JPH0124811B2 - - Google Patents

Info

Publication number
JPH0124811B2
JPH0124811B2 JP55163971A JP16397180A JPH0124811B2 JP H0124811 B2 JPH0124811 B2 JP H0124811B2 JP 55163971 A JP55163971 A JP 55163971A JP 16397180 A JP16397180 A JP 16397180A JP H0124811 B2 JPH0124811 B2 JP H0124811B2
Authority
JP
Japan
Prior art keywords
treatment
rubber
fluorine gas
molded
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55163971A
Other languages
Japanese (ja)
Other versions
JPS5787346A (en
Inventor
Harumi Tatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP16397180A priority Critical patent/JPS5787346A/en
Publication of JPS5787346A publication Critical patent/JPS5787346A/en
Publication of JPH0124811B2 publication Critical patent/JPH0124811B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、成形ゴム材料の表面処理方法に関す
る。更に詳しくは、改善された表面特性を有する
フツ素ゴム成形材料の表面処理方法に関する。 〔従来の技術〕 従来から、成形ゴム材料の表面特性を改善する
方法として種々の提案がなされており、例えば表
面摩擦抵抗の減少、耐溶剤性、撥水性または耐オ
ゾン性の付与、粘着性の除去などの個々の目的
で、塩化イオウ溶液(特公昭26−134号公報、同
35−4608号公報)、過酢酸溶液(同36−190号公
報)、塩素ガス、臭素ガスまたはスルホン酸ソー
ダ溶液(同37−3807号公報)、アルカリ水溶液
(同45−34706号公報)、アルキルハイポハライド
(同50−27503号公報)、臭素またはヨウ素とペル
オキソ二硫酸(同53−27751号公報)、五フツ化ア
ンチモン(特開昭50−23483号公報)、ポリアミン
(同51−55379号公報)、ポリオルガノシロキサン
(同54−90375号公報)またはグラフアイト(同54
−22482号公報)などの各種薬品類、あるいは熱
(同51−30883号公報)または紫外線(同54−
57576号公報)などで処理する方法が提案されて
いる。 しかしながら、これらの方法のうち、各種の薬
品類で処理されたものの多くはゴム表面が固くな
るため、これを摺動部材などに用いた場合その表
面に微細なクラツクを生じ、最悪の場合には表面
がゴム弾性を失い、成形材料に大きな割れが生ず
るなどのいろいろの欠点がみられる。また、グラ
フアイト処理および紫外線処理でも処理の深さが
浅いため、長期間の使用に耐え得ない欠点がみら
れる。 五フツ化アンチモンによる処理方法では、五フ
ツ化アンチモンを不活性キヤリアガスとの混合気
流として用い、処理後に炭酸アルカリ金属塩水溶
液および水で順次洗浄する方法がとれらており、
このようにして処理された大抵のゴム材料の表面
状態は改善されるが、フツ素ゴムのように化学的
に安定なゴムの場合には、その表面処理は殆んど
進行しないばかりではなく、有毒元素であるアン
チモンの化合物が用いられているため、作業環境
の整備および廃水処理の問題など好ましくない問
題点を提起する。 〔発明が解決しようとする課題〕 成形ゴム材料をオイルシール、O−リングなど
の摺動材料として用いる場合には、良好なゴム弾
性を保持しつつ、なおその表面の摩擦抵抗が小さ
く、耐薬品性や耐油性にすぐれていることが要求
される。その上、環境破壊などの問題を生ずるこ
とのないことも必要である。本発明者は先に、こ
れらの要求をいずれもみたす成形ゴム材料の表面
処理方法について種々検討の結果、前記五フツ化
アンチモンを用いる方法において、五フツ化アン
チモンに代えてより反応性に富むフツ素ガスを用
いることにより、これらの課題が解決されること
を見出した(特開昭57−57641号公報)。 それに用いられる表面処理剤としてのフツ素ガ
スは、それ単独あるいはヘリウム、アルゴン、窒
素、四フツ化炭素、六フツ化硫黄などの不活性キ
ヤリアガスによつて約100倍程度迄希釈された混
合ガスとして、常圧乃至加圧下(〜約20気圧)ま
たは減圧下(〜約1/100気圧)の圧力条件下に、
好まくは循環された気流として用いられる。そし
て、10〜150℃、好ましくは20〜100℃の温度条件
が採用されている。 しかるに、フツ素ゴム成形材料のフツ素ガス処
理の場合には、かかる処理温度では表面処理が進
行し難く、そのため非常な長時間もしくは高濃度
のフツ素ガスの使用を必要とすることが判つた。
本発明の目的は、かかる新たな問題点を解決する
ことにある。 〔課題を解決するための手段〕 そこで、本発明者は、フツ素ゴム成形材料を
155〜250℃の温度において、処理容器中に充満さ
せたフツ素ガス雰囲気中、好ましくは不活性ガス
で希釈されたフツ素ガス雰囲気中に保持すること
により、成形ゴム材料の所望の表面処理を行い、
所期の目的を達成することができた。これ以上の
高い処理温度では、フツ素化処理が過剰に進行
し、成形ゴム材料表面のゴム的な性質が失われる
ようになる。一方、これ以下の処理温度では、本
発明の所期の目的を達成することができない。 このような温度で処理されるフツ素ゴム成形材
料は、例えばフツ化ビニリデン−ヘキサフルオロ
プロピレン共重合ゴム、フツ化ビニリデン−ヘキ
サフルオロプロピレン−テトラフルオロエチレン
3元共重合ゴム、トリフルオロクロルエチレン−
ヘキサフルオロプロピレン共重合ゴムなどの各種
フツ素ゴムに、加硫剤その他の配合剤、例えば充
填材、補強剤、軟化剤、可塑剤、老化防止剤、加
工助剤などを必要に応じて配合したフツ素ゴム配
合物の加硫成形物である。 フツ素ガス処理は、前記の如き圧力条件下に、
155〜250℃、好ましくは155〜220℃、より好まし
くは180〜200℃の温度で不活性ガスで希釈された
フツ素ガスを用いて行われるが、その希釈割合と
しては約1%以上、好ましくは取扱性および反応
性から約10〜50%のフツ素ガス濃度にあることが
望ましい。また、この際、金属フツ化物をフツ化
水素吸着剤として存在させて行れることが好まし
い。 フツ素ガスで表面処理されたフツ素ゴム成形材
料は、その表面に付着しているフツ素ガスを除去
するために、直ちに炭酸アルカリ金属水溶液中に
浸漬して洗浄される。炭酸アルカリ金属塩として
は、炭酸ナトリウム、炭酸カリウム、炭酸水素ナ
トリウム、炭酸水素カリウムなどが約5〜20%程
度の濃度の水溶液として用いられる。浸漬処理
は、約10〜100℃の温度で約5〜30分間、好まし
くは約10〜15分間行われ、その後水で約10〜15分
間程度洗浄し、温風下で乾燥させる。 〔発明の効果〕 このようにして処理されたフツ素ゴム成形材料
は、フツ素ゴムが本来有する特性を殆んど損なう
ことなく、粘着性、摩擦抵抗などの表面特性が効
果的に改善される。 次に、実施例について本発明を説明する。 〔実施例〕 実施例 1 内径80mm、長さ300mmの円筒形ステンレス製反
応容器に、フツ素ゴム配合物(フツ化ビニリデン
約75モル%−ヘキサフルオロプロピレン約25モル
%共重合ゴムに充填材として25phrのMTカーボ
ンブラツクを配合)から成形されたリリーフバル
ブ5個およびフツ化水素ガス吸収用ペレツト状フ
ツ化ナトリウム約10gを入れ、ここに窒素ガスで
