JPH0124778B2 - - Google Patents

Info

Publication number
JPH0124778B2
JPH0124778B2 JP57013781A JP1378182A JPH0124778B2 JP H0124778 B2 JPH0124778 B2 JP H0124778B2 JP 57013781 A JP57013781 A JP 57013781A JP 1378182 A JP1378182 A JP 1378182A JP H0124778 B2 JPH0124778 B2 JP H0124778B2
Authority
JP
Japan
Prior art keywords
acid
catalyst
bisamide
formaldehyde
acid amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57013781A
Other languages
Japanese (ja)
Other versions
JPS58131949A (en
Inventor
Takeshi Suzuki
Zenzo Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP57013781A priority Critical patent/JPS58131949A/en
Publication of JPS58131949A publication Critical patent/JPS58131949A/en
Publication of JPH0124778B2 publication Critical patent/JPH0124778B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、メチレンビスカルボン酸アミドを製
造する方法に関するものである。 メチレンビスカルボン酸アミド(以下単にビス
アミドと記す)は、高分子材料の改質のための添
加剤として用いられている。 一般にビスアミドはカルボン酸アミドとホルム
アルデヒドを酸性触媒の存在下で加熱反応させる
ことにより得られるが、その製造に関しては、カ
ルボン酸アミドとパラホルムアルデヒドを無触媒
下に160〜170℃の温度に保持する方法(米国特許
第2393202号)や、カルボン酸アミドとホルマリ
ンを硫酸、塩酸のような液体状の酸を触媒として
100℃以下の温度に保持する方法(例えば油化学、
15巻、325頁、1966年)、あるいはカルボン酸アミ
ドとホルムアルデヒドをアリルスルホン酸の如
き、反応系で液状となる触媒の存在下に140〜150
℃の温度に保持する方法(米国特許第2493068号)
が知られている。 しかし前記米国特許記載のような160〜170℃の
温度でカルボン酸アミドとパラホルムアルデヒド
を反応させる方法に於いては、無触媒下では純度
80%以上のビスアミドを得ることは困難であり、
またアリルスルホン酸の如き、反応系で液状とな
る酸触媒の存在下、140〜150℃の温度に保持する
方法に於いては副反応が同時に進行するため純度
80%以上のビスアミドを得ることはやはり困難で
ある。 一方、油化学15巻記載のようなカルボン酸アミ
ドとホルマリンとを液体状の鉱酸類を触媒として
100℃以下の温度に保持する方法では、反応温度
が低いため副反応の進行は抑制され純度の高いビ
スアミドを得ることが出来るが、液体状の触媒の
除去が困難なため好ましい品質のビスアミドが得
られないという問題があり必らずしも満足できる
方法ではなかつた。 本発明者らは上記の如き問題を解決するため研
究を重ねた結果、本発明を完成した。 即ち、本発明はカルボン酸アミドとホルムアル
デヒドを反応させるにあたり酸性白土、活性白
土、シリカアルミナ、シリカマグネシア、アルミ
ナ及びアルミナボリアから選ばれた固体酸触媒を
用いることを特徴とするビスアミドの製造方法で
ある。 本発明におけるカルボン酸としては、酢酸、酪
酸、カプロン酸、ラウリン酸、ステアリン酸、ベ
ヘン酸、モンタン酸、アクリル酸、カプロレイン
酸、パルミトレイン酸、オレイン酸、エルカ酸等
の飽和又は不飽和脂肪族カルボン酸又は安息香
酸、パラトルイル酸、メタトルイル酸、ナフトエ
酸、メチルナフトエ酸等の芳香族カルボン酸を挙
げることが出来る。又、これらのカルボン酸は脂
肪族の場合は直鎖状でも分岐鎖状でもよく、主鎖
