.18%.

【0019】(実施例2)実施例2におけるフローの流
れは、実施例1のものとほぼ同一である。実施例1と同
様に、太平洋底より得られたコバルトリッチクラスト鉱
石をクラッシャにて粉砕した後(ステップS1、ステッ
プS2)、ボールミルにて80%重量粒子径で100μ
m以下まで磨鉱した。
(Second Embodiment) The flow of the flow in the second embodiment is almost the same as that in the first embodiment. Similar to Example 1, the cobalt-rich crust ore obtained from the Pacific Ocean bottom was pulverized with a crusher (Step S1, Step S2), and then 100 μm in 80% weight particle diameter with a ball mill.
m or less.

【0020】磨鉱後のパルプを浮遊選鉱用セルに入れ、
鉱石重量当たり、起泡剤としてCytec社製の”AE
ROFROTH65”を128g/ton、補収剤とし
てオレイン酸ナトリウムを1500g/ton加え、3
分間条件付けを行った(ステップS3)後、粗選を開始
し、さらに3分後に”AERFROTH65”を128
g/ton、オレイン酸ナトリウムを1500g/to
nを添加して粗選を継続し、6分後、さらに”AERF
ROTH65”を128g/tonを添加して継続し、
粗選開始から10分間粗選を行い(ステップS4)、沈
降部を有用部として回収した(ステップS5、ステップ
S6)。
The ground pulp is put into a flotation cell,
"AE" manufactured by Cytec as a foaming agent per weight of ore
ROFROTTH 65 ″ was added at 128 g / ton, and sodium oleate was added at 1500 g / ton as a collecting agent.
After performing conditioning for one minute (step S3), rough selection is started, and three minutes later, "AERFROTH65" is changed to 128.
g / ton, 1500 g / to sodium oleate
n, and the rough selection was continued. After 6 minutes, “AERF” was further added.
ROTH65 "was added at 128 g / ton and continued,
Rough selection was performed for 10 minutes from the start of the rough selection (step S4), and the sedimentation part was collected as a useful part (step S5, step S6).

【0021】その後、粗選浮鉱(ステップS7)のパル
プに珪酸ナトリウムを2500g/ton添加し、3分
間条件付けした(ステップS8)後、5分間精選を行い
(ステップS9)、沈降部を回収し(ステップS10、
ステップS6)、浮鉱部を尾鉱とした(ステップS1
1、ステップS12)。以上の処理結果を別紙の表2に
示す。
Thereafter, sodium silicate is added to the pulp of the coarse flotation (step S7) at 2500 g / ton, conditioning is performed for 3 minutes (step S8), and then, fine selection is performed for 5 minutes (step S9), and the sedimentation part is recovered. (Step S10,
Step S6) The tailings were used as the flotation part (Step S1).
1. Step S12). Table 2 shows the results of the above processing.

【0022】表2より、コバルト0.40%、ニッケル
0,38%、銅0.07%を含有するコバルトリッチク
ラスト鉱石を浮遊選鉱処理して、実収率がそれぞれコバ
ルト87.44%、ニッケル87.02%、銅85.4
6%であり、歩留りが64.4%の産物が得られた。
According to Table 2, a cobalt-rich crust ore containing 0.40% of cobalt, 0.38% of nickel and 0.07% of copper was subjected to flotation treatment to obtain actual yields of 87.44% cobalt and 87% nickel, respectively. 0.02%, copper 85.4
A product with a yield of 64.4% was obtained with a yield of 6%.

【0023】[0023]

【発明の効果】以上のように、本発明による方法によれ
ば、脈石を除去することにより、大規模な製錬装置を必
要とせず、かつ安価にコバルトリッチクラスト鉱石から
有価金属を回収できる。
As described above, according to the method of the present invention, by removing gangue, a valuable metal can be recovered from a cobalt-rich crust ore at low cost without requiring a large-scale smelting apparatus. .

【表1】 [Table 1]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、回収方法のステップの流れを示すフロ
ーチャートである。
FIG. 1 is a flowchart showing a flow of steps of a collection method.

【符号の説明】[Explanation of symbols]

S1〜S12 回収方法における各ステップ S1 to S12 Each step in the recovery method

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コバルト、ニッケル、銅等の有価金属を
含むコバルトリッチクラストを粉砕し、スラリーとした
後、起泡剤と、補収剤を添加し粗選を行い、粗選沈降を
有用部分として回収し、さらに粗選浮鉱に抑制剤を添加
して精選を行い、精選沈降を有用部分として回収するこ
とを特徴とするコバルトリッチクラストからの有価金属
の回収方法。
1. A cobalt-rich crust containing valuable metals such as cobalt, nickel and copper is pulverized into a slurry, and then a foaming agent and a collecting agent are added to carry out a rough selection, and a rough sedimentation is useful. A method for recovering valuable metals from a cobalt-rich crust, characterized in that a selective inhibitor is added to a coarse flotation and a selective purification is performed, and the selective sedimentation is recovered as a useful part.
【請求項2】 抑制剤が珪酸ナトリウムであることを特
徴とする請求項1記載の有価金属の回収方法。
2. The method according to claim 1, wherein the inhibitor is sodium silicate.
【請求項3】 補収剤が合成スルホン酸塩であることを
特徴とする請求項1記載の有価金属の回収方法。
3. The method for recovering valuable metals according to claim 1, wherein the collecting agent is a synthetic sulfonate.
【請求項4】 補収剤がオレイン酸ナトリウムであるこ
とを特徴とする請求項1記載の有価金属の回収方法。
4. The method according to claim 1, wherein the collecting agent is sodium oleate.
JP15063598A 1998-05-14 1998-05-14 Recovering method of valuable metal from cobalt enriched crust Pending JPH11319634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15063598A JPH11319634A (en) 1998-05-14 1998-05-14 Recovering method of valuable metal from cobalt enriched crust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15063598A JPH11319634A (en) 1998-05-14 1998-05-14 Recovering method of valuable metal from cobalt enriched crust