1/3の濃度に希釈したフツ素ガスを約1気圧の圧
力で充満させる。この状態で180℃で4時間処理
した後、リリーフバルブを取出し、10%炭酸ナト
リウム水溶液および流水でそれぞれ10分間洗浄し
て乾燥する。 このようにしてフツ素ガス処理されたリリーフ
バルブは、均一な表面状態であつて、外観的には
ひび割れがみられず、また触感的には粘着性の明
らかな低下がみられた。 処理されたリリーフバルブは、第1図に示され
るような半截断面を有し、符号1はSUS304部分
を、また2はフツ素ゴム部分を指示し、直径28mm
のSUS部分には直径4.1mmの孔3が穿設されてお
り、フツ素ゴム部分は20mmの内径および29mmの外
径を有している。かかるフツ素ガス処理リリーフ
バルブ4を、第2図にその概略図が示されるよう
な試験装置を用い、80mmHgの圧力で開くように
ハンドル5を用いてバネ6で押え付けて調整した
後、そのまま150℃の恒温槽中に50時間放置し、
圧力計および調節弁を備えた(いずれも図示せ
ず)圧縮空気ライン7によつてバルブの開閉圧を
測定すると、430mmHgで5個のリリーフバルブが
いずれも開いた。なお、表面処理を行わないもの
は、540mmHgで開閉するので、フツ素ガス処理に
よつてフツ素ゴム成形品表面の粘着性が改善され
ていることが判る。 実施例 2 実施例1において、希釈フツ素ガスによる処理
温度を種々に変更し、処理されたリリーフバルブ
について、5個のいずれもが開く開閉圧を測定し
た。得られた結果は、次の表に示される。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for surface treatment of molded rubber materials. More specifically, the present invention relates to a method for surface treatment of a fluororubber molding material having improved surface properties. [Prior Art] Various proposals have been made to improve the surface properties of molded rubber materials, such as reducing surface friction resistance, imparting solvent resistance, water repellency or ozone resistance, and reducing tackiness. For individual purposes such as removal, sulfur chloride solution (Japanese Patent Publication No. 26-134,
No. 35-4608), peracetic acid solution (No. 36-190), chlorine gas, bromine gas or sodium sulfonate solution (No. 37-3807), aqueous alkali solution (No. 45-34706), alkyl Hypohalide (Japanese Patent Publication No. 50-27503), bromine or iodine and peroxodisulfuric acid (Japanese Patent Publication No. 53-27751), antimony pentafluoride (Japanese Patent Publication No. 50-23483), polyamine (Japanese Patent Publication No. 51-55379) ), polyorganosiloxane (Publication No. 54-90375) or graphite (Publication No. 54-90375),
Various chemicals such as heat (Publication No. 51-30883) or ultraviolet rays (Publication No. 54-22482),
57576) and other methods have been proposed. However, in many of these methods, the rubber surface becomes hard when treated with various chemicals, so when used for sliding parts, minute cracks occur on the surface, and in the worst case, the rubber surface becomes hard. There are various disadvantages such as the surface loses its rubber elasticity and large cracks occur in the molding material. Moreover, since the depth of the treatment is shallow in the graphite treatment and the ultraviolet treatment, there is a drawback that it cannot withstand long-term use. In the treatment method using antimony pentafluoride, antimony pentafluoride is used as a mixed air stream with an inert carrier gas, and after treatment, the treatment is sequentially washed with an aqueous alkali metal carbonate solution and water.
The surface condition of most rubber materials treated in this way is improved, but in the case of chemically stable rubbers such as fluorocarbon rubber, the surface treatment not only hardly progresses, but Since a compound of antimony, which is a toxic element, is used, it poses undesirable problems such as problems in the preparation of the working environment and wastewater treatment. [Problems to be Solved by the Invention] When a molded rubber material is used as a sliding material for oil seals, O-rings, etc., it is necessary to maintain good rubber elasticity while also having low frictional resistance on the surface and chemical resistance. It is required to have excellent durability and oil resistance. Furthermore, it is also necessary that it does