JPH01246316A - Method for decarbonizing molten base steel for stainless steel under reduced pressure - Google Patents

Method for decarbonizing molten base steel for stainless steel under reduced pressure

Info

Publication number
JPH01246316A
JPH01246316A JP7343588A JP7343588A JPH01246316A JP H01246316 A JPH01246316 A JP H01246316A JP 7343588 A JP7343588 A JP 7343588A JP 7343588 A JP7343588 A JP 7343588A JP H01246316 A JPH01246316 A JP H01246316A
Authority
JP
Japan
Prior art keywords
molten steel
steel
reduced pressure
stainless steel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7343588A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakuratani
桜谷 敏和
Kimiharu Yamaguchi
公治 山口
Norio Sumita
則夫 住田
Tetsuya Fujii
徹也 藤井
Sumio Yamada
純夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7343588A priority Critical patent/JPH01246316A/en
Publication of JPH01246316A publication Critical patent/JPH01246316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To effectively improve decarbonizing efficiency in low carbon range without any oxidized loss of Cr by blowing low melting point slag composition powder into molten base steel for Cr-contained stainless steel by using oxygen-contained gas under reduced pressure. CONSTITUTION:In RH degassing apparatus, at the time of decarbonization treating the molten base steel for the stainless steel under reduced pressure atmosphere, the low melting point slag composition is blown into the molten steel 3 from tuyere 2 arranged at below the molten steel 3 surface in the reduced pressure vessel 1 by using O2-contained gas as carrier gas. By this method, in case the molten steel 3 is the low carbon stainless steel, Cr in the molten steel 3 is oxidized with O2 gas to form solid-state Cr2O3 just above tuyere 2. This Cr2O3 grain is absorbed and melted into the slag drip formed, by which the low melting point slag powder introduced in the molten steel 3 at the same time is melted, and shifted in the molten steel 3, to expose to the reduced pressure atmosphere. Then, as reaction velocity of O in liquid Cr2O3 with C in the molten steel 3 is extremely quick, the reduction of Cr2O3 with C is perfectly progressed during short time, which the slag drip stays in the molten steel 3.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、減圧下におけるステンレス母溶鋼の脱炭方
法に関し、とくにクロムの酸化ロスなしに低次域におい
ても脱炭効率の有利な向上を図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for decarburizing stainless steel mother molten steel under reduced pressure, and particularly to an advantageous improvement in decarburization efficiency even in a low order range without oxidation loss of chromium. This is what we are trying to achieve.

(従来の技術) 鋼材の使用条件が厳しくなるにつれて、耐食性、高温強
度に優れたステンレス鋼の需要の伸びが増大し、高能率
かつ安価なステンレス鋼溶製プロセスの開発が望まれて
いる。というのはたとえば極めて優れた耐食性を有する
スーパーフェライトステンレス鋼や耐熱特性に優れる含
Tiステンレス鋼などではCやNの含有量を各々110
0pp以下、または50ppm以下まで低減することが
要求されているが、含Cr鋼であるが故のC,Nの活量
の低下から、通常採用されている脱C2脱N処理である
真空脱ガス処理では処理時間が大幅に延び、連鋳とのマ
ツチングが難しくなるなど、生産性が大きく損なわれて
いるからである。またステンレス鋼の脱炭の場合、脱C
用に供給される酸素源がCrを酸化することによる高価
な合金元素のロスがとくに極低C域では問題となる。
(Prior Art) As the usage conditions for steel materials become more severe, the demand for stainless steel with excellent corrosion resistance and high-temperature strength increases, and the development of a highly efficient and inexpensive stainless steel melting process is desired. This is because, for example, in super ferrite stainless steel, which has extremely excellent corrosion resistance, and Ti-containing stainless steel, which has excellent heat resistance, the C and N contents are 110% each.
Although it is required to reduce it to 0 ppm or less or 50 ppm or less, since it is a Cr-containing steel, the activity of C and N decreases. This is because the processing time is significantly extended, making it difficult to match with continuous casting, and productivity is greatly impaired. In addition, in the case of stainless steel decarburization, decarbonization
The loss of expensive alloying elements due to the oxidation of Cr by the oxygen source supplied for the purpose becomes a problem, especially in the extremely low C range.