内に脂環、芳香環、ヘテロ環を有していたり、ヒ
ドロキシ基等の管能基を有していてもよい。 本発明において使用するホルムアルデヒドとし
ては、ホルマリン、パラホルムアルデヒドのよう
に通常工業的に利用されているものの他に、トリ
オキサン、ポリメチレングリコール等のホルムア
ルデヒド低重合体、あるいはメチル化ホルマリ
ン、ブチル化ホルマリン等のヘミホルマール類を
挙げることが出来る。 これらのもののホルムアルデヒド純度あるいは
濃度は何であつてもよいが、より高濃度のものが
経済的に望ましい。 パラホルムアルデヒドのようなホルムアルデヒ
ド低重合体は本発明の方法に於いては、触媒の作
用により分解し、ホルムアルデヒド単量体として
反応に関与すると考えられる。 カルボン酸アミドに対するホルムアルデヒドの
モル比は、ホルムアルデヒド単量体として0.5〜
1であり、好ましくは0.5〜0.75である。モル比
が0.5以下では目的とするビスアミドの収率が低
く、生成物中に未反応アミドが多く含まれること
となり、又、モル比が0.75以上では過剰のホルム
アルデヒドに起因する副反応が生じ、生成物の純
度が低下する。 本発明に於いて用いられる固体酸触媒として
は、酸性白土、活性白土、シリカアルミナ、シリ
カマグネシア、アルミナ及びアルミナポリアを挙
げることが出来、これらのものは単独で又は二種
類以上を組み合わせて使用してもよい。 固体酸の添加量としてはカルボン酸アミドの
100重量部に対して0.1〜10重量部であり、好まし
くは0.5〜5重量部である。本発明に於ける固体
酸触媒の使用方法としては、粉末状で反応槽に導
入しても良く、又粒状のものを反応塔に充填して
使用しても良いが、触媒活性は固体酸粒子の外表
面積により左右されるので、粉末状で使用する方
が効果的であり、好ましくは100メツシユ以下の
粉末がよい。 反応後の固体酸触媒の除去に際しては、フイル
タープレス、スパークラーフイルター、フンダフ
イルター等による過操作あるいは遠心分離機、
スーパーデカンター等による分離操作などを採用
することが出来る。 本発明の方法に於ける反応温度は原料とするカ
ルボン酸アミドとホルムアルデヒドの種類によつ
て異なるが、50〜200℃であり、好ましくは100〜
180℃の範囲である。 200℃以上では副反応や、目的とするビスアミ
ドの熱分解反応が著しくなり収率が低下する他、
着色が著しく進行し品質のよいビスアミドが得ら
れない。 又、本発明の方法を実施するにあたり、必要で
あれば、溶媒を用いることが出来る。原料である
カルボン酸アミド又は生成物であるビスアミドを
溶解させるため、溶媒としては例えば、メチルア
ルコール、エチルアルコール、ブチルアルコール
等のアルコール類、ベンゼン、トルエン、キシレ
ン等の芳香族類及びジクロルエタン、クロロホル
ム等のハロゲン化物等を挙げることが出来る。 これらの溶媒は、反応させる過程あるいは触媒
除去の過程で使用しても良い。 本発明の方法を実施するにあたり、好ましい態
様としては、N2ガス等の不活性ガスを流通させ
たり、あるいは反応系を減圧状態に保持すること
を挙げることが出来るが、これらの操作によつ
て、反応により生成する水を系外に導き、反応の
完成を促進させることに効果がある。又、これら
の操作によつて、ホルムアルデヒド中に含まれる
メタノール等の低沸点成分あるいは反応後の過剰
のホルムアルデヒドを除去が出来、あわせて、生
成物の着色の進行を防止するなどより好ましい品
質の生成物を得るために効果的である。 本発明の方法により、極めて簡単な操作で、純
度の高いビスアミドを容易に製造出来るが、特筆
すべき効果は、従来の液体状の酸触媒を用いる方
法に比べて、酸価が低く、着色の少ないビスアミ
ドが得られることである。 又、従来、パルミトレイン酸、オレイン酸、エ
ルカ酸のような不飽和脂肪酸のアミドを原料とし
てビスアミドを製造することは容易でなかつた
が、本発明の方法により、品質のよいいビスアミ
ドが、好収率で得られるようになつた。 次に実施例及び比較例により本発明を説明する
が、本発明は以下の実施例に限定されるものでは
ない。 実施例 1 撹拌機及び温度計を備えた300ml三ツ口フラス
コにラウリン酸アミド99.7g(0.5モル)を仕込
み、シリコン油浴により外部から加熱し、140℃
に到達した後、ホルムアルデヒド換算で80.8%の
パラホルムアルデヒド9.75g(0.263モル)を加
えた。ついで酸性白土199gを徐々に添加し、撹