not cause problems such as environmental destruction. As a result of various studies on surface treatment methods for molded rubber materials that meet all of these requirements, the inventors of the present invention have found that in the method using antimony pentafluoride, a more reactive surface treatment method can be used instead of antimony pentafluoride. It has been discovered that these problems can be solved by using elementary gas (Japanese Patent Application Laid-open No. 57641/1983). Fluorine gas used as a surface treatment agent can be used alone or as a mixed gas diluted to about 100 times with an inert carrier gas such as helium, argon, nitrogen, carbon tetrafluoride, or sulfur hexafluoride. , under pressure conditions of normal pressure to increased pressure (~about 20 atmospheres) or reduced pressure (~about 1/100 atmospheres),
Preferably it is used as a circulated air stream. A temperature condition of 10 to 150°C, preferably 20 to 100°C is adopted. However, in the case of fluorine gas treatment of fluorine rubber molding materials, it has been found that surface treatment does not proceed easily at such treatment temperatures, and therefore requires a very long time or the use of high concentration fluorine gas. .
An object of the present invention is to solve this new problem. [Means for solving the problem] Therefore, the present inventor developed a fluoro rubber molding material.
The desired surface treatment of the molded rubber material is carried out by maintaining it in a fluorine gas atmosphere filled in a processing container, preferably in a fluorine gas atmosphere diluted with an inert gas, at a temperature of 155 to 250 °C. conduct,
We were able to achieve our intended purpose. If the treatment temperature is higher than this, the fluorination treatment will proceed excessively and the rubber-like properties of the surface of the molded rubber material will be lost. On the other hand, if the processing temperature is lower than this, the intended purpose of the present invention cannot be achieved. Examples of fluororubber molding materials treated at such temperatures include vinylidene fluoride-hexafluoropropylene copolymer rubber, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene ternary copolymer rubber, and trifluorochloroethylene-tetrafluoroethylene ternary copolymer rubber.
Various fluoro rubbers such as hexafluoropropylene copolymer rubber are blended with vulcanizing agents and other compounding agents, such as fillers, reinforcing agents, softeners, plasticizers, anti-aging agents, processing aids, etc. as necessary. This is a vulcanized molded product of a fluoro rubber compound. Fluorine gas treatment is carried out under the pressure conditions mentioned above.
It is carried out using fluorine gas diluted with an inert gas at a temperature of 155 to 250°C, preferably 155 to 220°C, more preferably 180 to 200°C, and the dilution ratio is about 1% or more, preferably The fluorine gas concentration is preferably about 10 to 50% from the viewpoint of handling and reactivity. Further, at this time, it is preferable that the metal fluoride is present as a hydrogen fluoride adsorbent. The fluorine rubber molding material whose surface has been treated with fluorine gas is immediately immersed in an aqueous alkali metal carbonate solution to be cleaned in order to remove the fluorine gas adhering to its surface. As the alkali metal carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc. are used in the