生産性に優れたRH脱ガスプロセスの代わりに、VOD
プロセスを採用し、極低C,Nまで脱ガスするプロセス
も場合によっては採用されているが、VODプロセスの
高能率化には、大量の吹込みArガスを必要とし、取鍋
内のフリーボードを大きくする必要が生じるため、結果
的に単位装置あたりの処理可能溶鋼量は減少し、生産性
の向上には結びついていない。
VOD instead of highly productive RH degassing process
In some cases, a process that degasses down to extremely low C and N is adopted, but in order to increase the efficiency of the VOD process, a large amount of blown Ar gas is required, and the free board inside the ladle is used. As a result, the amount of molten steel that can be processed per unit device decreases, which does not lead to improved productivity.

このような背景に対して、真空脱ガス装置とくにRHに
おけるステンレス鋼の脱炭速度の向上を目的として、特
公昭49−12810号公報においては、RH減圧室内
の溶鋼面に02ガスを吹付ける方法が、また特公昭56
−49968号公報においては、RH[圧室内の溶鋼浴
面下の羽目から02ガスあるいはAr −〇□混合ガス
を吹込み、Crの酸化を抑制しつつ脱炭酸素効率を向上
させる技術がそれぞれ提案されている。
Against this background, with the aim of improving the decarburization rate of stainless steel in vacuum degassing equipment, especially in RH, Japanese Patent Publication No. 12810/1987 proposes a method of spraying 02 gas onto the surface of molten steel in the RH decompression chamber. However, the special public service in 1982
Publication No. 49968 proposes a technique for improving the decarburization oxygen efficiency while suppressing Cr oxidation by injecting 02 gas or Ar-〇□ mixed gas from the surface of the molten steel bath in the RH pressure chamber. has been done.

しかしながら上記の二つの技術はいずれも、真空脱炭処
理前の俗調C濃度が0.4〜0.6%と極めて高い場合
には、効果を発揮するものの、C濃度が0.01〜0.
005%以下まで低くなるとかかる低臭領域にそのまま
スライドしても同様の効果が得られるわけではなかった
。すなわちC含有量が大きい場合にはC+0→CO(g
)の脱炭反応は、溶鋼中の酸素含有量が少なく、酸素供
給律速反応となるが故に、含0□ガスの吹付け、吹込み
が効果を発揮するものの、低炭域においては溶鋼中のC
の拡散に律速過程が変化することから、単純な0□供給
手段の適用は充分な効果を示さないのである。
However, both of the above two techniques are effective when the C concentration before vacuum decarburization is extremely high, 0.4 to 0.6%; ..
When the odor was lowered to 0.005% or less, the same effect could not be obtained even if the odor remained in the low odor region. In other words, when the C content is large, C+0→CO(g
) The decarburization reaction in molten steel is low in oxygen content and becomes an oxygen supply rate-limiting reaction. C
Since the rate-determining process changes due to the diffusion of

またとくに含Cr鋼の場合には、供給0□がCr酸化と
C酸化の両者に消費されるため、−旦生成したCrzO
=によるC酸化、すなわち、 CrzOz + 3 C→2 Cr + 3 Co  
     (1)の反応を充分に進行させる工夫がない
限り、脱炭酸素効率低下に伴う処理時間の延長、Crの
酸化ロスといった不都合が免れ得なかったのである。
In addition, especially in the case of Cr-containing steel, since the supplied 0□ is consumed for both Cr oxidation and C oxidation, the CrzO
C oxidation by =, i.e. CrzOz + 3 C → 2 Cr + 3 Co
Unless there is some way to make the reaction (1) proceed sufficiently, disadvantages such as a prolongation of treatment time due to a decrease in oxygen decarburization efficiency and oxidation loss of Cr cannot be avoided.

