JPH01248901A - Generative brake controller for electric vehicle - Google Patents

Generative brake controller for electric vehicle

Info

Publication number
JPH01248901A
JPH01248901A JP7441988A JP7441988A JPH01248901A JP H01248901 A JPH01248901 A JP H01248901A JP 7441988 A JP7441988 A JP 7441988A JP 7441988 A JP7441988 A JP 7441988A JP H01248901 A JPH01248901 A JP H01248901A
Authority
JP
Japan
Prior art keywords
comparator
field current
field
current
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7441988A
Other languages
Japanese (ja)
Inventor
Sadami Shiba
柴 定見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7441988A priority Critical patent/JPH01248901A/en
Publication of JPH01248901A publication Critical patent/JPH01248901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To reduce the thermal capacity of a brake resistor, by providing a limiter to a field current control circuit while considering the increment of resistance of the brake resistor. CONSTITUTION:Field current 1f is compared with a field current pattern 1f0 corresponding to a speed (v) in a comparator 12, which provides a differential output DELTAif1 to a comparator 15. On the other hand, an armature current (ia) is compared with an armature current pattern (ia0) corresponding to the speed (v) in a comparator 14, which provides a differential output DELTAia1 to the comparator 15. The comparator 15 compares the differential outputs DELTAif<1> and DELTAia1 and provides a differential output DELTAif2 to a comparator 18. A field current limiter generator 17 outputs a limiter signal DELTAifm corresponding to the speed (v). The comparator 18 limits the differential output DELTAif2 below the limiter signal DELTAifm and provides a phase shift angle command alphaF to a phase shifter 16. By such arrangement, increase of the size of a brake resistor can be suppressed.

Description

【発明の詳細な説明】 【発明の目的〕 (産業上の利用分野) 本発明は、主電動機の界磁電力を他励制御する電気車の
発電ブレーキ制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to a dynamic brake control device for an electric vehicle that separately excites the field power of a main motor.

(従来の技術) 駆動用直流電動機の電機子巻線1と並列に抵抗器4を接
続した電機子回路、界磁巻線の電力を制御する交直電力
変換装置6と直列に界磁巻線9を接続した界磁回路を独
立して備えた他励式電気車の主回路例を第2図に示す。
(Prior art) An armature circuit in which a resistor 4 is connected in parallel with the armature winding 1 of a driving DC motor, and a field winding 9 in series with an AC/DC power converter 6 that controls the power of the field winding. Fig. 2 shows an example of the main circuit of a separately excited electric vehicle equipped with an independent field circuit connected to the

第2図に示した主回路構成例で2発電ブレーキを作用さ
せる場合、第3図に示す特性で電機子電流1aaと界磁
電流1foを制御し、所要のブレーキ力BEを得る。こ
のブレーキ力BEは、速度A−B間は定電力制御、速度
B−C間は界磁電流を最大値に一定制御することにより
得られる。従来の発電ブレーキ制御部の構成を第4図に
示す。
When applying a two-generation brake using the main circuit configuration example shown in FIG. 2, the armature current 1aa and field current 1fo are controlled with the characteristics shown in FIG. 3 to obtain the required braking force BE. This braking force BE is obtained by constant power control between speeds A and B, and constant control of the field current to the maximum value between speeds B and C. FIG. 4 shows the configuration of a conventional power generation brake control section.

第4図において、電機子電流検出器2.界磁電流検出器
8は第2図と同じものである。この構成において、界磁
電流検出器8で得られた界磁電流ifと速度Vに対応し
た界磁電流ifを指令する界磁電流パターン発生器11
の基準電流ifeを比較器12で比較し、 その差出力
ΔAftが比較器15に入力される。一方、電機子電流
検出器2で得られた電機子電流18と速度Vに対応した
電機子電流i6を指令する電機子電流パターン発生器1
30基準電流1aaを比較器14で比較し、 その差出
力Δlaxが比較器15に入力される。この各々の差出
力Δia□とΔifユが比較器15で比較され、差出力
Δitzが第2図に示した界磁電力変換器6のサイリス
タゲート位相角指令αFを制御する界磁移相器16に入
力される。
In FIG. 4, armature current detector 2. The field current detector 8 is the same as that shown in FIG. In this configuration, a field current pattern generator 11 commands a field current if corresponding to the field current if obtained by the field current detector 8 and the speed V.
The comparator 12 compares the reference current ife of , and the difference output ΔAft is input to the comparator 15 . On the other hand, an armature current pattern generator 1 commands an armature current i6 corresponding to the armature current 18 obtained by the armature current detector 2 and the speed V.
30 reference currents 1aa are compared by a comparator 14, and the difference output Δlax is input to a comparator 15. These respective difference outputs Δia□ and ΔifY are compared in a comparator 15, and the difference output Δitz is used in a field phase shifter 16 that controls the thyristor gate phase angle command αF of the field power converter 6 shown in FIG. is input.

