JPH0124629B2 - - Google Patents

Info

Publication number
JPH0124629B2
JPH0124629B2 JP9810585A JP9810585A JPH0124629B2 JP H0124629 B2 JPH0124629 B2 JP H0124629B2 JP 9810585 A JP9810585 A JP 9810585A JP 9810585 A JP9810585 A JP 9810585A JP H0124629 B2 JPH0124629 B2 JP H0124629B2
Authority
JP
Japan
Prior art keywords
polyester
layer
multilayer
bottle
vinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9810585A
Other languages
Japanese (ja)
Other versions
JPS61255857A (en
Inventor
Koichi Sakai
Tooru Matsubayashi
Hiroshi Toyao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60098105A priority Critical patent/JPS61255857A/en
Publication of JPS61255857A publication Critical patent/JPS61255857A/en
Publication of JPH0124629B2 publication Critical patent/JPH0124629B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本願は多層配向ポリエステルボトルに関し、よ
り詳細にはガスバリヤー性、層間接着性、クリー
プ性に優れたポリエステルボトルに関する。 <従来技術> 二軸配向されたポリエチレンテレフタレートで
代表されるポリエステルは、優れた剛性、透明性
を有しており、フイルム・容器等に広く用いられ
ている。ポリエステル容器としては押出成形或い
は射出成形して無底域は有底の円筒状体すなわち
プリフオームに成形し、このポリフオームを軸方
向に延伸する操作と流体吹込みで円周方向に膨張
させる操作を同時に或は逐次的に行うことによつ
て少く共周状側壁が二軸に延伸配向された成形容
器即ちボトルがあり、この配向ブロー成形ボトル
は透明性、剛性、耐衝撃性等に優れ、又、安全衛
生面も良好なため飲料、調味料容器として広く用
いられるに至つている。しかしながら酸素ガスや
炭酸ガスの透過性については必ずしも充分でなく
更に改良が期待されている。このガスバリヤー性
の改良については種々の方策が提案されており、
ガスバリヤー性の優れたポリオレフイン−ビニル
アルコール共重合体をガスバリヤー層とする多層
ボトルも知られている。しかしながら、ポリオレ
フイン−ビニルアルコール共重合体をガスバリヤ
ー層として用いた場合基体のポリエステル層との
接着性が不充分なため両層に接着可能な接着剤層
の導入が不可欠とされており、接着剤層の不要な
ポリエステルとの接着性の良好なガスバリヤー材
の開発が望まれていた。 <発明の目的> 本発明の目的はガスバリヤー性の改良され、層
間接着性の改良された多層配向ポリエステルボト
ルを提供することにある。 <発明の構成> 本発明は多層配向ボトルであつて、該ボトルが
エチレンテレフタレート単位を主体とする熱可塑
性ポリエステルの層及びオレフイン−ビニルアル
コール共重合体と融点が120℃以上250℃以下の結
晶性ポリエステルとを50:50乃至10:90の重量比
で含有するブレンド物の層の少くとも2層からな
る多層構造物から成ることを特徴とする多層配向
ポリエステルボトルである。 本発明でいうエチレンテレフタレート単位を主
体とする熱可塑性ポリエステルとは通常酸成分の
80モル%以上、好ましくは90モル%以上がテレフ
タル酸であり、グリコール成分の80モル%以上、
好ましくは90モル%以上がエチレングリコールで
あるポリエステルを意味し、残部の他の酸成分と
してイソフタル酸、ナフタレン2,6−ジカルボ
ン酸、ジフエニルエーテル4,4′−ジカルボン
酸、アジピン酸、又、他のグリコール成分として
プロピレングリコール、テトラメチレングリコー
ル、ヘキサメチレングリコール、ネオペンチルグ
リコール、ジエチレングリコール、2,2−ビス
(4ヒドロキシフエニル)プロパン、更にp−オ
キシ安息香酸、p−ヒドロキシエトキシ安息香酸
等を含有するポリエステルが例示される。かかる
ポリエステルは機械的性質の点からオルソクロロ
フエノール溶媒中35℃で測定して少く共0.5以上
好ましくは0.6以上の固有粘度を有することが必
要である。 本発明において、オレフイン−ビニルアルコー
ル共重合体としては、オレフインと酢酸ビニル等
のビニルエステルとの共重合体をケン化して得ら
れる共重合体をいうが、成形性等を考慮するとオ
レフイン含有量が10乃至50モル%特に20〜45モル
%のものでケン化度が90%以上のものが用いられ
る。 本発明においていう融点が120℃以上250℃以下
の結晶性ポリエステルとしては酸成分としてジカ
ルボン酸又はそのエステル形成性誘導体を用い、
グリコール成分としては炭素数2〜20のグリコー
ル又はそのエステル形成性誘導体を用いて得られ
る線状飽和ポリエステルを主たる対象物とするが
本発明の効果を発現せしめるためには融点が120
℃以上250℃以下にあることが必要である。この
ような結晶性ポリエステルとして特に望ましいも
のとしてはエチレンテレフタレートを主たる構成
成分とし共重合成分として、テレフタル酸以外の
ジカルボン酸および/またはエチレングリコール
以外のグリコールを含む共重合ポリエチレンテレ
フタレートが挙げられる。共重合されるジカルボ
ン酸類としてはマロン酸、コハク酸、アジピン酸
等の脂肪族ジカルボン酸;イソフタル酸、ナフタ
レンジカルボン酸、4,4′ジフエニレンエーテル
ジカルボン酸等の芳香族ジカルボン酸が例示され
る。又、共重合されるグリコール類としてはプロ
ピレングリコール、テトラメチレングリコール、
ヘキサメチレングリコール、ネオペンチルグリコ
ール、ジエチレングリコール等が例示される。
又、p−オキシ安息香酸、p−ヒドロキシエトキ
シ安息香酸等を共重合して所望の結晶性ポリエス
テルを得ることもできる。かかるポリエステルの
固有粘度は0.4〜1.0の範囲にあることが望まし
い。該ポリエステルの融点は120℃以上あること
が必要である。すなわち120℃よりも低いと延伸
ブロー成形時、該ガスバリヤー層の配向が不充分
なため、ガスバリヤー効果は発現しない。該ポリ
エステルの融点は250℃以下好ましくは240℃以下
であることが必要である。すなわち250℃を超え
る融点を有するポリエステルを用いた場合、オレ
フイン−ビニルアルコール共重合体との混練、成
形過程においてオレフイン−ビニルアルコール共
重合体部分の熱劣化が激しく、好ましいボトルを
得ることが出来ない。オレフイン−ビニルアルコ
ール共重合体と融点が120℃以上250℃以下の結晶
性ポリエステルは重量比で50:50乃至10:90の範
囲、更に好ましくは50:50乃至20:80の範囲にあ
ることが必要である。すなわちオレフイン−ビニ
ルアルコール共重合体の重量が50%を越えると該
混合物層とエチレンテレフタレート層を主体とす
る熱可塑性ポリエステル層の密着が不充分とな
り、延伸して得られたボトルにおいて両層間で剥
離が生じる。一方オレフイン−ビニルアルコール
共重合体の重量が10重量%よりも少い場合には所
望とするガスバリヤー性の改良が充分でない。 本発明で用いるオレフイン−ビニルアルコール
共重合体と結晶性ポリエステルの混合は多層プリ
フオームを作成する際に受ける押出機或いは射出
成形機による加熱溶融でも充分であるが得られた
プリフオーム中において均一性を向上せしめるた
めにはあらかじめ該混合物は押出機等を用いて溶
融混練しておくことが望ましい。混練温度はオレ
フイン−ビニルアルコール共重合体の熱時分解を
考慮すると260℃以下好ましくは250℃以下である