form of an aqueous solution with a concentration of about 5 to 20%. The immersion treatment is carried out at a temperature of about 10 to 100° C. for about 5 to 30 minutes, preferably about 10 to 15 minutes, followed by washing with water for about 10 to 15 minutes and drying under warm air. [Effects of the Invention] The fluororubber molding material treated in this way has surface properties such as tackiness and frictional resistance that are effectively improved without impairing the inherent properties of fluororubber. . Next, the present invention will be explained with reference to examples. [Example] Example 1 In a cylindrical stainless steel reaction vessel with an inner diameter of 80 mm and a length of 300 mm, a fluororubber compound (approximately 75 mol% vinylidene fluoride-approximately 25 mol% hexafluoropropylene copolymer rubber) was added as a filler. 5 relief valves molded from 25 phr MT carbon black) and about 10 g of pelletized sodium fluoride for absorbing hydrogen fluoride gas were added, and fluorine gas diluted to 1/3 concentration with nitrogen gas was added. Fill with a pressure of approximately 1 atmosphere. After treating in this state at 180°C for 4 hours, the relief valve is taken out, washed with a 10% aqueous sodium carbonate solution and running water for 10 minutes each, and dried. The relief valve treated with fluorine gas in this manner had a uniform surface, with no cracks observed in appearance, and a clear decrease in tackiness to the touch. The treated relief valve has a half-cut cross section as shown in Figure 1, where 1 indicates the SUS304 part and 2 indicates the fluoro rubber part, with a diameter of 28 mm.
A hole 3 with a diameter of 4.1 mm is bored in the SUS part, and the fluoro rubber part has an inner diameter of 20 mm and an outer diameter of 29 mm. The fluorine gas treatment relief valve 4 was adjusted using a test device as shown in the schematic diagram in FIG. 2 by using a handle 5 and held down by a spring 6 so as to open at a pressure of 80 mmHg, and then left as it was. Leave it in a constant temperature bath at 150℃ for 50 hours.
When the opening and closing pressures of the valves were measured using a compressed air line 7 equipped with a pressure gauge and a control valve (none of which are shown), all five relief valves opened at 430 mmHg. In addition, since the product without surface treatment opens and closes at 540 mmHg, it can be seen that the fluorine gas treatment improves the adhesion of the surface of the fluorine rubber molded product. Example 2 In Example 1, the treatment temperature with the diluted fluorine gas was varied, and the opening and closing pressures at which all five of the treated relief valves opened were measured. The results obtained are shown in the following table. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1でフツ素ガス処理されたリ
リーフバルブの半截断面を示し、ここで符号1は
SUS部分を、また2はフツ素ゴム部分をそれぞ
れ指示する。第2図は、これらのフツ素ガス処理
リリーフバルブの表面粘着性を測定する試験装置
の概略図で、ここで符号4はリリーフバルブ、5
はハンドル、6はバネ、そして7は圧縮空気ライ
ンをそれぞれ指示する。
FIG. 1 shows a half-cut cross-section of the relief valve treated with fluorine gas in Example 1, where the reference numeral 1 indicates
2 indicates the SUS part, and 2 indicates the fluoro rubber part. FIG. 2 is a schematic diagram of a test apparatus for measuring the surface tackiness of these fluorine gas-treated relief valves, in which reference numeral 4 indicates a relief valve, and 5
indicates the handle, 6 indicates the spring, and 7 indicates the compressed air line.

