JPH01246701A - Microwave discharge light source device - Google Patents

Microwave discharge light source device

Info

Publication number
JPH01246701A
JPH01246701A JP7504488A JP7504488A JPH01246701A JP H01246701 A JPH01246701 A JP H01246701A JP 7504488 A JP7504488 A JP 7504488A JP 7504488 A JP7504488 A JP 7504488A JP H01246701 A JPH01246701 A JP H01246701A
Authority
JP
Japan
Prior art keywords
tube
metal
discharge
microwave
discharge tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7504488A
Other languages
Japanese (ja)
Other versions
JP2570373B2 (en
Inventor
Masakazu Taki
正和 滝
Kenji Yoshizawa
憲治 吉沢
Tadashi Yanagi
正 柳
Junichi Nishimae
順一 西前
Yoshihiro Ueda
植田 至宏
Kenji Yoshikawa
健二 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7504488A priority Critical patent/JP2570373B2/en
Publication of JPH01246701A publication Critical patent/JPH01246701A/en
Application granted granted Critical
Publication of JP2570373B2 publication Critical patent/JP2570373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PURPOSE:To input a large electric power and to radiate the light efficiently by making a part of the tube wall of a discharge tube with a metal, and cooling the inner surface of the metal with a coolant. CONSTITUTION:A conical coaxial monowaveguide transducer 5 is provided in a waveguide 1. A metal pipe 8 is connected through couplings 7 and 6. A pipe 12 is inserted to the metal pipe 8, and a coolant is delivered and exhausted from the hole 14 of a lid 13. Since there is no microwave inside the coaxial monowaveguide 5 and the metal pipe 8, no influence is given to the electromagnetic field at a discharge tube 9 part even though a substance 15 to absorb microwave such as water is poured. Since the water is let flow to cool the metal pipe 8 and to cool the inside of the discharge tube 9 directly only through a thin glass coverage layer 81, they are cooled effectively, and the lowest cooling temperature can be controlled by the water temperature and the water flow amount. In this case, it is effective to make both the inner and the outer tubes of the discharge tube 9 with a dielectric, a metal coverage layer is attached to the surface of the inner tube, and the inside of the inner tube is cooled with a coolant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マイクロ波放電を利用した光源装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light source device that utilizes microwave discharge.

〔従来の技術〕[Conventional technology]

第12図は例えば実開昭61−161949号公報に示
された従来のマイクロ波放電光源装置を示す断面図であ
り、(1)はマイクロ波を伝送する導波管、(2)はマ
イクロ波を発生するマグネトロン。
FIG. 12 is a sectional view showing a conventional microwave discharge light source device disclosed in, for example, Japanese Utility Model Application Publication No. 61-161949, where (1) is a waveguide for transmitting microwaves, and (2) is a microwave discharge light source device. A magnetron that generates.

(3)はマグネトロン(2)で発生されたマイクロ波を
導波管f1+に結合させるアンテナ、(4)はマグネト
ロン(2)の電源、  (55) は導波管(りに挿通
支持された中空の導体よシなるアンテナ、  (56)
 はアンテナ(55)の他端部、  (9’Q) はア
ンテナの他端部(56)を被うように配置されな無電極
数1!管、  (101) /fi無電極放電管(90
)を囲むように設けられた金属性のマイクロ波空胴壁、
  (102)  はマイクロ波空胴壁の開口をふさぐ
金属メツシュである。
(3) is an antenna that couples the microwave generated by the magnetron (2) to the waveguide f1+, (4) is the power source for the magnetron (2), and (55) is a hollow hole inserted into and supported by the waveguide (2). An antenna that is better than a conductor, (56)
is the other end of the antenna (55), and (9'Q) is the number of non-electrodes arranged to cover the other end of the antenna (56), 1! tube, (101) /fi electrodeless discharge tube (90
) a metallic microwave cavity wall surrounding the
(102) is a metal mesh that closes the opening in the microwave cavity wall.