必要がある。 本発明の多層ポリエステルボトルにおいてポリ
エステル層と該ガスバリヤー性樹脂混合層の厚み
の比率は特に限定されるものではないが、得られ
たボトルの剛性、ガスバリヤ性等を考慮すると両
層の厚みの比は95:5乃至50:50の範囲好ましく
は90:10〜70:30の範囲にあるのがよい。 本発明の多層ポリエステルボトルは二層、三層
又はそれ以上の多層であつてもよい。かかる多層
配向ボトルは従来のポリエステルボトルを得る方
法と同様にまず多層のプリフオームを成形し、こ
のプリフオームを延伸ブローに供することにより
得ることが出来る。多層のプリフオームの形成は
例えばまず多層同時押出によりポリエステル層と
該ガスバリヤー性樹脂混合層からなるパイプ状積
層物を一定長さに切断し両端を所望の口部および
底部に加熱成形して形成しうる。又、別な成形法
としては多層射出成形法を用いポリエステルパリ
ソンの内面、外面又は中間に該ガスパリヤー性樹
脂を順次射出により層形成し、所望性状のプリフ
オームを得ることができる。 この多層プリフオームを用いて配向ブローする
方法は通常該プリフオームを延伸可能な温度に再
加熱し所望するボトル形状を有する金型内に移し
た後延伸ロツドにより軸方向に延伸すると共に圧
縮流体例えば圧縮空気を吹き込んで容器の形状に
まで膨張させる通常の延伸ブロー法による。 前記プリフオームを延伸或は吹込膨張させる場
合のボトルの胴部の延伸倍率は面積倍率で1.2倍
以上好ましくは2倍以上である。 本発明においていう多層配向ポリエステルはエ
チレンテレフタレート単位を主体とする熱可塑性
ポリエステル層及び該ガスバリヤー性樹脂層構造
体であるがその他の目的で他種のポリマーよりな
る層を存在せしめてもよい。このようなポリマー
層としては例えば更にガスバリヤー性を向上せし
める目的でエチレン−ビニルアルコール共重合
体、ポリアミド樹脂、耐熱性を向上せしめる目的
でポリカーボネート、ポリアリレート樹脂、ポリ
エチレンナフタレート樹脂、耐熱性ポリスチレン
樹脂、剛性を向上せしめる目的でガラス繊維含有
ポリエチレンテレフタレート、雲母含有ポリエス
テル樹脂等が例示される。 本発明によるボトルは必要に応じて着色剤、紫
外線吸収剤、帯電防止剤、熱酸化劣化防止剤、滑
剤、核剤、上記以外の熱可塑性樹脂等を本発明の
目的を損わない範囲で含有することができる。 <実施例> 以下、本発明を実施例により詳しく説明する。 尚、本発明にて測定した主な特性の測定法を以
下に示す。 (1) ポリエステル樹脂の固有粘度:o−クロロフ
エノルール溶媒を用いて35℃で測定した溶液粘
度から算出した。 (2) ポリエステル樹脂の融点:セイコ電子工業(株)
製DSC20型を用いて20℃/minの昇温速度にて
測定し吸熱ピーク電位を融点とした。 (尚、各種ポリエステル樹脂は測定に先立ち熱
風乾燥機中にて100〜130℃にて加熱結晶化させ
たものを使用) (3) 炭酸ガス透過量:スイスLyssy社製GPM−
200型ガス透過率測定機を用い500c.c.ボトル1本
当りの透過量として30℃にて測定した(c.c./容
器1本−24hr−atm)。 (4) 接着強度:巾15mmのたんざく状試片を用いて
東洋ボールドウイン社製テンシロンによりチヤ
ツク間20mm、引張速度50mm/minの条件下でT
ビール剥離試験を行つた。 実施例1〜10および比較例1〜9 表1に示すポリエステルとエチレン成分44モル
%を含むエチレン−ビニルアルコール共重合体を
30mmφ押出機を用いてシリンダー温度230〜240℃
の設定にて溶融混練した後冷却しペレツト化し
た。尚比較例1の試料については上記温度で押出
をすることができず260℃に上昇せしめ実施した
がエチレン−ビニルアルコール共重合体が分解し
たため中止した。得られた混合物を外層とし固有
粘度0.75のポリエチレンテレフタレートを内層と
する多層延伸ポリエステルを日精ASB機械(株)製
150D型多層配向ブロー成形機を用いて成形した。
多層ボトルの胴部の延伸倍率は縦方向約2倍、横
方向約4倍であり、容器の寸法は高さ約170mm胴
径約70mm、胴部の肉厚は外層0.05〜0.07mm、内層
0.25〜0.27mm容積500c.c.であつた。 得られたポリエステルボトルについて測定した
炭酸ガス透過量および両層間の接着強度を表1に
示すが、本発明の多層ポリエステルボトルは優れ
た特性を有していることが明白である。
<Industrial Application Field> The present application relates to a multilayer oriented polyester bottle, and more particularly to a polyester bottle with excellent gas barrier properties, interlayer adhesion properties, and creep properties. <Prior Art> Polyester represented by biaxially oriented polyethylene terephthalate has excellent rigidity and transparency, and is widely used in films, containers, and the like. The polyester container is made by extrusion molding or injection molding, and the bottomless area is formed into a cylindrical body with a bottom, that is, a preform, and the polyester container is simultaneously stretched in the axial direction and expanded in the circumferential direction by blowing fluid. Alternatively, there is a molded container or bottle in which co-peripheral side walls are biaxially stretched and oriented by successive processes, and this oriented blow-molded bottle has excellent transparency, rigidity, impact resistance, etc. Due to its good safety and hygiene properties, it has come to be widely used as containers for beverages and seasonings. However, the permeability of oxygen gas and carbon dioxide gas is not necessarily sufficient, and further improvements are expected. Various measures have been proposed to improve this gas barrier property.