CrzO:+は単体では、1600〜1750°C程度
の溶鋼処理温度域では固体であり、(1)式の反応は溶
鋼量が極めて高くない限り十分には進行しないため、旦
が0.05%以下の真空脱ガス処理では、脱炭酸素効率
が70%以下と極めて低いという問題が、常につきまと
っていた。
CrzO:+ alone is solid in the molten steel processing temperature range of about 1600 to 1750°C, and the reaction in equation (1) does not proceed sufficiently unless the amount of molten steel is extremely high, so the temperature is 0.05%. In the vacuum degassing treatment described below, the problem has always been that the decarburization oxygen efficiency is extremely low at 70% or less.

前掲した特公昭56−49968号公報においても、脱
炭酸素効率の低下やCrロスの増大を防止するためには
、送酸速度を低下させたり、0□/不活不活性ガス比を
変える(不活性ガスを増す)ことが有効である旨記載さ
れているが、この記述もまた低炭域にて脱炭酸素効率の
低下が起こることを示すものである。そして同公報に開
示の方法では、02供給速度の低減に伴って低炭域での
脱炭速度の低下が免れ得なかったのである。
In the above-mentioned Japanese Patent Publication No. 56-49968, in order to prevent a decrease in decarburization oxygen efficiency and an increase in Cr loss, it is necessary to reduce the oxygen delivery rate and change the 0□/inert gas ratio ( Although it is stated that increasing the amount of inert gas is effective, this statement also indicates that decarburization and oxygen efficiency decreases in the low carbon range. In the method disclosed in the publication, the decarburization rate in the low coal region inevitably decreases as the 02 supply rate decreases.

(発明が解決しようとする課B) 上述したとおり、従来法に従うステンレス母溶鋼の脱炭
処理においては、とくに低炭域をCrの酸化ロスなしに
効率良く処理することができないというところに問題を
残していた。
(Problem B to be solved by the invention) As mentioned above, in the decarburization treatment of stainless steel mother molten steel according to the conventional method, there is a problem in that the low carbon region cannot be treated efficiently without oxidation loss of Cr. I had left it behind.

この発明は、上記の問題を有利に解決するもので、低炭
域についても効率良く脱炭でき、従って生産性に富むス
テンレス母溶鋼の新規な脱炭方法を提案することを目的
とする。
The purpose of the present invention is to advantageously solve the above-mentioned problems, and to propose a new method for decarburizing stainless steel mother molten steel, which can be efficiently decarburized even in the low carbon range and is therefore highly productive.

(課題を解決するための手段) この発明は、低炭域でのステンレス鋼脱炭速度の低下が
、0□供給により過剰に生成したCrz(hがCによる
還元(Cの酸化即ち脱炭反応)を十分に受けぬまま、取
鍋スラグ中に逸脱してしまう現象に起因すると想定し、
生成したCr、O,をQによる還元を受けやすい形に変
化させてやろうという技術的思想の下に開発されたもの
である。
(Means for Solving the Problems) This invention shows that the decrease in the decarburization rate of stainless steel in the low carbon region is caused by the reduction of Crz (h) by C (oxidation of C, that is, the decarburization reaction ) is assumed to be caused by the phenomenon of deviation into the ladle slag without being sufficiently affected.
It was developed based on the technical idea of changing the generated Cr, O, into a form that is more susceptible to reduction by Q.

すなわち固体状のCrt(h粒子の溶鋼中量による還元
反応は、固体粒子内部から粒子表面への酸素原子の拡散
により律速される極めて遅いものであるのに対し、Cr
 、03を液体の形で存在させた場合にはCrz(hか
らの酸素供給速度が極めて大きいものになることに着目
して開発されたものである。
In other words, the reduction reaction due to the amount of solid Crt (h particles) in molten steel is extremely slow and rate-limited by the diffusion of oxygen atoms from the inside of the solid particle to the particle surface.
, 03 in liquid form, the oxygen supply rate from Crz(h becomes extremely high.