次にこの装置の動作について説明する。導波管(1)内
のマイクロ波はアンテナ(55)により他端部(56)
へと結合され、空胴壁(1(11)と金属メツシュ(1
02)とで構成されるマイクロ波空胴内にマイクロ波電
磁界を形成する。このマイクロ波11!、磁界により無
′f!を極数電管(90)内に封入された封入物質が放
電励起され発光する。この光は金属メツシュ(102)
からマイクロ波空胴外に放射される。−方、中空のアン
テナ(55)の内部を通じて無電極放電部(90)の内
側に矢印で示すように冷却風が送られ、無電極放電管(
90)を冷却する。
Next, the operation of this device will be explained. The microwave in the waveguide (1) is connected to the other end (56) by the antenna (55).
The cavity wall (1 (11)) and the metal mesh (1
02) to form a microwave electromagnetic field within the microwave cavity. This microwave 11! , no 'f! due to the magnetic field! The enclosed substance enclosed within the pole tube (90) is excited by discharge and emits light. This light is a metal mesh (102)
is radiated out of the microwave cavity. - On the other hand, cooling air is sent inside the electrodeless discharge section (90) through the hollow antenna (55) as shown by the arrow, and the electrodeless discharge tube (
90).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のマイクロ波放電光源装置は以上のように構成され
ているので、冷却風による冷却しか行なえず、冷却能力
は限られたものであった。冷却能力により放電管に投入
できる電力が決まるため。
Since the conventional microwave discharge light source device is configured as described above, it can only be cooled by cooling air, and its cooling capacity is limited. This is because the cooling capacity determines the power that can be input to the discharge tube.

あまり大きな電力を投入することができず0強力な光を
得ることは難しかった。特に、水銀の254nm 線や
、185nm 線の効率は放電管の最冷点温度によシ決
tシ最適値がある。効率を良くするためには、放電管の
湯度コントロールが重要であるが従来のマイクロ波放電
光源装置のように空冷でけ最適な温度コントロールは不
可能に近かった。
It was difficult to obtain strong light because it was not possible to input too much power. In particular, the efficiency of the 254 nm line and 185 nm line of mercury has an optimum value depending on the temperature of the coldest point of the discharge tube. In order to improve efficiency, it is important to control the temperature of the discharge tube, but as with conventional microwave discharge light source devices, which are air-cooled, optimal temperature control is nearly impossible.

この発明は上記のような問題点を解消するためになされ
たもので、大きな電力が投入できるとともに0発光効率
も良くできるマイクロ波放電光源装置を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and aims to provide a microwave discharge light source device that can input a large amount of power and also has good zero emission efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

第1の発明に係るマイクロ波放電光源装置は。 A microwave discharge light source device according to a first invention.

放?l!管の管壁の一部を金属で構成し、この金属の内
面に冷却液を流すようにした。
Free? l! A part of the tube wall is made of metal, and the cooling liquid is made to flow on the inner surface of this metal.

また第2の発明に係るマイクロ波放電光源装置は、放電
管を誘電体の内管上誘電体の外管とで形成し、内管の表
面に金属コーティング層を設けて内管の内側に冷却液を
流すようにした。
Further, in the microwave discharge light source device according to the second invention, the discharge tube is formed of a dielectric inner tube and a dielectric outer tube, and a metal coating layer is provided on the surface of the inner tube for cooling. I made the liquid flow.

さらに第3の発明に係るマイクロ波放電光源装置は、放
電管を誘電体の内管と誘電体の外管とで形成し、内管の
内側に低誘電損失の冷却液を流すようにした。
Furthermore, in the microwave discharge light source device according to the third aspect of the invention, the discharge tube is formed of a dielectric inner tube and a dielectric outer tube, and a coolant with low dielectric loss is made to flow inside the inner tube.

第1の発明においては、放電管々壁の一部を構成する金
属はマイクロ波を連節し、金属内部にマイクロ波11!
磁界を形成しないようにするとともに熱伝導良く、放電
管内部の熱を良好に取る。また金属部分が放電管の最冷
点上なシ、ランプ内部の蒸気圧をコントロールスル。
In the first invention, the metal constituting a part of the walls of the discharge tubes connects the microwave, and the microwave 11!
It prevents the formation of a magnetic field, has good heat conduction, and efficiently removes heat inside the discharge tube. Also, since the metal part is above the coldest point of the discharge tube, it controls the vapor pressure inside the lamp.

第2の発明においては、金属コーティング層がマイクロ
波を遮幣し、内管の内側の冷却液として水の使用を可能
とし、内管から放電管内部の熱を取シ、また内管部に最
冷点を形成する。
In the second invention, the metal coating layer blocks microwaves, enables the use of water as a cooling liquid inside the inner tube, removes the heat inside the discharge tube from the inner tube, and also transfers the heat to the inner tube section. Forms the coldest spot.

第3の発明においては、低誘電損失の液体はマイクロ波
をはとんど吸収せず、放電管部分の電界を低下させるこ
となく安定な放電を維持しつつ。
In the third invention, the liquid with low dielectric loss hardly absorbs microwaves and maintains stable discharge without reducing the electric field in the discharge tube portion.