Multilayer bottles whose gas barrier layer is made of polyolefin-vinyl alcohol copolymer having excellent gas barrier properties are also known. However, when a polyolefin-vinyl alcohol copolymer is used as a gas barrier layer, its adhesion to the base polyester layer is insufficient, so it is essential to introduce an adhesive layer that can adhere to both layers. It has been desired to develop a gas barrier material that has good adhesion to polyester and does not require a layer. <Objective of the Invention> An object of the present invention is to provide a multilayer oriented polyester bottle with improved gas barrier properties and interlayer adhesion. <Structure of the Invention> The present invention is a multilayer oriented bottle, which comprises a layer of thermoplastic polyester mainly composed of ethylene terephthalate units, an olefin-vinyl alcohol copolymer, and a crystalline material having a melting point of 120°C or more and 250°C or less. A multilayer oriented polyester bottle characterized by comprising a multilayer structure consisting of at least two layers of a blend containing polyester and polyester in a weight ratio of 50:50 to 10:90. The thermoplastic polyester mainly composed of ethylene terephthalate units as used in the present invention usually contains an acid component.
80 mol% or more, preferably 90 mol% or more of terephthalic acid, 80 mol% or more of the glycol component,
Preferably, it means a polyester in which 90 mol% or more is ethylene glycol, and the remaining acid components include isophthalic acid, naphthalene 2,6-dicarboxylic acid, diphenyl ether 4,4'-dicarboxylic acid, adipic acid, Other glycol components include propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, diethylene glycol, 2,2-bis(4-hydroxyphenyl)propane, p-oxybenzoic acid, p-hydroxyethoxybenzoic acid, etc. Examples include polyesters. From the viewpoint of mechanical properties, such a polyester needs to have an intrinsic viscosity of at least 0.5 or more, preferably 0.6 or more, as measured in an orthochlorophenol solvent at 35°C. In the present invention, the olefin-vinyl alcohol copolymer refers to a copolymer obtained by saponifying a copolymer of olefin and a vinyl ester such as vinyl acetate. Those containing 10 to 50 mol%, especially 20 to 45 mol%, and having a degree of saponification of 90% or more are used. In the present invention, the crystalline polyester having a melting point of 120°C or more and 250°C or less uses dicarboxylic acid or its ester-forming derivative as the acid component,
The main target of the glycol component is a linear saturated polyester obtained using a glycol having 2 to 20 carbon atoms or an ester-forming derivative thereof.
The temperature must be above ℃ and below 250℃. Particularly desirable examples of such crystalline polyesters include copolymerized polyethylene terephthalate containing ethylene terephthalate as a main constituent and containing a dicarboxylic acid other than terephthalic acid and/or a glycol other than ethylene glycol as a copolymerization component. Examples of dicarboxylic acids to be copolymerized include aliphatic dicarboxylic acids such as malonic acid, succinic acid, and adipic acid; aromatic dicarboxylic acids such as isophthalic acid, naphthalene dicarboxylic acid, and 4,4' diphenylene ether dicarboxylic acid. . In addition, the glycols to be copolymerized include propylene glycol, tetramethylene glycol,
Examples include hexamethylene glycol, neopentyl glycol, diethylene glycol, and the like.