試みに反応速度を評価してみると、 k CrzOz(solid)/ k CrzO,(l
iquid)ユ(D o ROL 1 d / Do 
L 1 Q u 1 d ) I / Zoc ((1
0−”cIl+z/s)/(10−”cm”/s)) 
””=10−””ここでDoは酸素原子の拡散速度定数 と1oS/Z倍の反応速度増大が期待できる。
When we tried to evaluate the reaction rate, we found that k CrzOz (solid) / k CrzO, (l
iquid) Yu (D o ROL 1 d / Do
L 1 Q u 1 d ) I / Zoc ((1
0-”cIl+z/s)/(10-”cm”/s))
""=10-""Here, Do can be expected to increase the reaction rate by 1oS/Z times the diffusion rate constant of oxygen atoms.

すなわちこの発明は、クロムを含有するステンレス母溶
鋼を減圧雰囲気下に脱炭処理するに際し、減圧容器内溶
鋼の浴面下に設けた羽口または浴面下に浸漬させたラン
スから、低融点のスラグ組成物粉体を、酸素含有ガスを
キャリアガスとして溶鋼中に吹込むことからなる減圧下
におけるステンレス母溶鋼の脱炭方法である。
In other words, this invention provides a method for decarburizing chromium-containing molten stainless steel in a reduced-pressure atmosphere. This is a method for decarburizing stainless steel mother molten steel under reduced pressure, which comprises blowing slag composition powder into molten steel using an oxygen-containing gas as a carrier gas.

以下この発明を具体的に説明する。This invention will be specifically explained below.

本来、脱炭処理温度域で固体であるCrz(1+を液体
とするための具体的手法は、減圧室内の鋼浴面下に設け
た羽目から含0□気体と共に、低融点組成のスラグ組成
物を導入してやることである。
A specific method for converting Crz (1+), which is originally solid in the decarburization temperature range, into a liquid is to use a slag composition with a low melting point composition along with gas containing 0 This is done by introducing the .

第1図に、この発明の実施に用いて好適なRH脱ガス装
置を断面で示す。
FIG. 1 shows, in cross section, an RH degassing device suitable for use in practicing the present invention.

図中番号1は真空槽、2は真空槽1の側壁下部に設けた
羽目、3は溶鋼、そして4が粉体貯蔵ホッパーである。
In the figure, numeral 1 is a vacuum chamber, 2 is a slat provided at the bottom of the side wall of the vacuum chamber 1, 3 is molten steel, and 4 is a powder storage hopper.

さて上記したRH脱ガス装置において、羽口2から含0
2ガスをキャリアガスとして低融点のスラグ組成物粉体
を溶鋼3中に吹込むと、溶鋼3が低次ステンレス鋼であ
る場合には溶鋼中のCrが0□ガスによって酸化され、
羽口直上で固体状のC1(hが形成されるが、Cr2O
,粒子は、同時に溶鋼中に導入された低融点スラグ粉が
溶けて形成されるスラグ液滴中に吸収、溶解されること
により、含Cr403スラダ液滴として溶鋼中を移動し
、減圧下にさらされることになる。
Now, in the above-mentioned RH degassing device,
When slag composition powder with a low melting point is injected into molten steel 3 using 2 gas as a carrier gas, when the molten steel 3 is a low-order stainless steel, Cr in the molten steel is oxidized by the 0□ gas,
Solid C1 (h is formed just above the tuyere, but Cr2O
At the same time, the particles are absorbed and dissolved in the slag droplets formed by melting the low-melting point slag powder introduced into the molten steel, so that they move in the molten steel as Cr403-containing sludder droplets and are exposed to reduced pressure. It will be.

ところで前述したように、液体状のCr20iからの一
Ω−と溶鋼中立との反応速度は極めて速いので、スラグ
液滴が溶鋼中に滞在する短時間の間にCr2O3の旦に
よる還元が完全に進行するのである。
By the way, as mentioned above, the reaction rate between 1 Ω- from liquid Cr20i and neutral molten steel is extremely fast, so that the reduction of Cr2O3 completely progresses during the short time that the slag droplets stay in the molten steel. That's what I do.