拌しながら加熱を続けた。約10分後に165℃に到
達したので、そのまま165℃で15分間保持した。 その後生成物を165℃で5分間、20mmHgの減圧
下に保持したのち保温されたヌツチエを用いて触
媒を熱時別し、ビスアミド93.4gを得た。 室温に冷却することにより固形物となつたビス
アミドを粉砕した後、日本油化学協会編基準油脂
分析法2−3−4号により融点を測定したところ
145.4℃であつた。又同2−4−1号、同2−3
−1号により酸価及び色相を測定したところ、そ
れぞれ0.8、ガードナー2であつた。 さらにInd.Eng.Chem.、Anal.Ed.、12巻332頁
記載のリン酸分解後発生するホルムアルデヒドを
水蒸気蒸留により補集しヨード滴定を行なう方法
により生成物中のメチレン基含量を測定したとこ
ろ、ホルムアルデヒドとして7.19%であり理論値
7.30%に対する純度は98.5%であつた。 以上の結果をまとめて第一表に示すが、比較例
と比べて極めて酸価が低く、高純度であり、色相
も良好なものであつた。 実施例 2 撹拌機及び温度計を備えた300ml三ツ口フラス
コに約70%のステアリン酸と約30%のパルミチン
酸で構成される牛脂ステアリン酸アミド137.0g
(0.5モル)を仕込み、実施例1と同様に140℃ま
で加熱したのち、ホルムアルデヒド換算で46.5%
のメチル化ホルマリン21.0g(0.325モル)を
徐々に滴下した。ついで活性白土2.74grを徐々に
添加し、撹拌しながら加熱を続けた。約10分後
165℃に到達し、そのまま165℃で15分間保持し
た。 その後、生成物を実施例1と同様の処理によ
り、触媒を除去してビスアミド134.6gを得た。 そして実施例1と同様にビスアミドの融点、酸
価、色相及び純度を分析した。 分析結果を第一表に示す。 実施例 3 実施例1と同様にして約85%のベヘン酸を含む
ベヘン酸アミド102g(0.3モル)を140℃に加熱
し、ホルムアルデヒド換算で80.8%のパラホルム
アルデヒド5.85g(0.158モル)を加えたのち、
約87%のSiO2と約13%のAl2O3で構成されるシリ
カアルミナを触媒として2.04gを添加し、165℃
で15分間保持した。 その後生成物を実施例1と同様に処理し、触媒
を除去してビスアミド101.5gを得た。 そして実施例1と同様にビスアミドの融点、酸
価、色相及び純度を分析した。その分析結果を第
一表に示す。 実施例 4 実施例1と同様に約87%のエルカ酸を含むエル
カ酸アミド99.8g(0.3モル)を140℃に加熱し、
ホルムアルデヒド換算で80.8%のパラホルムアル
デヒド5.85(0.158モル)を加えたのち、活性白土
2.99gを触媒として加え、160℃で20分間保持し、
反応させた。 その後反応生成物を160℃のまま5分間、20mm
Hgの減圧下に保持したのち保温されたヌツチエ
を用いて触媒を熱時別し、ビスアミド97.4gを
得た。 実施例1と同様にビスアミドの融点、酸価、色
相及び純度を分析した。その分析結果を第一表に
示す。 実施例 5 実施例4と同様に約70%のオレイン酸を含むオ
レイン酸アミド135.1g(0.5モル)とホルムアル
デヒド換算で80.8%のパラホルムアルデヒド97.5
g(0.263モル)を実施例3と同様のシリカアル
ミナ2.70gの存在下に加熱反応させた。実施例4
と同様の処理によりビスアミド136.2gを得た。
ビスアミドの分析結果を第一表に示す。 実施例 6 実施例1と同様の反応装置に酢酸アミド118g
(2モル)を仕込みシリコン油浴により外部から
加熱し、100℃に到達した後、ホルムアルデヒド
換算で80.8%のパラホルムアルデヒド40.8g(1.1
モル)を加えた。ついで活性白土3.54gを徐々に
添加し、撹拌しながら加熱を続けた。加熱する際
昇華する酢酸アミドを反応液中にかき落しながら
約20分経過した後、165℃に到達したのでそのま
ま5分間保持した。 その後、液状の反応物を反応器より取り出し、
室温に冷却することにより固形物とし、粉砕し
た。粉状の生成物を500gのメタノール中に投入
し、約50℃に加温しながら触媒を別した後、メ
タノール溶液を−5℃に冷却し、析出した結晶を
別し、乾燥し、ビスアミド80.7gを得た。 他の実施例と同様の分析結果を第一表に示す
が、このものは165℃の反応温度では液状で存在
していたのにかかわらず、186.2℃の融点を有し
ていた。 実施例 7 実施例1と同様の反応装置にp−トルイル酸ア