Further, a desired crystalline polyester can also be obtained by copolymerizing p-oxybenzoic acid, p-hydroxyethoxybenzoic acid, etc. The intrinsic viscosity of such polyester is preferably in the range of 0.4 to 1.0. The polyester needs to have a melting point of 120°C or higher. That is, if the temperature is lower than 120°C, the gas barrier layer will not be sufficiently oriented during stretch blow molding, and the gas barrier effect will not be exhibited. The melting point of the polyester needs to be 250°C or lower, preferably 240°C or lower. That is, when polyester having a melting point exceeding 250°C is used, the olefin-vinyl alcohol copolymer portion undergoes severe thermal deterioration during the kneading and molding process with the olefin-vinyl alcohol copolymer, making it impossible to obtain a desirable bottle. . The weight ratio of the olefin-vinyl alcohol copolymer and the crystalline polyester having a melting point of 120°C to 250°C is in the range of 50:50 to 10:90, more preferably in the range of 50:50 to 20:80. is necessary. In other words, if the weight of the olefin-vinyl alcohol copolymer exceeds 50%, the adhesion between the mixture layer and the thermoplastic polyester layer mainly composed of the ethylene terephthalate layer will be insufficient, resulting in peeling between the two layers in the stretched bottle. occurs. On the other hand, if the weight of the olefin-vinyl alcohol copolymer is less than 10% by weight, the desired improvement in gas barrier properties is not sufficient. It is sufficient to mix the olefin-vinyl alcohol copolymer and crystalline polyester used in the present invention by heating and melting them using an extruder or injection molding machine when creating a multilayer preform, but it is sufficient to improve the uniformity in the obtained preform. In order to achieve this, it is desirable to melt and knead the mixture in advance using an extruder or the like. The kneading temperature needs to be 260°C or less, preferably 250°C or less, taking into account the thermal decomposition of the olefin-vinyl alcohol copolymer. In the multilayer polyester bottle of the present invention, the thickness ratio of the polyester layer and the gas barrier resin mixed layer is not particularly limited, but considering the rigidity, gas barrier properties, etc. of the resulting bottle, the ratio of the thicknesses of both layers is not particularly limited. is preferably in the range of 95:5 to 50:50, preferably in the range of 90:10 to 70:30. The multilayer polyester bottle of the present invention may have two, three or more layers. Such a multilayer oriented bottle can be obtained by first forming a multilayer preform and then subjecting this preform to stretch blowing in the same manner as the method for obtaining conventional polyester bottles. To form a multilayer preform, for example, first, a pipe-shaped laminate consisting of a polyester layer and the gas barrier resin mixed layer is cut into a certain length by multilayer coextrusion, and both ends are heated and formed into desired openings and bottoms. sell. As another molding method, a multilayer injection molding method can be used to sequentially form layers of the gas barrier resin on the inner surface, outer surface, or middle of a polyester parison by injection, thereby obtaining a preform with desired properties. The method of oriented blowing using this multilayer preform is usually to reheat the preform to a temperature that allows it to be stretched, transfer it into a mold having a desired bottle shape, and then stretch it in the axial direction with a stretching rod and apply a compressed fluid such as compressed air to the preform. A conventional stretch-blowing method is used in which the material is blown into the shape of the container. When the preform is stretched or expanded by blowing, the stretching ratio of the body of the bottle is an area ratio of 1.2 times or more, preferably 2 times or more. The multilayer oriented polyester referred to in the present