したがい、各々の基準となる電機子電流1aa *界磁
電流1faを得られるように界磁電力変換器6が制御さ
れるので、目標とするブレーキ力BEが速度に応じて得
られることになる。
Therefore, the field power converter 6 is controlled so as to obtain each reference armature current 1aa*field current 1fa, so that the target braking force BE can be obtained according to the speed.

(発明が解決しようとする課題) このような発電ブレーキにおいて、特に速度A−B間の
電機子電流iaは、最大の一定電流に制御されるので、
この電流値によってブレーキ抵抗器4の熱容量は決定さ
れる。この速度区間(A−8間)のある速度でバランス
するような運転が行なわれた場合、ブレーキ抵抗器には
最大電流が長時間流れることになり、ブレーキ抵抗器の
温度は抵抗器の最大許容温度近くまで上昇する。一般に
、この最大電流を連続した時、ブレーキ抵抗器の温度が
最大許容値近くまで達するように、ブレーキ抵抗器の熱
容量を決定し、抵抗器の構成を小形化することは電気車
の場合、衆知の技術である。このブレーキ電流を連続し
て流した時、ブレーキ抵抗器の温度上昇に伴なう抵抗値
増加も一般現象である。したがって、従来技術において
は、第3図に示す電機子電流18oの最大値に一定制御
する場合、抵抗器の温度上昇に伴なう、抵抗値増加分に
よって、電機子電流iaが減少するため、この減少分を
界磁電流を増加して、電動機の誘起電圧を増加し、電機
子電流が基準値になるよう制御する。
(Problem to be Solved by the Invention) In such a dynamic brake, the armature current ia between speeds A and B is controlled to be the maximum constant current, so
The heat capacity of the brake resistor 4 is determined by this current value. If balanced operation is performed at a certain speed in this speed range (A-8), the maximum current will flow through the brake resistor for a long time, and the temperature of the brake resistor will be the maximum allowable value of the resistor. The temperature rises to near the same temperature. Generally speaking, in the case of electric vehicles, it is common knowledge to determine the heat capacity of the brake resistor and to downsize the resistor configuration so that the temperature of the brake resistor reaches close to the maximum allowable value when this maximum current is applied continuously. This is the technology of When this brake current is continuously applied, it is a common phenomenon that the resistance value increases as the temperature of the brake resistor increases. Therefore, in the prior art, when the armature current 18o is controlled to be constant at the maximum value shown in FIG. The field current is increased to compensate for this decrease, the induced voltage of the motor is increased, and the armature current is controlled to become the reference value.

その結果下記の■式に示されるように、ブレーキ抵抗器
が過上電力を負荷し、過上のブレーキ力を作用させるこ
とになる。一般に電機子電流1aoは下式にて求まる。
As a result, as shown in the following equation (2), the brake resistor is loaded with excessive power and applies excessive braking force. Generally, the armature current 1ao is determined by the following formula.

ブレーキ抵抗器の温度上昇に伴ない、抵抗値がへR増加
すると、 したがい、iaoを一定値とするためにはにφ1となる
i、に制御する必要がある。その結果抵抗器の電力消費
PR□、ブレーキカBE工は Pv=ia:X (Re+ΔR)、 BEacigXk
φ、(kφ1〉kφo) −・・■となり、各々、基準
値をオーバすることになる。
As the temperature of the brake resistor increases, the resistance value increases by R. Therefore, in order to keep iao at a constant value, it is necessary to control i to φ1. As a result, the power consumption of the resistor PR□, the brake force BE engineering is Pv=ia:X (Re+ΔR), BEacigXk
φ, (kφ1>kφo) −...■, and each exceeds the reference value.