ミド94.5g(0.7モル)を仕込み、シリコン油浴
により外部から加熱し、p−トルイル酸アミドが
完全に融解した時160℃に到達していたので、
14.3g(0.385モル)のパラホルムアルデヒドを
極めて徐々に添加した。その後、内容物が165℃
に上昇してから、触媒として活性白土1.89gを
徐々に加え165℃で約15分間保持した。実施例6
と同様に、液状の反応物を固形物とし粉砕した
後、600gのベンゼン、エタノール混合溶媒(混
合比1:1)に溶解し、触媒を別除去し、つい
で溶液を−5℃に冷却し晶出した結晶を別、乾
燥してビスアミド78.8gを得た。 このものの分析結果を第一表に示す。 実施例 8 実施例2と同様にしてメチル化ホルマリン21.0
gの代わりに37%ホルマリン26.4g(0.325モル)
を用いた。ホルマリン中の水分の蒸発が少なくな
つたのち、活性白土2.74grを添加し、以下実施例
2と同様に処理しビスアミド133.9gを得た。 このものの分析結課を第一表に示す。 比較例 実施例1と同一の条件で、触媒として酸性白土
を用いる代りに70%硫酸1.37gを用いて反応を行
なつた。反応生成物を165℃で5分間、20mmHgの
減圧下に保持したのち冷却固化し、更にこれを粉
砕し80℃の温水2中に投入、撹拌することによ
り洗浄を行なつた。洗浄後の固形物は別し、更
に同様の洗浄操作を2回繰り返したのち、固形物
を120℃で乾燥し、粉末状のビスアミド88.2gを
得た。 分析結果を第一表に示すが、酸価が極めて高い
上に、純度も低く、融点が低いうえにビスアミド
の色調は褐色を呈していた。
The present invention relates to a method for producing methylene biscarboxylic acid amide. Methylene biscarboxylic acid amide (hereinafter simply referred to as bisamide) is used as an additive for modifying polymeric materials. Generally, bisamides are obtained by heating and reacting carboxylic acid amide and formaldehyde in the presence of an acidic catalyst, but for its production, there is a method in which the carboxylic acid amide and paraformaldehyde are maintained at a temperature of 160 to 170°C without a catalyst. (U.S. Patent No. 2393202), carboxylic acid amide and formalin using liquid acids such as sulfuric acid and hydrochloric acid as catalysts.
Methods of maintaining the temperature below 100℃ (e.g. oil chemistry,
(Vol. 15, p. 325, 1966), or reacting a carboxylic acid amide and formaldehyde at 140 to 150% in the presence of a catalyst that becomes liquid in the reaction system, such as allyl sulfonic acid.
Method for maintaining temperature at °C (US Patent No. 2,493,068)
It has been known. However, in the method described in the above-mentioned US patent, in which carboxylic acid amide and paraformaldehyde are reacted at a temperature of 160 to 170°C, purity can be reduced in the absence of a catalyst.