invention is a thermoplastic polyester layer mainly composed of ethylene terephthalate units and the gas barrier resin layer structure, but layers made of other types of polymers may be present for other purposes. Examples of such polymer layers include, for example, ethylene-vinyl alcohol copolymers and polyamide resins for the purpose of further improving gas barrier properties, and polycarbonate, polyarylate resins, polyethylene naphthalate resins, and heat-resistant polystyrene resins for the purpose of improving heat resistance. For the purpose of improving rigidity, examples include glass fiber-containing polyethylene terephthalate and mica-containing polyester resin. The bottle according to the present invention may contain a colorant, an ultraviolet absorber, an antistatic agent, a thermal oxidative deterioration inhibitor, a lubricant, a nucleating agent, a thermoplastic resin other than the above, etc., as necessary, within a range that does not impair the purpose of the present invention. can do. <Examples> Hereinafter, the present invention will be explained in detail with reference to Examples. The methods for measuring the main characteristics measured in the present invention are shown below. (1) Intrinsic viscosity of polyester resin: Calculated from solution viscosity measured at 35°C using o-chlorophenol solvent. (2) Melting point of polyester resin: Seiko Electronics Co., Ltd.
The endothermic peak potential was measured using a DSC20 model manufactured by Co., Ltd. at a heating rate of 20°C/min, and the melting point was taken as the endothermic peak potential. (In addition, various polyester resins were heated and crystallized at 100 to 130℃ in a hot air dryer prior to measurement.) (3) Carbon dioxide permeation amount: GPM- manufactured by Lyssy in Switzerland.
The amount of permeation per 500 c.c. bottle was measured at 30°C using a 200 model gas permeability meter (cc/container - 24 hr - atm). (4) Adhesive strength: Using a tanzaku-shaped specimen with a width of 15 mm, T was measured with a Toyo Baldwin Tensilon at a chuck distance of 20 mm and a tensile speed of 50 mm/min.
A beer peel test was conducted. Examples 1 to 10 and Comparative Examples 1 to 9 The polyester shown in Table 1 and an ethylene-vinyl alcohol copolymer containing 44 mol% of ethylene component were
Cylinder temperature 230-240℃ using 30mmφ extruder
The mixture was melt-kneaded and then cooled to form pellets. The sample of Comparative Example 1 could not be extruded at the above temperature, so the temperature was raised to 260 DEG C., but the extrusion was discontinued because the ethylene-vinyl alcohol copolymer decomposed. A multilayer stretched polyester made by Nissei ASB Machinery Co., Ltd. with the obtained mixture as the outer layer and polyethylene terephthalate with an intrinsic viscosity of 0.75 as the inner layer.
Molding was performed using a 150D multilayer oriented blow molding machine.
The stretching ratio of the body of the multilayer bottle is approximately 2 times in the vertical direction and approximately 4 times in the horizontal direction, and the dimensions of the container are approximately 170 mm in height and 70 mm in diameter, and the wall thickness of the body is 0.05 to 0.07 mm for the outer layer and 0.07 mm for the inner layer.
It was 0.25 to 0.27 mm and had a volume of 500 c.c. Table 1 shows the amount of carbon dioxide gas permeation and the adhesive strength between both layers measured for the obtained polyester bottle, and it is clear that the multilayer polyester bottle of the present invention has excellent properties.