ランプ内部の熱を良好に取シ、内管部に最冷点を形成す
る。
It effectively removes heat inside the lamp and forms the coldest point in the inner tube.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例を示す断面側面図であLf
ll〜【4)は従来装置と全く同一のものである。(5
)は導波管(1)内に設けられ、導波管fl)内のマイ
クロ波モードを同軸モードに変換する。円錐形の同軸−
導波管変換器、(6)は同軸−導波管変換器(5)に接
合された金属の継手(例えば商品名swagelok)
(7)は継手ナラ)i81けこの継手ナツト(7)で電
気的および隙間なく金属の継手ナツト(6)に接合され
たコバール等からなる金属管、(9)は金属管(8)と
これに接合された石英ガラス管等の外管(93)  、
:でできた放電管、01は金属メツシュ筒、 Qllは
この金属メツシュ筒を導波管(りに電気的に接合するフ
ランジ、 03は金属管(8)内に挿入され冷却液を送
シ込む冷却液送1IllI管、 0.1はこの冷却液送
w管に接合されたふたである。α4)はこのふた0、1
の一部に設けられ。
FIG. 1 is a cross-sectional side view showing one embodiment of the present invention.
ll to [4] are completely the same as the conventional device. (5
) is provided in the waveguide (1) and converts the microwave mode in the waveguide fl) into a coaxial mode. conical coaxial
The waveguide converter (6) is a metal fitting (e.g. Swagelok) bonded to the coaxial-to-waveguide converter (5).
(7) is a metal pipe made of Kovar etc. that is electrically and without gaps joined to a metal joint nut (6) with an i81 joint nut (7), (9) is a metal pipe (8) and this an outer tube such as a quartz glass tube (93),
01 is a metal mesh tube, Qll is a flange that electrically connects this metal mesh tube to a waveguide, and 03 is inserted into a metal tube (8) to pump cooling liquid. Coolant feed 1IllI pipe, 0.1 is the lid joined to this coolant feed w pipe.α4) is this lid 0, 1
provided in a part of

冷却液を排出するための冷却液排出口である。This is a coolant outlet for discharging coolant.

第2図は放電管の拡大断面図、第3図は第2図11線の
断面図で、  (si)  は金属管(6)の表面にコ
ーティングしたコバールガラス層、  (91) は段
つぎ部、  (92) //′iプラズマ媒体が封入さ
れている放電空間、azは冷却液送ti3管、ash冷
却液である。
Figure 2 is an enlarged sectional view of the discharge tube, and Figure 3 is a sectional view taken along line 11 in Figure 2, where (si) is the Kovar glass layer coated on the surface of the metal tube (6), and (91) is the stepped joint. , (92) //'i A discharge space in which a plasma medium is enclosed, az is a cooling liquid supply pipe TI3, and an ash cooling liquid.

次に動作について説明する。導波管(1)内のマイクロ
波は同情−導波管変換器(5)によシ同軸モードに変換
され、放1!管(9)に結合される。このマイクロ波に
より放電管(9)内部のプラズマ媒体が放電。
Next, the operation will be explained. The microwave in the waveguide (1) is converted into a coaxial mode by the sympathizer-to-waveguide converter (5) and emitted 1! It is coupled to the tube (9). This microwave discharges the plasma medium inside the discharge tube (9).

励起され発光する。It is excited and emits light.

この光は金属メツシュ筒01よシ外部に放射される。This light is radiated to the outside of the metal mesh tube 01.

マイクロ波モードは、放電管(9)内の放電が始まる前
は金属管(8)が内導体、金属メツシュ筒I11が外導
体の同軸モードになる。放電が始まった後は。
The microwave mode is in a coaxial mode in which the metal tube (8) is the inner conductor and the metal mesh tube I11 is the outer conductor before the discharge in the discharge tube (9) starts. After the discharge begins.

放電管(9)の部分では放電によるプラズマが、放電管
(9)より導波管側では金属管(8)が内導体で、金属
メツシュ筒01が外導一体の同軸モードになる。このよ
うな同軸モート°へは導波管fll内にある円錐形の同
軸−導波管変換器(5)によれば、導波管モードから非
常に効率良く変換される。この同軸−導波管変換器(5
)および金属管(8)の内側はマイクロ波が存在しない
ため、水のようにマイクロ波を吸収する物質を入れても
、放電管(9)部分のマイクロ波電磁界には何ら影響を
与えない。ここでは第1.2図の矢印で示すように水を
流している。水を冷却媒体として金属管r81を冷却し
、薄いガラスコーティング層(81)だけを介して直接
放電管(9)内部を冷却するため、冷却能力は従来の空
冷よシもはるかに大きい。したがって、放電管(9)よ
り増れる熱量は大きいものとなる。
In the part of the discharge tube (9), plasma due to discharge becomes a coaxial mode where the metal tube (8) is an inner conductor and the metal mesh tube 01 is an outer conductor on the waveguide side of the discharge tube (9). Such a coaxial moat can be very efficiently converted from the waveguide mode by a conical coaxial-to-waveguide converter (5) in the waveguide flll. This coaxial-waveguide converter (5
) and inside the metal tube (8), there are no microwaves, so even if a substance that absorbs microwaves, such as water, is inserted, it will have no effect on the microwave electromagnetic field in the discharge tube (9). . Here, water is flowing as shown by the arrow in Figure 1.2. Since the metal tube r81 is cooled using water as a cooling medium and the inside of the discharge tube (9) is directly cooled through only the thin glass coating layer (81), the cooling capacity is far greater than that of conventional air cooling. Therefore, the amount of heat increased from the discharge tube (9) is large.