It is difficult to obtain more than 80% bisamide,
In addition, in the method of maintaining the temperature at 140 to 150°C in the presence of an acid catalyst that becomes liquid in the reaction system, such as allyl sulfonic acid, side reactions proceed simultaneously, resulting in purity.
It is still difficult to obtain more than 80% bisamide. On the other hand, as described in Oil Chemistry Volume 15, carboxylic acid amide and formalin are mixed using liquid mineral acids as a catalyst.
In the method of maintaining the temperature at 100℃ or less, the progress of side reactions is suppressed due to the low reaction temperature, and it is possible to obtain bisamide with high purity, but it is difficult to remove the liquid catalyst, so bisamide of desirable quality cannot be obtained. However, this method was not always satisfactory because of the problem of not being able to do so. The present inventors have completed the present invention as a result of repeated research to solve the above problems. That is, the present invention is a method for producing bisamide, which is characterized in that a solid acid catalyst selected from acid clay, activated clay, silica alumina, silica magnesia, alumina, and alumina boria is used in the reaction of carboxylic acid amide and formaldehyde. . Carboxylic acids in the present invention include saturated or unsaturated aliphatic carboxylic acids such as acetic acid, butyric acid, caproic acid, lauric acid, stearic acid, behenic acid, montanic acid, acrylic acid, caproleic acid, palmitoleic acid, oleic acid, and erucic acid. Mention may be made of acids or aromatic carboxylic acids such as benzoic acid, p-toluic acid, metatoluic acid, naphthoic acid, methylnaphthoic acid. In addition, if these carboxylic acids are aliphatic, they may be linear or branched, and may have an alicyclic, aromatic, or heterocyclic ring in the main chain, or may have a functional group such as a hydroxyl group. You can leave it there. The formaldehyde used in the present invention includes formaldehyde that is usually used industrially such as formalin and paraformaldehyde, as well as formaldehyde low polymers such as trioxane and polymethylene glycol, and methylated formalin and butylated formalin. Examples include hemiformals. The formaldehyde purity or concentration of these substances may be any, but higher concentrations are economically desirable. In the method of the present invention, formaldehyde low polymers such as paraformaldehyde are considered to be decomposed by the action of the catalyst and participate in the reaction as formaldehyde monomers. The molar ratio of formaldehyde to carboxylic acid amide is from 0.5 to formaldehyde monomer.
1, preferably 0.5 to 0.75. If the molar ratio is less than 0.5, the yield of the desired bisamide will be low and the product will contain a large amount of unreacted amide, and if the molar ratio is more than 0.75, side reactions due to excess formaldehyde will occur, resulting in a reduction in the production The purity of the product decreases. Examples of the solid acid catalyst used in the present invention include acid clay, activated clay, silica alumina, silica magnesia, alumina, and alumina poria, and these catalysts may be used alone or in combination of two or more. It's okay. The amount of solid acid added is carboxylic acid amide.
The amount is 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, per 100 parts by weight. In the present invention, the solid acid catalyst may be introduced into the reaction tank in the form of a powder, or may be packed in the reaction tower in the form of granules, but the catalytic activity depends on the solid acid particles. Since it depends on the outer surface area of the powder, it is more effective to use it in powder form, and powder with a size of 100 mesh or less is preferable. When removing the solid acid catalyst after the reaction, over-operation using a filter press, sparkler filter, funda filter, etc. or a centrifuge,
Separation operation using a super decanter etc. can be adopted. The reaction temperature in the method of the present invention varies depending on the type of carboxylic acid amide and formaldehyde used as raw materials, but is 50 to 200°C, preferably 100 to 200°C.
It is in the range of 180℃. At temperatures above 200°C, side reactions and thermal decomposition reactions of the target bisamide become significant, resulting in lower yields.