Claims (1)

【特許請求の範囲】 1 フツ素ゴム成形材料を155〜250℃の温度にお
いて、処理容器中に充満させたフツ素ガス雰囲気
中に保持することを特徴とする成形ゴム材料の表
面処理方法。 2 不活性ガスで希釈されたフツ素ガス雰囲気中
に保持される特許請求の範囲第1項記載の成形ゴ
ム材料の表面処理方法。 3 摺動材料として用いられるフツ素ゴム成形材
料に適用される特許請求の範囲第1項記載の成形
ゴム材料の表面処理方法。
[Scope of Claims] 1. A method for surface treatment of a molded rubber material, which comprises maintaining the fluorine rubber molding material in a fluorine gas atmosphere filled in a processing container at a temperature of 155 to 250°C. 2. The surface treatment method for a molded rubber material according to claim 1, wherein the molded rubber material is maintained in a fluorine gas atmosphere diluted with an inert gas. 3. A method for surface treatment of a molded rubber material according to claim 1, which is applied to a fluororubber molded material used as a sliding material.
JP16397180A 1980-11-20 1980-11-20 Surface treatment for rubber forming material Granted JPS5787346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16397180A JPS5787346A (en) 1980-11-20 1980-11-20 Surface treatment for rubber forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16397180A JPS5787346A (en) 1980-11-20 1980-11-20 Surface treatment for rubber forming material

Publications (2)

Publication Number Publication Date
JPS5787346A JPS5787346A (en) 1982-05-31
JPH0124811B2 true JPH0124811B2 (en) 1989-05-15

Family

ID=15784290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16397180A Granted JPS5787346A (en) 1980-11-20 1980-11-20 Surface treatment for rubber forming material

Country Status (1)

Country Link
JP (1) JPS5787346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054442U (en) * 1991-06-28 1993-01-22 ダイヤモンド電機株式会社 Booster transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135960A (en) * 1978-04-12 1979-10-22 Sekisui Chem Co Ltd Excellent gum packing in deterioration of anti-microbe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135960A (en) * 1978-04-12 1979-10-22 Sekisui Chem Co Ltd Excellent gum packing in deterioration of anti-microbe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054442U (en) * 1991-06-28 1993-01-22 ダイヤモンド電機株式会社 Booster transformer

Also Published As

Publication number Publication date
JPS5787346A (en) 1982-05-31

Similar Documents

Publication Publication Date Title
US4491653A (en) Controlled surface-fluorination process
EP0596008B1 (en) Fluorination of articles molded from elastomers
DK148061B (en) THERMOUS MASSES BASED ON FLUORABLE COPOLYMERS
ES475963A1 (en) Vulcanizable compositions based on copolymers of vinylidene fluoride and containing vulcanization accelerators which are aminophosphinic compounds
WO1996000761A1 (en) Elastomer seal
AU562490B2 (en) Fluorination of plastic articles
JPH0124811B2 (en)
US5274049A (en) Fluorination of articles molded from elastomers
US4131726A (en) Perfluoroelastomers from hydrofluoroelastomers
JPH0124810B2 (en)
JP2001348462A (en) Plasma resistant rubber composition and rubber material for plasma processing apparatus
JPS5819464B2 (en) Surface treatment method for molded rubber materials
KR100816224B1 (en) Method for Producing Regenerated Fluororesin and Regenerated Fluororesin Article
JPS5838452B2 (en) Surface treatment method for molded rubber materials
JP4299585B2 (en) Rubber composition and use thereof
US3190941A (en) Ozone-resistant rubber
JPS5838315B2 (en) Surface treatment method for molded rubber materials
JP2001114964A (en) Plasma-resistant fluororubber composition
JPS5527075A (en) Oxidizing catalyst used with oxidant in solution to be treated
JPS6050212B2 (en) Rubber packing with excellent microbial deterioration resistance
JPS5931458B2 (en) sliding material
JP2002167459A (en) Rubber foam
JPS56126146A (en) Surface-treatment for molding rubber material
JPS61266439A (en) Production of molding based on thermoplastic fluororubber elastomer
JPH01292095A (en) Method for stabilizing fluorine-containing oil