又、放電管(9)内に水銀を封入し、水銀の254nm
 やf 85 nm 線を放射する。いわゆる低圧水銀
ランプの場合、水銀の蒸気圧により発光効率が大きく変
化する。水銀の蒸気圧は放電管内の最冷点温度により決
まる。254 nm 線は40℃程度の蒸気圧で、18
5nm 線は60℃程度の蒸気圧で効率が最大となるこ
とが知られている。放111管内の最冷点をこれらの湯
度にすれば効率が最大となる。
In addition, mercury is sealed in the discharge tube (9), and the 254 nm of mercury is
It emits f 85 nm radiation. In the case of so-called low-pressure mercury lamps, the luminous efficiency varies greatly depending on the vapor pressure of mercury. The vapor pressure of mercury is determined by the temperature of the coldest point within the discharge tube. The 254 nm line has a vapor pressure of about 40 degrees Celsius, and 18
It is known that the efficiency of the 5 nm line reaches its maximum at a vapor pressure of about 60°C. If the coldest point in the radiator 111 pipe is set to these hot water temperatures, efficiency will be maximized.

本発明の放電管(9)では金属管(8)が内側よシ水冷
されているため、金属管表面部分が巾冷点となり最冷点
温度を内側を流れる水の湯度、流量により制御できる。
In the discharge tube (9) of the present invention, since the metal tube (8) is water-cooled from the inside, the surface portion of the metal tube becomes the widest cold spot, and the temperature of the coldest spot can be controlled by the hot water temperature and flow rate of the water flowing inside. .

マイクロ波の電力を増加すると冷却が不十分となシ温度
it?+制御が困難となるが1本発明の場合、従来の空
冷のものと比べればはるかに大きいマイクロ波電力を投
入しても導度制御ができる。大きい電力を投入しても2
54 nm線や1asnm線の発光効率が低下しないた
め、よシ強度の高い254北線や185叱線の発光が得
られる。
If you increase the power of the microwave, will cooling become insufficient? + Control is difficult, but in the case of the present invention, conductivity can be controlled even if much larger microwave power is input compared to conventional air cooling. Even if a large amount of power is applied,
Since the luminous efficiency of the 54 nm line and the 1 asnm line does not decrease, it is possible to obtain highly intense 254 north line and 185 line light emission.

なお、上記実施例では放電管(9)の内部に金属管(8
)が挿入されたものを示したが、第4図に示すように、
金属管(8)は放電管(9)内部に挿入されず、放電管
(9)内面に一部が露程するだけでもよい。この場合も
、金属管(8)の内面を水冷しているため、冷却が良好
で、最冷点の制御も容易にでき第1図のものと同様の効
果を奏する。
In addition, in the above embodiment, a metal tube (8) is provided inside the discharge tube (9).
) has been inserted, but as shown in Figure 4,
The metal tube (8) may not be inserted into the discharge tube (9), but may only be partially exposed on the inner surface of the discharge tube (9). Also in this case, since the inner surface of the metal tube (8) is water-cooled, the cooling is good and the coldest point can be easily controlled, producing the same effect as that in FIG. 1.

さらに、第5図に示すように金属管(8)を放電管(9
)をつらぬ(ように設け、金属管(8)の中に冷却水を
流すようにしても良い。この場合は金属管(8)中を一
方向に冷却水が流れるため、冷却水の流速を速めること
が容易で、よシ冷却能力が高まる。
Furthermore, as shown in Fig. 5, the metal tube (8) is connected to the discharge tube (9).
) may be provided so that the cooling water flows through the metal pipe (8).In this case, the cooling water flows in one direction through the metal pipe (8), so the flow rate of the cooling water is It is easy to speed up the cooling process, and the cooling capacity is increased.