従って上記の技術によれば、含0□ガスの導入速度を低
下させることなく、はぼ100%の脱炭酸素効率が維持
できることから、低炭酸での脱炭速度を著しく増大させ
ることが可能となる。
Therefore, according to the above technology, almost 100% decarburization oxygen efficiency can be maintained without reducing the introduction rate of 0□ gas, making it possible to significantly increase the decarburization rate at low carbon dioxide levels. Become.

含02ガスと共に導入されるスラグ組成物については、
それがCr2O5よりも易還元性のものたとえばFeO
やl’lnoであってはならず、またCaF tなどの
ふっ化物を大量に含有させることも耐火物溶損の面から
好ましくない。ここに真空脱炭処理温度が、熱力学的に
決まる優先脱炭条件から1600〜1750°Cである
ことを考慮すると、融点が1600°C以下程度でしか
もCrz(hよりも安定であることが好ましく、かよう
なスラグ組成としてはCa0−A l 203. Ca
O−5iOt、 Ca0−A l zO+−5iOt系
などが好適である。
Regarding the slag composition introduced with O2-containing gas,
It is more easily reducible than Cr2O5, such as FeO.
Furthermore, it is also undesirable to contain a large amount of fluoride such as CaFt from the viewpoint of erosion of the refractory. Considering that the vacuum decarburization treatment temperature is 1,600 to 1,750 °C based on the preferential decarburization conditions determined thermodynamically, it is assumed that the melting point is about 1,600 °C or less and is more stable than Crz (h). Preferably, such a slag composition is Ca0-A l 203. Ca
O-5iOt, Ca0-AlzO+-5iOt systems, etc. are suitable.

なお含有量があまりに多量にならない限りはCaF、を
加えたスラグ系の採用も可能である。
Note that it is also possible to employ a slag system containing CaF as long as the content is not too large.

また0□ガス供給速度に対するスラグ組成物粉体の供給
速度は、羽口直上で含Cr、0.スラグ融体が形成され
る条件から自ずと決定され、スラグ融体中の(1:r 
、0.濃度が最大40%、好ましくは20%以下とする
ことが望ましい。
In addition, the supply rate of the slag composition powder relative to the 0□ gas supply rate is 0.5% of the slag composition powder immediately above the tuyere. The (1:r
,0. It is desirable that the concentration is at most 40%, preferably 20% or less.

数式で表現すれば、次式のとおりである。If expressed numerically, it is as follows.

なおこの点についての発明者らの研究によればスラグ粉
体供給速度は、必ずしも上掲式を満足する必要はなく、
幾分小さ(でも問題がないことが判明した。これは、0
□ガスにより形成されたCr2O3の全てがスラグ液滴
中に取り込まれる必要はなく、その一部が含CrJ3ス
ラダ液滴となって脱炭に寄与するだけでも十分に効果を
発揮することを意味している。
According to the inventors' research on this point, the slag powder supply rate does not necessarily have to satisfy the above formula;
It turned out to be somewhat small (but not problematic).
□It is not necessary for all of the Cr2O3 formed by the gas to be incorporated into the slag droplets; it is sufficient to have a sufficient effect even if some of it becomes CrJ3-containing sludder droplets and contributes to decarburization. ing.

従ってスラグ組成物粉体の供給速度条件式は次式のとお
りに定義できる。
Therefore, the conditional expression for the supply rate of the slag composition powder can be defined as follows.

ここで0.2〈η≦1.0 (実施例) 災肯健土 第1図に示したRH脱ガス装置を用いて、100トン取
渦中の18%Crステンレス母溶鋼のRH脱炭処理を行
った。脱炭処理前の溶鋼は上底吹き転炉を用いた脱炭精
錬によってC濃度を0.04%まで低減したものである
Here, 0.2〈η≦1.0 (Example) Using the RH degassing equipment shown in Figure 1, RH decarburization treatment of 18% Cr stainless steel mother molten steel in 100 tons of molten steel was carried out. went. The molten steel before decarburization treatment was decarburized and refined using a top-bottom blowing converter to reduce the C concentration to 0.04%.