前述したように抵抗器は、基準の最大電力(=i即xR
a)で熱容量が決められているので、このような制御を
した場合、過上の電力消費を招き、抵抗器自身の損傷を
招く、また、この電力に見合う熱容量の抵抗器構成とす
ると1機器外形の増加コストの増加を招く欠点がある。
As mentioned above, the resistor is connected to the reference maximum power (=i xR
Since the heat capacity is determined by a), if such control is used, it will lead to excessive power consumption and damage to the resistor itself.Also, if the resistor is configured with a heat capacity commensurate with this power, one device This has the disadvantage of increasing the external size and increasing cost.

また、必要以上のブレーキ力を作用させてしまうので、
粘着限界近くのブレーキ力を作用させる場合、滑走を招
く原因となり得る欠点がある。
Also, it will apply more braking force than necessary, so
When applying a braking force close to the adhesion limit, there is a drawback that it may cause skidding.

本発明においては、従来技術の欠点を考慮し、各電流l
a、x(の制御を抵抗器の温度上昇にともなう抵抗値増
加を見込んで補正し、基準のブレーキ電力PReブレー
キカBEを得ることができ、 ブレーキ抵抗器の機器構
成の増加をおさえ、コストの低減を図るブレーキ制御装
置を提供する。
In the present invention, considering the drawbacks of the prior art, each current l
The control of a, The present invention provides a brake control device that achieves the following.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この目的を達成するために、最大のブレーキ電流を制御
する速度A−B間のみ、この電流に伴なう抵抗値増加分
ΔRを考慮し界磁電流ifにリミッタを設ける制御装置
構成とする。つまり、■、■式において、kφ、=にφ
6〜F71111−が得られるi1パターンのリミット
を設ける。
(Means for solving the problem) In order to achieve this objective, only between speed A and B where the maximum brake current is controlled, the increase in resistance value ΔR accompanying this current is taken into consideration when adjusting the field current if. The control device is configured with a limiter. In other words, in equations ■ and ■, kφ, = φ
6 to F71111- is set as a limit for the i1 pattern.

(作用) これにより、抵抗値がΔR増加した時、電機子電流ia
は0式より キ電力PR,ブレーキカBE共に基準値が得られること
になる。
(Function) As a result, when the resistance value increases by ΔR, the armature current ia
The reference values for both the power PR and the brake power BE can be obtained from equation 0.

(実施例) 本発明の一実施例による具体的な制御部の構成を第1図
に示す。なお主回路構成は、第2図に示した従来技術と
同じものである。第1図において、従来技術と違うとこ
ろは、界磁電流リミッタ発生器17と比較器18を設け
たことである。この構成で、界磁移相器16の入力信号
となっていたΔlfaの制御システムは、従来技術第4
図と同じである。つまり昇路電流制御信号Δlfaに対
し、界磁電流リミッタ発生器からのリミッタ信号Δlf
mを比較器18で比較し、Δ10がΔlfmを上廻らな
いように、界磁移相器の位相角指令αFを制御する。
(Embodiment) FIG. 1 shows a specific configuration of a control section according to an embodiment of the present invention. The main circuit configuration is the same as the prior art shown in FIG. In FIG. 1, the difference from the prior art is that a field current limiter generator 17 and a comparator 18 are provided. With this configuration, the control system for Δalfa, which is the input signal of the field phase shifter 16, is
Same as the figure. In other words, the limiter signal Δlf from the field current limiter generator is
m is compared by a comparator 18, and the phase angle command αF of the field phase shifter is controlled so that Δ10 does not exceed Δlfm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、制御部の一部変更つまり、主回路機器
であるブレーキ抵抗器を大きく変更することなく、所要
のブレーキ電力、ブレーキ力を確保することができ、抵
抗器の機器増大をおさえ、コスト低減を図った発電ブレ
ーキ制御装置を提供することができる。
According to the present invention, the required braking power and braking force can be secured without changing a part of the control unit, that is, without significantly changing the brake resistor, which is the main circuit equipment, and the increase in resistor equipment can be suppressed. Therefore, it is possible to provide a power generation brake control device that is cost-reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す制御ブロック図、第2
図は発電ブレーキ回路構成図、第3図は所要のブレーキ
性能を得る速度に対する電機子電流、界磁電流、ブレー
キ力の関係を示す図、第4図は従来の装置の構成を示す
制御ブロック図である。 1・・・主電動機電機子巻線 2・・・電機子電流検出器 4・・・ブレーキ抵抗器5
・・・界磁用交直電力変換装置 8・・・界磁電流検出器 9・・・主電動機界磁巻線1
1・・・界磁電流パターン発生器 12、14.15.18・・・比較器 13・・・電機子電流パターン発生器 16・・・界磁移相器 17・・・界磁電流リミッタ発生器 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 s2  図 第3図 L 第4図
FIG. 1 is a control block diagram showing one embodiment of the present invention, and FIG.
Figure 3 is a diagram showing the configuration of a dynamic brake circuit; Figure 3 is a diagram showing the relationship between armature current, field current, and braking force with respect to the speed at which the required braking performance is achieved; Figure 4 is a control block diagram showing the configuration of a conventional device. It is. 1... Main motor armature winding 2... Armature current detector 4... Brake resistor 5
... Field AC/DC power converter 8... Field current detector 9... Main motor field winding 1
1... Field current pattern generator 12, 14.15.18... Comparator 13... Armature current pattern generator 16... Field phase shifter 17... Field current limiter generation Agent Patent Attorney Nori Ken Yudo Daishimaru Ken Figure 1 S2 Figure 3 L Figure 4