又、放電管の外部(93)が石英ガラス管で形成された
ものを示したが、サファイアや透光性アルミナのような
透光性の誘電体で形成してもよいのは言うまでもない。
Further, although the outside (93) of the discharge tube is shown as being made of a quartz glass tube, it goes without saying that it may be made of a transparent dielectric material such as sapphire or transparent alumina.

次に、第2の発明の一実施例を図について説明する。Next, an embodiment of the second invention will be described with reference to the drawings.

第6図において、  (93)、(94)は石英ガラス
等の誘電体で形成された外管及び内管、(94りけこの
内管(94)の内側に金属コーティング層(941)(
151)は内管(94)が挿入される同軸−導波管変換
器(5)に設けられた冷却液ダメである。
In FIG. 6, (93) and (94) are an outer tube and an inner tube formed of a dielectric material such as quartz glass, and a metal coating layer (941) is placed on the inside of the inner tube (94).
151) is a coolant tank provided in the coaxial-waveguide converter (5) into which the inner tube (94) is inserted.

第6図のA部拡大図を第1図に示す。(51)は端部で
内管(94)の外側まで伸びた金属コーティング層(9
4りと、同軸−導波管変換器(5)と電気的に接触させ
た冷却液を封止している0リングであるO 以上のように構成されたものにあっては、導波管(1)
中のマイクロ波は同軸−導波管変換器(5)により、金
属コーティング層(941)が内導体金属メツシュ筒f
11が外導体の同軸モードに変換され、放電管(9)の
放電空間(92)にマイクロ波電磁界を形成し、プラズ
マ媒体を放電・発光させる。金属コーティング層(94
1)の内側には冷却液0!9として水を流している。水
はマイクロ波を吸収する性質があるが、マイクロ波は金
属コーティング層(941)によシ連節され、同軸導波
管変換器(5)と金属コーティング層(941)は接触
子(51)によシミ気的にショート状態になっているた
め、水がマイクロ波にさらされることはない。したがっ
て、マイクロ波電磁界が水の影響を受けて弱められるこ
とがな(放電の安定維持にも影響しない。
An enlarged view of part A in FIG. 6 is shown in FIG. 1. (51) is a metal coating layer (9) extending to the outside of the inner tube (94) at the end.
4, and an O ring that seals the coolant that is in electrical contact with the coaxial-waveguide converter (5). (1)
The microwave inside is transmitted by the coaxial-waveguide converter (5), and the metal coating layer (941) is the inner conductor of the metal mesh tube f.
11 is converted into a coaxial mode of the outer conductor, and a microwave electromagnetic field is formed in the discharge space (92) of the discharge tube (9), causing the plasma medium to discharge and emit light. Metal coating layer (94
1) Water is flowing as a cooling liquid 0!9 inside. Water has the property of absorbing microwaves, and the microwaves are coupled to the metal coating layer (941), and the coaxial waveguide converter (5) and the metal coating layer (941) are connected to the contactor (51). The water is not exposed to the microwave because it is in a short-circuited state. Therefore, the microwave electromagnetic field is not weakened by the influence of water (it also does not affect the stability of the discharge).

又、第8図に示すように、内面を金属コーティングした
内管(94〕 が貫通した放電管(9)でもよい。
Alternatively, as shown in FIG. 8, a discharge tube (9) having an inner tube (94) whose inner surface is coated with metal may be passed through.

他端を終端部(122)に挿入し Q9ング(52)で
水を封止、接触子(図示しない)で終端部(122)に
電気的に接触している。金属メツシュ筒Qlは7ランジ
(11りによシ#!端部(122)に接合されている。
The other end is inserted into the terminal end (122), water is sealed with a Q9 ring (52), and electrically contacted with the terminal end (122) with a contact (not shown). The metal mesh tube Ql is joined to the end (122) by seven flange (11).

この構成のものにあっても、冷却液a!9としての水を
冷却液送入口(12りより冷却液送出管(123)に流
すことによシ第6図のものと同様の効果が得られる。
Even with this configuration, coolant a! The same effect as that shown in FIG. 6 can be obtained by flowing water 9 into the coolant delivery pipe (123) from the coolant inlet (12).

さらに、第9図に示すように内管(94)の外面に金属
コーティング層を設けてもよい。この場合も内管(94
)の内側に冷却液a9として水を流すことができ第6図
のものと同様の効果が得られる。
Furthermore, as shown in FIG. 9, a metal coating layer may be provided on the outer surface of the inner tube (94). In this case as well, the inner tube (94
) can flow water as a cooling liquid a9, and the same effect as that shown in FIG. 6 can be obtained.

次に、第3の発明の一実施例を図について説明する。Next, an embodiment of the third invention will be described with reference to the drawings.