【表】【table】

【表】 おける重量割合を示す。
2) DSC測定にて融点ピークが生じなかつた。
実施例 11 直径40mmφの内外層用押出機、直径30mmφの中
間層用押出機および2種3層用リング状ダイスを
用い、内外層用が固有粘度0.95のポリエチレンテ
レフタレート中間層用が実施例2において用いた
ポリエステルとエチレン−ビニルアルコール共重
合体の2種3層パイプを水中に押出して冷却し
た。このパイプは外径25mm内径18mmであり、中間
層が0.6mm、内層が1.2mm、外層が1.7mmである。こ
のパイプを約100mmに切断しパイプの一端を約220
℃に加熱し底部を半円球状に閉塞賦形すると共に
他端を約200℃に加熱しネジ部及びネツクリング
を形成して全長95mmのプリフオームを作成した。 このプリフオームを110℃に加熱温調し、ブロ
ー金型内で縦方向に伸長しながらブローし高さ
170mm、外径70mm、内容積500c.c.の多層配向ボトル
を得た。このボトルの炭酸ガス透過量は30℃で
0.28c.c./24−hr−atmでであり、中間層と外層或
は内層の間を剥離することは困難であつた。
[Table] Shows the weight percentage in.
2) No melting point peak occurred in DSC measurement.
Example 11 Using an extruder for the inner and outer layers with a diameter of 40 mmφ, an extruder for the intermediate layer with a diameter of 30 mmφ, and a ring-shaped die for two types and three layers, in Example 2, the inner and outer layers were made of polyethylene terephthalate with an intrinsic viscosity of 0.95. The two types of three-layer pipes made of polyester and ethylene-vinyl alcohol copolymer used were extruded into water and cooled. This pipe has an outer diameter of 25 mm and an inner diameter of 18 mm, with a middle layer of 0.6 mm, an inner layer of 1.2 mm, and an outer layer of 1.7 mm. Cut this pipe to about 100mm and cut one end of the pipe to about 220mm.
A preform with a total length of 95 mm was prepared by heating to a temperature of 0.degree. This preform is heated to 110℃ and blown in a blow mold while being stretched vertically to the desired height.
A multilayer oriented bottle with a diameter of 170 mm, an outer diameter of 70 mm, and an inner volume of 500 c.c. was obtained. The carbon dioxide permeation rate of this bottle is at 30℃.
0.28 cc/24-hr-atm, and it was difficult to separate the intermediate layer from the outer layer or inner layer.