Claims (1)

【特許請求の範囲】[Claims] 駆動用直流電動機の電機子巻線と並列にブレーキ抵抗器
を接続した電機子回路、前記電動機の界磁巻線に直列に
交直電力変換装置を接続した界磁回路を独立した発電ブ
レーキ回路を備えた交流電気車において、前記電動機の
界磁電流を検出する手段と、前記電動機のブレーキ力よ
り求められる電気車の速度および界磁電流の関数を発生
する関数発生手段と、この関数発生手段より得られる現
在速度に対する界磁電流値に対し前記ブレーキ抵抗器の
電力限界値より求められる一定係数倍した関数発生手段
を備えたことを特徴とする電気車の発電ブレーキ制御装
置。
An armature circuit in which a brake resistor is connected in parallel with the armature winding of a driving DC motor, a field circuit in which an AC/DC power converter is connected in series with the field winding of the motor, and an independent dynamic brake circuit. In the AC electric vehicle, there is provided a means for detecting the field current of the electric motor, a function generating means for generating a function of the speed of the electric vehicle and the field current determined from the braking force of the electric motor, and a function generating means for generating a function of the field current and the speed of the electric vehicle determined from the braking force of the electric motor. 1. A power generation brake control device for an electric vehicle, comprising a function generating means for multiplying a field current value for a current speed by a constant coefficient determined from a power limit value of the brake resistor.
JP7441988A 1988-03-30 1988-03-30 Generative brake controller for electric vehicle Pending JPH01248901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7441988A JPH01248901A (en) 1988-03-30 1988-03-30 Generative brake controller for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7441988A JPH01248901A (en) 1988-03-30 1988-03-30 Generative brake controller for electric vehicle

Publications (1)

Publication Number Publication Date
JPH01248901A true JPH01248901A (en) 1989-10-04

Family

ID=13546656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7441988A Pending JPH01248901A (en) 1988-03-30 1988-03-30 Generative brake controller for electric vehicle

Country Status (1)

Country Link
JP (1) JPH01248901A (en)

Similar Documents

Publication Publication Date Title
US6124697A (en) AC inverter drive
US4019105A (en) Controlled current induction motor drive
EP0490024B1 (en) Induction motor vector control
JPH01248901A (en) Generative brake controller for electric vehicle
JPS631306A (en) Chopper control system
JP3554798B2 (en) Electric car control device
JPH0324155B2 (en)
JP3824206B2 (en) Linear induction motor electric vehicle control device
JPH08126400A (en) Vector controller for induction motor
JP2592536B2 (en) Power converter control device
SU1394384A1 (en) Method of controlling d.c. thyristor drive of drawworks
JPS6325917Y2 (en)
JPS59188301A (en) Controller of electric railcar
CA1058695A (en) Regulating the torque of an induction motor
JP3503202B2 (en) Inverter for driving induction motor
JP2892800B2 (en) Inverter constant braking force control method
JP2731155B2 (en) Electric car control device
JPS6056362B2 (en) Induction motor control circuit for trains
JPS60245484A (en) Braking method of induction motor
JPH04190688A (en) Controller for motor
JPS6256757B2 (en)
JPS5812830B2 (en) Control method of thyristor stopper circuit
JPS6139878A (en) Servo amplifier
JPH0568162B2 (en)
JPS59149785A (en) Controlling method of magnetic flux for induction motor