@10図が放電管の拡大断面図で、内管(94)と外管
(93)とは誘電体0例えば石英ガラスで形成されてい
る。冷却液送tb ’r! [+3は金属管で形成され
ている。冷却液送出管から冷却液としてフッ素系不活性
液体(例えば3M社製商品名70リナート)のような低
誘電損失の液体a!9を流す。
Figure 10 is an enlarged sectional view of the discharge tube, and the inner tube (94) and outer tube (93) are made of a dielectric material such as quartz glass. Coolant feed tb'r! [+3 is made of metal tube. A low dielectric loss liquid such as a fluorine-based inert liquid (for example, 3M product name 70 Linate) is used as the coolant from the coolant delivery pipe. Play 9.

この実施例においても、同軸−導波管モード(5)によ
りマイクロ波は導波管モードから同軸モードに変換され
、冷却液送出管aaが内導体、金属メツシュ筒01が外
導体の同軸モ1ドになる。冷却液はマイクロ波にさらさ
れているが、低誘電損失であるから、マイクロ波をほと
んど吸収せず、放[管(9)内の電界を弱めることもな
い。このため、冷却液がない時と比較しても放電の安定
維持は同様に行なわれる。一方、冷却液により内管(9
4)の内側を直接冷却するため、冷却能力は従来の空冷
のものよシはるかに大きい。したがって、放電管(9)
よシ取れる熱fは大きいものとなる。
In this embodiment as well, the microwave is converted from the waveguide mode to the coaxial mode by the coaxial-waveguide mode (5), and the coaxial mode 1 has the coolant delivery pipe aa as the inner conductor and the metal mesh tube 01 as the outer conductor. It becomes de. Although the coolant is exposed to microwaves, since it has a low dielectric loss, it hardly absorbs the microwaves and does not weaken the electric field in the discharge tube (9). Therefore, the stable maintenance of discharge is performed in the same way as when there is no cooling liquid. On the other hand, the inner tube (9
4) Since the inside of the cooling system is directly cooled, the cooling capacity is much greater than that of conventional air cooling. Therefore, the discharge tube (9)
The heat f that can be removed is large.

又、内管(94)部分が放!管内の最冷点となシ。Also, the inner tube (94) part is released! The coldest point in the pipe.

最冷点温度を、内側を流れる冷却液の湯度、流量によ勺
ffy制御できる。さらに、このような構成のものにあ
っては、内管(94)と外管(93)を石英ガラスで形
成しているため、接合も容易で、接合部の温度が上昇し
ても熱膨張系数が同じであるから破損する恐れもない。
The temperature at the coldest point can be controlled by the temperature and flow rate of the coolant flowing inside. Furthermore, with this configuration, since the inner tube (94) and outer tube (93) are made of quartz glass, they can be easily joined and thermal expansion will not occur even if the temperature of the joint increases. Since the series numbers are the same, there is no risk of damage.

第11図は、第3発明の他の実施例を示す側面断面図で
ある。導波管(1)の先端をEコーナQυにし。
FIG. 11 is a side sectional view showing another embodiment of the third invention. Place the tip of the waveguide (1) at E corner Qυ.

給電板(ハ)にあけられた給電口のを通して金属メツシ
ュ筒(101)でできた円筒空胴(102)にマイクロ
波を給電する。金属メツシュ筒(101)はマイクロ波
に対し円筒モードを形成する寸法に形成している。放電
管(9)は外管(93)および内管(94)で形成され
、放電空間(92)にプラズマ媒体を封入する。外’1
(93)および内管(94)は石英ガラスで形成し、内
管(94)の内側には、低誘電損失の冷却液を流す。冷
却液はマイクロ波系の外部よシ流入させ、外部へ流出さ
せる冷却液a9.内管(94)は誘電体であるから、マ
イクロ波系の外部に伸びていても、金属のようにマイク
ロ波を導波することなく、外部へマイクロ波を漏洩させ
ない。
Microwaves are supplied to a cylindrical cavity (102) made of a metal mesh cylinder (101) through a power supply port made in the power supply plate (c). The metal mesh tube (101) is formed to have dimensions that form a cylindrical mode for microwaves. The discharge tube (9) is formed by an outer tube (93) and an inner tube (94) and encloses a plasma medium in a discharge space (92). outside'1
(93) and the inner tube (94) are made of quartz glass, and a coolant with low dielectric loss flows inside the inner tube (94). The cooling liquid is caused to flow in from the outside of the microwave system and to flow out to the outside.A9. Since the inner tube (94) is a dielectric material, even if it extends outside the microwave system, unlike metal, it does not guide microwaves and does not leak microwaves to the outside.