Claims (1)

【特許請求の範囲】[Claims] 1 多層配向ポリエステルボトルであつて、エチ
レンテレフタレート単位を主体とする熱可塑性ポ
リエステルの層及びオレフイン−ビニルアルコー
ル共重合体と融点が120℃以上250℃以下の結晶性
ポリエステルとを50:50乃至10:90の重量比で含
有するブレンド物の層からなる多層構造物から成
ることを特徴とする多層配向ポリエステルボト
ル。
1. A multilayer oriented polyester bottle, in which a layer of thermoplastic polyester mainly composed of ethylene terephthalate units, an olefin-vinyl alcohol copolymer, and a crystalline polyester having a melting point of 120°C or more and 250°C or less are mixed in a ratio of 50:50 to 10:1. A multilayer oriented polyester bottle characterized in that it consists of a multilayer structure consisting of layers of a blend containing a weight ratio of 90.
JP60098105A 1985-05-10 1985-05-10 Multilayer oriented polyester bottle Granted JPS61255857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098105A JPS61255857A (en) 1985-05-10 1985-05-10 Multilayer oriented polyester bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098105A JPS61255857A (en) 1985-05-10 1985-05-10 Multilayer oriented polyester bottle

Publications (2)

Publication Number Publication Date
JPS61255857A JPS61255857A (en) 1986-11-13
JPH0124629B2 true JPH0124629B2 (en) 1989-05-12

Family

ID=14211045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098105A Granted JPS61255857A (en) 1985-05-10 1985-05-10 Multilayer oriented polyester bottle

Country Status (1)

Country Link
JP (1) JPS61255857A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2801277B2 (en) * 1989-08-21 1998-09-21 株式会社クラレ Multi-layer package
JP2017052559A (en) * 2015-09-07 2017-03-16 サントリーホールディングス株式会社 Plastic container for warming

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138091A (en) * 1974-04-22 1975-11-04
JPS5181857A (en) * 1975-01-16 1976-07-17 Teijin Ltd NETSUKASOSEIHORIESUTERUJUSHISEIKEIHINNO SEIZOHO
JPS5273966A (en) * 1975-12-17 1977-06-21 Toyo Seikan Kaisha Ltd Blow molded structure
JPS53108162A (en) * 1977-03-03 1978-09-20 Nippon Synthetic Chem Ind Co Ltd:The Process for orienting multi-layered parison by blowing
JPS56112962A (en) * 1980-02-08 1981-09-05 Mitsubishi Rayon Co Ltd Molding material for hollow polyester molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138091A (en) * 1974-04-22 1975-11-04
JPS5181857A (en) * 1975-01-16 1976-07-17 Teijin Ltd NETSUKASOSEIHORIESUTERUJUSHISEIKEIHINNO SEIZOHO
JPS5273966A (en) * 1975-12-17 1977-06-21 Toyo Seikan Kaisha Ltd Blow molded structure
JPS53108162A (en) * 1977-03-03 1978-09-20 Nippon Synthetic Chem Ind Co Ltd:The Process for orienting multi-layered parison by blowing
JPS56112962A (en) * 1980-02-08 1981-09-05 Mitsubishi Rayon Co Ltd Molding material for hollow polyester molding

Also Published As

Publication number Publication date
JPS61255857A (en) 1986-11-13

Similar Documents

Publication Publication Date Title
US4398642A (en) Multi-ply vessel and method for production thereof
US5106693A (en) Transparent gas-barrier multilayer structure
EP0109305B1 (en) Laminates and their use in making containers
US4764403A (en) Multilayer biaxially oriented heat set articles
KR20000036033A (en) Gas-barrier, multi-layer hollow container
JPH11314335A (en) Simultaneously processable multilayer laminate for forming transparent article with high strength without cloudiness and its manufacture
JPS62221538A (en) Heat-set multilayer article
US4883696A (en) Laminate
JP4062416B2 (en) Polyester resin
JPH0454702B2 (en)
JPH0227942B2 (en) TASOYOKI
JPS5841181B2 (en) Manufacturing method for multilayer containers
WO1987002680A2 (en) Polyamide packaging material
JPH0124629B2 (en)
JPS59143637A (en) Plastic laminated structure and vessel
JPS5939547A (en) Polyester multilayer vessel excellent in gas permeability-resistance and its manufacture
JPS6239088B2 (en)
JPS6172051A (en) Polyester composition and container made thereof
JPH0331126B2 (en)
JP3229463B2 (en) Polyester sheet excellent in heat sealability and molded product thereof
JPS63267548A (en) Gas-barrier multi-layer structure
EP0390113B1 (en) Multilayered structure
JP3846974B2 (en) Multilayer structure
JPS63267549A (en) Gas-barrier multi-layer structure
US12115760B2 (en) Resin layered body