Publications (1)

Publication Number Publication Date
JPH11319634A true JPH11319634A (en) 1999-11-24

Family

ID=15501169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15063598A Pending JPH11319634A (en) 1998-05-14 1998-05-14 Recovering method of valuable metal from cobalt enriched crust

Country Status (1)

Country Link
JP (1) JPH11319634A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144219A (en) * 2007-12-17 2009-07-02 Mitsubishi Materials Corp Method for recovering metal from used solid oxide type fuel cell
CN101972705A (en) * 2010-11-05 2011-02-16 江西理工大学 Benefication method for copper nickel
KR101036653B1 (en) 2011-01-31 2011-05-25 몰리소프트 주식회사 Recovering method of molybdenum concentrate for lubricant by froth flotation
JP2012178304A (en) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp Method for recovering metal from used solid oxide fuel battery cell
CN104226486A (en) * 2014-09-12 2014-12-24 广西华锡集团股份有限公司 Preparing method of clay mineral inhibitors in tailings
CN113304878A (en) * 2021-06-18 2021-08-27 矿冶科技集团有限公司 Separation method and application of cobalt-rich crusts
CN115582224A (en) * 2022-09-30 2023-01-10 昆明理工大学 Flotation combined reagent and application thereof, and method for flotation desilication of micro-fine particle zinc oxide ore

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144219A (en) * 2007-12-17 2009-07-02 Mitsubishi Materials Corp Method for recovering metal from used solid oxide type fuel cell
CN101972705A (en) * 2010-11-05 2011-02-16 江西理工大学 Benefication method for copper nickel
KR101036653B1 (en) 2011-01-31 2011-05-25 몰리소프트 주식회사 Recovering method of molybdenum concentrate for lubricant by froth flotation
JP2012178304A (en) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp Method for recovering metal from used solid oxide fuel battery cell
CN104226486A (en) * 2014-09-12 2014-12-24 广西华锡集团股份有限公司 Preparing method of clay mineral inhibitors in tailings
CN113304878A (en) * 2021-06-18 2021-08-27 矿冶科技集团有限公司 Separation method and application of cobalt-rich crusts
CN115582224A (en) * 2022-09-30 2023-01-10 昆明理工大学 Flotation combined reagent and application thereof, and method for flotation desilication of micro-fine particle zinc oxide ore

Similar Documents

Publication Publication Date Title
Houot Beneficiation of iron ore by flotation—review of industrial and potential applications
CN101884951B (en) Combined mineral dressing technology of fine grain and micro grain cassiterite
CN103381389B (en) Production technology for improving secondary recovery rate of tailings
CN107694762B (en) A kind of composition and method for floating of the flotation collecting rutile from ore
CN109604048B (en) Method for stepwise recovering metallic copper, copper sulfide and iron minerals in copper converter slag
CN104689913A (en) Pyrite mixed recycling method for polycrystal system
CN109465106B (en) Sorting method for tungsten-molybdenum ore
CN113441274B (en) Ore dressing method for porphyry gold ore containing coarse-grain embedded cloth
CN112958273B (en) Mineral separation method for pegmatite type lithium polymetallic ore
CN110575904A (en) Spodumene grading-grade dual medium-flotation beneficiation method
CN113731627A (en) Pre-tailing-discarding mixed flotation method for rare earth multi-metal ore
CN105592930A (en) Method for recovering copper sulfide from ore containing iron sulfide
CN112156894A (en) Method for flotation of uranium minerals from volcanic rock type uranium ores
JPH11319634A (en) Recovering method of valuable metal from cobalt enriched crust
JP5811010B2 (en) Method of beneficiation of ores containing fine minerals
US4283277A (en) Beneficiation of trona by flotation
CA2648951A1 (en) Process for recovery of antimony and metal values from antimony- and metal value-bearing materials
AU667635B2 (en) Process for the recovery of silver by flotation from the residue from the wet extraction of zinc
CN109852795A (en) A kind of comprehensive recovering process for the selecting and smelting recovery rate improving Technique of Refractory Gold Ores
CN111530621B (en) Mineral separation method for crystalline uranium ores
JP2000129371A (en) Method for recovering valuable metal from cobalt rich crust
CN104017990B (en) A kind of Ore hydrometallurgy leaching method
JP2022114298A (en) Method for recovering silver
CN113304878B (en) Separation method and application of cobalt-rich crusts
CN112808463A (en) Medicament and method for flotation separation of iron-titanium ore and iron-containing gangue