以上のように構成されたものにあっても、給電口のから
給電されたマイクロ波により、放電空間中のプラズマ媒
体が放電・発光し金属メツシュ筒(10りより外部に光
を放射する。又、内管(94)中の冷却液a!9によ〕
冷却され、第10図のものと同様の効果を奏する。
Even with the above configuration, the plasma medium in the discharge space discharges and emits light due to the microwaves supplied from the power supply port, and the light is emitted from the metal mesh tube (10) to the outside. , by the cooling liquid a!9 in the inner pipe (94)]
It is cooled and has the same effect as the one shown in FIG.

〔発明の効果〕〔Effect of the invention〕

マイクロ波により放電拳発光する放電管を備えたものに
おいて、放電管々壁の一部を金属で形成し、この金属の
内面を液体で冷却する。あるいは放電管を誘電体の内管
と、誘電体の外管とで形成し、内管の表面に金属コーテ
ィング層を設は内管の内側を液体で冷却する。さらにあ
るいは、放電管を誘電体の内管と、誘電体の外管とで形
成し。
In a device equipped with a discharge tube that emits discharge light using microwaves, a portion of the wall of each discharge tube is formed of metal, and the inner surface of this metal is cooled with liquid. Alternatively, the discharge tube is formed of a dielectric inner tube and a dielectric outer tube, a metal coating layer is provided on the surface of the inner tube, and the inside of the inner tube is cooled with a liquid. Alternatively, the discharge tube may be formed of a dielectric inner tube and a dielectric outer tube.

内管の内側を低誘電損失の液体で冷却するようにしたた
め、マイクロ波電力を大きくしても発光効率が低下せず
、光強度の大きいマイクロ波放電光源装置が得られる。
Since the inside of the inner tube is cooled with a liquid with low dielectric loss, the luminous efficiency does not decrease even when the microwave power is increased, and a microwave discharge light source device with high light intensity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、第1の発明の一実施例によるマイクロ波放電
光源装置を示す断面側面図、第2図は第1図の放電管部
の拡大断面図、第3図は第2図I−WIw!の断面図、
第4図は第1の発明の他の実施例を示す放mWの断面図
、第5図は第1の発明のさらに他の実施例によるマイク
ロ波放電光源装置を示す断面側面図、第6図は第2の発
明の一実施例によるマイクロ波放電光源装置を示す要部
断面側面図、第1図は第6図A部の拡大図、第8図は第
2の発明の他の実施例によるマイクロ波放電光源装置を
示す要部断面側面図、第9図は第2の発明のさらに他の
実施例によるマイクロ波放電光源装置を示す要部断面図
#第10図は第3の発明の一実施例による放電管の断面
側面図、第11図は第3の発明の他の実施例によるマイ
クロ波放電光源装置を示す断面側面図、第12図は従来
のマイクロ波放電光源装置を示す断面側面図である。 図において、(8)は金属管、(9)は放電管、 QS
は冷却液、  (93)  は外管、  (94)  
は内管、(94っけ金属コーティング層である。 なお1図中、同一符号は同一、又は相当部分を示す。 第1因 8 金属管 9:放電管 15:;會tp液 @3rXJ 第4図  9 第5図 !6clj 93°yF/!ll 94、内管 941  金属コーチイン′)肩 第 7 図 n lO口 Q 第11図
FIG. 1 is a cross-sectional side view showing a microwave discharge light source device according to an embodiment of the first invention, FIG. 2 is an enlarged cross-sectional view of the discharge tube section of FIG. 1, and FIG. 3 is a diagram of FIG. WIw! A cross-sectional view of
FIG. 4 is a cross-sectional view of an emitter W showing another embodiment of the first invention, FIG. 5 is a cross-sectional side view showing a microwave discharge light source device according to still another embodiment of the first invention, and FIG. 1 is a cross-sectional side view of a main part showing a microwave discharge light source device according to an embodiment of the second invention, FIG. 1 is an enlarged view of part A in FIG. 6, and FIG. 8 is according to another embodiment of the second invention. FIG. 9 is a cross-sectional side view of a main part showing a microwave discharge light source device according to another embodiment of the second invention; FIG. 10 is a cross-sectional view of a main part showing a microwave discharge light source device according to still another embodiment of the second invention; FIG. 11 is a cross-sectional side view of a discharge tube according to an embodiment, FIG. 11 is a cross-sectional side view showing a microwave discharge light source device according to another embodiment of the third invention, and FIG. 12 is a cross-sectional side view showing a conventional microwave discharge light source device. It is a diagram. In the figure, (8) is a metal tube, (9) is a discharge tube, and QS
is the cooling liquid, (93) is the outer tube, (94)
is the inner tube, (94 is the metal coating layer. In Figure 1, the same reference numerals indicate the same or corresponding parts. 1st cause 8 Metal tube 9: Discharge tube 15:; TP liquid @ 3rXJ 4th Figure 9 Figure 5!6clj 93°yF/!ll 94, Inner tube 941 Metal coach-in') Shoulder Figure 7 Figure n lO mouth Q Figure 11