さて上記の溶鋼に対して、真空槽下部に設けた二重管羽
目の内管より30ONm’/hの速度で酸素ガスを供給
すると共に、CaO−八f t(h−3iO2の1:1
:1組成のスラグ組成物粉体(粒径:150μm以下)
を送入した。なお羽口の外管からは羽口冷却のための静
ガスを2ONm’/hの速度で吹込んだ。
Now, to the above molten steel, oxygen gas was supplied at a rate of 30 ONm'/h from the inner tube with a double tube provided at the bottom of the vacuum chamber, and at the same time oxygen gas was supplied to the molten steel at a rate of 30 ONm'/h.
:1 composition slag composition powder (particle size: 150 μm or less)
was sent. Note that static gas for cooling the tuyere was blown from the outer tube of the tuyere at a rate of 2 ON m'/h.

処理前後におけるC、 Mn、 Cr含有量の変化を、
脱炭時間および処理中のCr、 Mnロスと共に示す。
Changes in C, Mn, and Cr content before and after treatment are
The decarburization time and Cr and Mn losses during treatment are also shown.

なお比較のため従来法に従い単に0□ガスの吹込みを行
った場合についでの調査結果も併せて示す。
For comparison, the investigation results obtained when 0□ gas was simply blown according to the conventional method are also shown.

同表より明らかなように、スラグ粉の吹込みのない比較
例においては、吹込み酸素がCrzO,としてそのまま
損失する量が極めて大きく、脱炭に寄与する酸素量が小
さいために、所要脱炭時間が著しく長い。この現象は低
度域までの処理を指向する場合により著しく、表1に示
したように、処理後Cをo、oosから0.006%へ
わずか0.002%だけ余分に下げようとすると、その
間に送給された酸素は大部分、Cr酸化に浪費されたこ
とを示している。
As is clear from the table, in the comparative example without slag powder injection, the amount of blown oxygen lost as CrzO is extremely large, and the amount of oxygen contributing to decarburization is small, so the required decarburization is The time is extremely long. This phenomenon is more noticeable when processing is aimed at low-intensity ranges, and as shown in Table 1, when attempting to lower the post-processing C from o, oos to 0.006% by just 0.002%, This indicates that most of the oxygen supplied during that time was wasted in oxidizing Cr.

また表1の比較例においては過大のCr酸化に起因した
発熱による溶鋼温度の上昇が平均2〜3°C/sinの
程度で認められ、特に処理末期の低度域でこの傾向が著
しく操業性の面でも問題であった。
In addition, in the comparative example shown in Table 1, an increase in the molten steel temperature due to heat generation due to excessive Cr oxidation was observed at an average rate of 2 to 3°C/sin, and this tendency was particularly noticeable in the low temperature range at the end of the process, making it difficult to operate. This was also a problem.

これに対してこの発明に従うスラグ粉体吹込み法におい
ては、CrzO3としてのCrロスが極めて少な(、送
給酸素ガスが、Cr2O3を形成した後、その多(が脱
炭に寄与したことを示している。
On the other hand, in the slag powder injection method according to the present invention, the loss of Cr as CrzO3 is extremely small (indicating that the supplied oxygen gas contributes to decarburization after forming Cr2O3). ing.

叉旌■又 26%Cr、 0.1%Cのスーパーフェライトステン
レス粗溶鋼を上底吹転炉で溶製した後、100 )ン取
鍋に出鋼し、第1図に示した装置を用いてRH脱炭処理
に供した。
After melting 26% Cr and 0.1% C super ferritic stainless steel in a top-bottom blowing converter, the steel was tapped into a 100 mm ladle, and the steel was melted using the equipment shown in Figure 1. and subjected to RH decarburization treatment.