Coloration progresses significantly and high quality bisamide cannot be obtained. Further, in carrying out the method of the present invention, a solvent can be used if necessary. In order to dissolve the raw material carboxylic acid amide or the product bisamide, examples of solvents include alcohols such as methyl alcohol, ethyl alcohol, and butyl alcohol, aromatics such as benzene, toluene, and xylene, and dichloroethane and chloroform. Examples include halides and the like. These solvents may be used in the reaction process or catalyst removal process. In carrying out the method of the present invention, preferred embodiments include passing an inert gas such as N 2 gas or maintaining the reaction system under reduced pressure. , is effective in guiding the water produced by the reaction out of the system and promoting the completion of the reaction. In addition, these operations can remove low-boiling components such as methanol contained in formaldehyde or excess formaldehyde after the reaction, and at the same time, prevent the progress of coloring of the product, resulting in a more desirable quality product. Effective for getting things. By the method of the present invention, highly pure bisamide can be easily produced with extremely simple operations, but the notable effects are that the acid value is lower than that of the conventional method using a liquid acid catalyst, and there is no coloration. The advantage is that less bisamide is obtained. Furthermore, in the past, it was not easy to produce bisamides from amides of unsaturated fatty acids such as palmitoleic acid, oleic acid, and erucic acid, but the method of the present invention makes it possible to produce high-quality bisamides with good yield. Now you can get it at a higher rate. Next, the present invention will be explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. Example 1 99.7 g (0.5 mol) of lauric acid amide was placed in a 300 ml three-necked flask equipped with a stirrer and a thermometer, heated externally using a silicone oil bath, and heated to 140°C.
After reaching 9.75 g (0.263 mol) of 80.8% paraformaldehyde in terms of formaldehyde. Next, 199 g of acid clay was gradually added, and heating was continued while stirring. The temperature reached 165°C after about 10 minutes, so the temperature was kept at 165°C for 15 minutes. Thereafter, the product was held at 165° C. for 5 minutes under a reduced pressure of 20 mmHg, and the catalyst was separated hot using a heat-retained nuttie to obtain 93.4 g of bisamide. After pulverizing the bisamide, which became a solid by cooling to room temperature, the melting point was measured using Standard Oil and Fat Analysis Method No. 2-3-4 edited by Japan Oil Chemists' Association.
It was 145.4℃. Also, 2-4-1, 2-3
When the acid value and hue were measured using No.-1, they were 0.8 and Gardner 2, respectively. Furthermore, the methylene group content in the product was measured by the method described in Ind.Eng.Chem., Anal.Ed., Vol. 12, p. 332, in which formaldehyde generated after decomposition of phosphoric acid was collected by steam distillation and iodometric titration was performed. , the theoretical value is 7.19% as formaldehyde
The purity was 98.5% compared to 7.30%. The above results are summarized in Table 1. Compared to the comparative example, the acid value was extremely low, the purity was high, and the color was good. Example 2 137.0 g of beef tallow stearamide consisting of about 70% stearic acid and about 30% palmitic acid in a 300 ml three-necked flask equipped with a stirrer and a thermometer.
(0.5 mol) and heated to 140℃ in the same manner as in Example 1.
21.0 g (0.325 mol) of methylated formalin was gradually added dropwise. Next, 2.74g of activated clay was gradually added, and heating was continued with stirring. After about 10 minutes
The temperature reached 165°C and was kept at 165°C for 15 minutes. Thereafter, the product was treated in the same manner as in Example 1 to remove the catalyst and obtain 134.6 g of bisamide. Then, in the same manner as in Example 1, the melting point, acid value, hue, and purity of the bisamide were analyzed. The analysis results are shown in Table 1. Example 3 In the same manner as in Example 1, 102 g (0.3 mol) of behenic acid amide containing about 85% behenic acid was heated to 140°C, and 5.85 g (0.158 mol) of paraformaldehyde, which is 80.8% in terms of formaldehyde, was added. after,
2.04g of silica alumina, which is composed of about 87% SiO 2 and about 13% Al 2 O 3, was added as a catalyst and heated to 165℃.