Claims (3)

【特許請求の範囲】[Claims] (1)マイクロ波により放電、発光する放電管を備えた
ものにおいて、上記放電管々壁の一部が金属により形成
され、この金属の内面を冷却液で冷却するようにしたこ
とを特徴とするマイクロ波放電光源装置。
(1) A device equipped with a discharge tube that discharges and emits light by microwaves, characterized in that a portion of the walls of the discharge tubes are formed of metal, and the inner surface of this metal is cooled with a cooling liquid. Microwave discharge light source device.
(2)マイクロ波により放電、発光する放電管を備えた
ものにおいて、上記放電管を誘電体の内管と誘電体の外
管とで形成し、上記内管の表面に金属コーティング層を
設け、上記内管の内側を冷却液で冷却するようにしたこ
とを特徴とするマイクロ波放電光源装置。
(2) A discharge tube that discharges and emits light using microwaves, wherein the discharge tube is formed of a dielectric inner tube and a dielectric outer tube, and a metal coating layer is provided on the surface of the inner tube, A microwave discharge light source device characterized in that the inside of the inner tube is cooled with a cooling liquid.
(3)マイクロ波により放電、発光する放電管を備えた
ものにおいて、上記放電管を誘電体の内管と、誘電体の
外管とで形成し、上記内管の内側を低誘電損失の冷却液
で冷却するようにしたことを特徴とするマイクロ波放電
光源装置。
(3) In a device equipped with a discharge tube that discharges and emits light using microwaves, the discharge tube is formed of a dielectric inner tube and a dielectric outer tube, and the inside of the inner tube is cooled with low dielectric loss. A microwave discharge light source device characterized by cooling with a liquid.
JP7504488A 1988-03-29 1988-03-29 Microwave discharge light source device Expired - Lifetime JP2570373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7504488A JP2570373B2 (en) 1988-03-29 1988-03-29 Microwave discharge light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7504488A JP2570373B2 (en) 1988-03-29 1988-03-29 Microwave discharge light source device

Publications (2)

Publication Number Publication Date
JPH01246701A true JPH01246701A (en) 1989-10-02
JP2570373B2 JP2570373B2 (en) 1997-01-08

Family

ID=13564814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7504488A Expired - Lifetime JP2570373B2 (en) 1988-03-29 1988-03-29 Microwave discharge light source device

Country Status (1)

Country Link
JP (1) JP2570373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225037A (en) * 2015-05-27 2016-12-28 株式会社プラズマアプリケーションズ Double tube type microwave discharge lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225037A (en) * 2015-05-27 2016-12-28 株式会社プラズマアプリケーションズ Double tube type microwave discharge lamp

Also Published As

Publication number Publication date
JP2570373B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JP4813622B2 (en) Microwave-driven light source
JP4932124B2 (en) Plasma lamp having dielectric waveguide and light emitting method thereof
EP1705691B1 (en) Electrodeless fluorescent lamp and its operating device
JPH02247972A (en) Electrodeless low voltage discharge lamp
JP2006516804A (en) Microwave force plasma lamp with dielectric waveguide
JPH0414480B2 (en)
JPH07302578A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, electrodeless discharge lamp lighting device and electrodeless discharge light
JPS583593B2 (en) Solenoid electric field fluorescent lamp
US7566890B2 (en) UV light source
JPH01246701A (en) Microwave discharge light source device
JPS60133357A (en) Discharge type gas detector
JP2000030525A (en) Microwave electrodeless discharge lamp device
JPH09320543A (en) Microwave electrodeless discharge light source device
JP3201472B2 (en) Electrodeless discharge lamp
US6670759B1 (en) Electrodeless discharge lamp
EP0321792A2 (en) Microwave resonant cavity
JP2009123487A (en) High frequency discharge lamp system
JPS60127697A (en) Microwave discharge light source
JP2512967B2 (en) Microwave discharge light source device
JP2544936B2 (en) Plasma equipment
JP3981240B2 (en) Apparatus and method for generating microwave plasma
US4907242A (en) Gas laser apparatus having a low pressure buffer gas
JPS6471097A (en) Plasma device
JP3516413B2 (en) High frequency heating equipment
JPS61216299A (en) Microwave discharge light source unit