この例では実施例1に比べてCr濃度が高く、優先脱炭
がより困難と考えられることから二重管羽ロ内管からの
0□吹込み速度は20ONm3/hとした。
In this example, the Cr concentration was higher than in Example 1, and since preferential decarburization was thought to be more difficult, the 0□ blowing rate from the double-pipe feather inner tube was set to 20ONm3/h.

また0!ガスと共に吹込むスラグ粉としては40%Ca
O−40%5int−IQ%/1x(h −io%ca
Fz&ll成のものを用いた。
0 again! 40% Ca as slag powder injected with gas
O-40%5int-IQ%/1x(h-io%ca
The one made by Fz&ll was used.

処理前後における成分変動を、脱炭時間および処理中の
Crロスと共に表2に示す。
Table 2 shows the component fluctuations before and after the treatment, along with the decarburization time and Cr loss during the treatment.

同表より明らかなようにこの発明によれば、従来長時間
の強撹拌VOO処理によってしか溶製できなかったC5
0.003%のスーパーフェライト鋼を、R1(処理に
よって溶製することができた。またその処理時間も短く
、十分に連続鋳造への移行が可能であり、生産性向上へ
の寄与は大きい。
As is clear from the same table, according to the present invention, C5, which could previously only be produced by a long period of strong stirring VOO treatment,
0.003% super ferritic steel could be produced by R1 (processing). Also, the processing time was short and it was possible to fully transfer to continuous casting, making a large contribution to improving productivity.

以上、二つの実施例から明らかなように、含O1気体と
共に低融点組成のスラグ粉を減圧下に吹込み、含Crz
Ozスラグ融体と溶鋼中Cの反応による脱炭を促進する
効果は、橿めて優れたものであった。なお、実施例では
含Otガスとして純0□ガスの場合について示したが、
第2図に示すような装置を用いて、スラグ粉の搬送をA
r等の不活性ガスで行い02ガスと合流させるような方
法であってもかまわない。また実施例では環流式真空脱
ガス装置(R)l)に限って説明してきたが、この発明
はRHのみに限るものではな(溶鋼の環流を伴わない真
空脱ガス装置例えばDH,VAD、 VODといったプ
ロセスに対しても同様にして適用でき、脱炭酸素効率の
向上を図ることができる。
As is clear from the above two examples, slag powder with a low melting point composition is blown in together with O1-containing gas under reduced pressure, and Crz-containing
The effect of promoting decarburization through the reaction between the Oz slag melt and C in the molten steel was overall excellent. In addition, although the example shows the case of pure 0□ gas as the Ot-containing gas,
Using a device like the one shown in Figure 2, the transportation of slag powder is carried out at A
A method may also be used in which the inert gas such as r is used and the gas is combined with the 02 gas. Furthermore, in the embodiments, explanation has been given only to a reflux type vacuum degassing device (R)l), but the present invention is not limited to only RH (vacuum degassing devices that do not involve reflux of molten steel, such as DH, VAD, VOD). The method can be similarly applied to processes such as the above, and the decarburization oxygen efficiency can be improved.

(発明の効果) かくしてこの発明によれば、高価なCrの多大なロスな
しには達成できなかったステンレス鋼の低炭素化の高速
処理が、Crロスの軽減下に効果的に達成でき、また従
来、処理能力あるいは処理効率の悪いvOD処理によっ
てしか溶製ができなかったCr含有量=20〜30%の
スーパーフェライト鋼の極低炭素化が、高生産性を有す
るRHによる短時間処理で溶製可能となり、従って連続
鋳造に対するマツチングが良好になるだけでなく、歩留
りの向上や生産性の向上に寄与するところ大である。
(Effects of the Invention) Thus, according to the present invention, high-speed processing for reducing the carbon content of stainless steel, which could not be achieved without a large loss of expensive Cr, can be effectively achieved while reducing Cr loss. Ultra-low carbon super ferritic steel with a Cr content of 20-30%, which could previously only be produced by vOD treatment with poor processing capacity or processing efficiency, can now be melted by short-time processing using RH, which has high productivity. Therefore, it not only improves the matching for continuous casting, but also greatly contributes to improving yield and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施に用いて好適なRH脱ガス装
置の模式図、 第2図は、別の好適装置の模式図である。 第1図 1−真q糟 2−−−H」口 3−;容体 4−−一牙分イ木貝?A水ツti−
FIG. 1 is a schematic diagram of an RH degassing device suitable for use in carrying out the present invention, and FIG. 2 is a schematic diagram of another preferred device. Fig. 1 1-Masu 2--H'mouth 3-;Condition 4--Is it one tooth? A water ti-