was held for 15 minutes. The product was then treated as in Example 1 to remove the catalyst, yielding 101.5 g of bisamide. Then, in the same manner as in Example 1, the melting point, acid value, hue, and purity of the bisamide were analyzed. The analysis results are shown in Table 1. Example 4 As in Example 1, 99.8 g (0.3 mol) of erucic acid amide containing about 87% erucic acid was heated to 140°C,
After adding 5.85 (0.158 mol) of paraformaldehyde (80.8% in terms of formaldehyde), activated clay
Add 2.99g as a catalyst, hold at 160℃ for 20 minutes,
Made it react. After that, the reaction product was kept at 160℃ for 5 minutes, and
After maintaining the mixture under a reduced pressure of Hg, the catalyst was separated hot using a Nutssie, which had been kept warm, to obtain 97.4 g of bisamide. The melting point, acid value, hue, and purity of the bisamide were analyzed in the same manner as in Example 1. The analysis results are shown in Table 1. Example 5 As in Example 4, 135.1 g (0.5 mol) of oleic acid amide containing approximately 70% oleic acid and 97.5 g (0.5 mol) of paraformaldehyde, which is 80.8% in terms of formaldehyde.
g (0.263 mol) was reacted by heating in the presence of 2.70 g of silica alumina similar to Example 3. Example 4
By the same treatment as above, 136.2 g of bisamide was obtained.
The analysis results of bisamide are shown in Table 1. Example 6 118 g of acetate amide was placed in the same reactor as in Example 1.
(2 mol) was heated externally in a silicone oil bath, and after reaching 100℃, 40.8 g (1.1
mol) was added. Then, 3.54 g of activated clay was gradually added, and heating was continued with stirring. After about 20 minutes while scraping off acetate amide, which sublimes during heating, into the reaction solution, the temperature reached 165°C and was maintained at that temperature for 5 minutes. After that, the liquid reactant is removed from the reactor,
It was solidified by cooling to room temperature and ground. The powdered product was poured into 500 g of methanol, and the catalyst was separated while heating to about 50°C. The methanol solution was cooled to -5°C, the precipitated crystals were separated and dried, and bisamide 80.7 I got g. Analytical results similar to those of other examples are shown in Table 1, and although this product existed in liquid form at the reaction temperature of 165°C, it had a melting point of 186.2°C. Example 7 94.5 g (0.7 mol) of p-toluic acid amide was charged into the same reactor as in Example 1 and heated from the outside using a silicone oil bath, and the temperature reached 160°C when the p-toluic acid amide was completely melted. Because I was doing
14.3 g (0.385 mol) of paraformaldehyde was added very slowly. After that, the contents are heated to 165℃.
After the temperature reached 165°C, 1.89g of activated clay was gradually added as a catalyst and the temperature was maintained at 165°C for about 15 minutes. Example 6
In the same manner as above, the liquid reactant was pulverized as a solid, then dissolved in 600 g of a mixed solvent of benzene and ethanol (mixing ratio 1:1), the catalyst was separately removed, and the solution was then cooled to -5°C to form crystals. The resulting crystals were separated and dried to obtain 78.8 g of bisamide. The analysis results of this product are shown in Table 1. Example 8 Methylated formalin 21.0 in the same manner as in Example 2
26.4 g (0.325 mol) of 37% formalin instead of g
was used. After evaporation of water in formalin decreased, 2.74g of activated clay was added and treated in the same manner as in Example 2 to obtain 133.9g of bisamide. The conclusion of this analysis is shown in Table 1. Comparative Example A reaction was carried out under the same conditions as in Example 1, using 1.37 g of 70% sulfuric acid instead of using acid clay as a catalyst. The reaction product was maintained at 165° C. for 5 minutes under a reduced pressure of 20 mmHg, cooled and solidified, and then ground and washed by pouring into hot water 2 at 80° C. and stirring. The solid matter after washing was separated, and the same washing operation was repeated twice, and then the solid matter was dried at 120°C to obtain 88.2 g of powdered bisamide. The analysis results are shown in Table 1, and the acid value was extremely high, the purity was low, the melting point was low, and the color of the bisamide was brown.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 カルボン酸アミドとホルムアルデヒドを反応
させるにあたり、固体酸触媒を用いることを特徴
とするメチレンビスカルボン酸アミドの製造法。 2 特許請求の範囲第1項記載のメチレンビスカ
ルボン酸アミドの製造法において、固体酸触媒が
酸性白土、活性白土、シリカアルミナ、シリカマ
グネシア、アルミナ及びアルミナボリアから選ば
れた触媒である方法。
[Scope of Claims] 1. A method for producing methylene biscarboxylic acid amide, which comprises using a solid acid catalyst in reacting the carboxylic acid amide and formaldehyde. 2. The method for producing methylene biscarboxylic acid amide according to claim 1, wherein the solid acid catalyst is a catalyst selected from acid clay, activated clay, silica alumina, silica magnesia, alumina, and alumina boria.
JP57013781A 1982-01-30 1982-01-30 Preparation of methylenebiscarboxylic acid amide Granted JPS58131949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57013781A JPS58131949A (en) 1982-01-30 1982-01-30 Preparation of methylenebiscarboxylic acid amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013781A JPS58131949A (en) 1982-01-30 1982-01-30 Preparation of methylenebiscarboxylic acid amide

Publications (2)

Publication Number Publication Date
JPS58131949A JPS58131949A (en) 1983-08-06
JPH0124778B2 true JPH0124778B2 (en) 1989-05-15

Family

ID=11842782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013781A Granted JPS58131949A (en) 1982-01-30 1982-01-30 Preparation of methylenebiscarboxylic acid amide

Country Status (1)

Country Link
JP (1) JPS58131949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977507A (en) * 2015-06-29 2015-10-14 广西大学 Lightning fault positioning detection apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635825B2 (en) * 2010-07-09 2014-12-03 日東電工株式会社 Methylene bis fatty acid amide composition, pressure-sensitive adhesive sheet and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977507A (en) * 2015-06-29 2015-10-14 广西大学 Lightning fault positioning detection apparatus

Also Published As

Publication number Publication date
JPS58131949A (en) 1983-08-06

Similar Documents

Publication Publication Date Title
KR101545031B1 (en) Method for producing ethylene glycol dimethacrylate
KR101522743B1 (en) Method for producing butanediol dimethacrylates
GB2123416A (en) Preparing haloalkyl arylalkanoate esters and arylalkanoic acids
JPH0124778B2 (en)
RU2259996C2 (en) New method for preparing $$$-(2,4-disulfophenyl)-n-tertiary-butyl nitrone and its pharmacologically acceptable salts
EP0346250B1 (en) Process for the hydroxylation of phenols and phenol ethers
CN108191704A (en) A kind of method for synthesizing acethydrazide
JPH01113341A (en) Production of methyl carboxylate
FR2618143A1 (en) PHENOL HYDROXYLATION PROCESS
JP3175334B2 (en) Method for producing N- (α-alkoxyethyl) -carboxylic acid amide
JPH01186844A (en) Production of 3-(4'-bromobiphenyl)-3-hydroxyl- 4-phenylbutyric ester
JPS6365656B2 (en)
US2799707A (en) Preparation of alpha-diketones
CN114957106B (en) Mobile phase automatic synthesis method of drug pirfenidone
JPH06506223A (en) Method for producing 2-alkyl-4-acyl-6-tert-butylphenol compound
JP2757050B2 (en) Method for producing 2-alkyl-4,5,6-trialkoxyphenol
SU595300A1 (en) Method of preparing cyanbenzoic acids
SU614091A1 (en) Method of obtaining acetopropyl alcohol acetate
JPH0615499B2 (en) Method for producing cinnamic acids
JPH072690B2 (en) Method for producing 3-methyl-4-nitrophenol
SU791734A1 (en) Method of preparing omega-chlorocarboxylic acids
SU600136A1 (en) Method of preparing methyl methacrylate
SU826714A1 (en) Method for preparing dibutyldibromotin
JPH03240753A (en) Production of methacrylic acid ester
SU1456429A1 (en) Method of producing 4-(5-nitro-1,3-dioxacyclohexyl-5)-benzophenone