Claims (1)

【特許請求の範囲】 1、クロムを含有するステンレス母溶鋼を減圧雰囲気下
に脱炭処理するに際し、 減圧容器内溶鋼の浴面下に設けた羽口または浴面下に浸
漬させたランスから、低融点のスラグ組成物粉体を、酸
素含有ガスをキャリアガスとして溶鋼中に吹込むことを
特徴とする減圧下におけるステンレス母溶鋼の脱炭方法
[Scope of Claims] 1. When decarburizing stainless steel mother molten steel containing chromium in a reduced pressure atmosphere, from a tuyere provided below the bath surface of the molten steel in a reduced pressure vessel or a lance immersed below the bath surface, A method for decarburizing stainless steel base molten steel under reduced pressure, characterized by injecting low melting point slag composition powder into molten steel using an oxygen-containing gas as a carrier gas.
JP7343588A 1988-03-29 1988-03-29 Method for decarbonizing molten base steel for stainless steel under reduced pressure Pending JPH01246316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7343588A JPH01246316A (en) 1988-03-29 1988-03-29 Method for decarbonizing molten base steel for stainless steel under reduced pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7343588A JPH01246316A (en) 1988-03-29 1988-03-29 Method for decarbonizing molten base steel for stainless steel under reduced pressure

Publications (1)

Publication Number Publication Date
JPH01246316A true JPH01246316A (en) 1989-10-02

Family

ID=13518163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7343588A Pending JPH01246316A (en) 1988-03-29 1988-03-29 Method for decarbonizing molten base steel for stainless steel under reduced pressure

Country Status (1)

Country Link
JP (1) JPH01246316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212625A (en) * 2001-01-17 2002-07-31 Daido Steel Co Ltd Method for decarburizing molten chromium-containing steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212625A (en) * 2001-01-17 2002-07-31 Daido Steel Co Ltd Method for decarburizing molten chromium-containing steel

Similar Documents

Publication Publication Date Title
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
JPH08225880A (en) Production of and production plant for alloy steel
JP4079097B2 (en) Melting method of high clean steel
JPH06240338A (en) Method for desulfurizing molten steel
JPH01246316A (en) Method for decarbonizing molten base steel for stainless steel under reduced pressure
KR20060012266A (en) Method for a direct steel alloying
EP0591971A1 (en) Method of degassing and decarburizing stainless molten steel
JP3843589B2 (en) Melting method of high nitrogen stainless steel
JPH10298631A (en) Method for melting clean steel
JPH0124855B2 (en)
JP2005089839A (en) Method for refining molten steel
JPH11106823A (en) Method for refining extra-low carbon and extra-low nitrogen stainless steel
JPS5816006A (en) Dephosphorizing method for molten iron
JPS6121285B2 (en)
JPH07173515A (en) Decarburization refining method of stainless steel
JP3800866B2 (en) Hot metal desiliconization method
JPH0941028A (en) Production of high purity ultra-low carbon steel
JPS6214603B2 (en)
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JPH0673426A (en) Method for decarburizing molten chromium-containing iron
JP2005048238A (en) Method for dephosphorizing molten iron
JPS58217620A (en) Pretreatment of molten pig iron
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification
JP2000297317A (en) PRODUCTION OF LOW Al AND EXTRA-LOW SULFUR STEEL
JPH01246315A (en) Method for decarbonizing molten base steel for stainless steel under reduced pressure