JPH01245923A - Controlling method for thickness distribution of superplastic forming parts - Google Patents

Controlling method for thickness distribution of superplastic forming parts

Info

Publication number
JPH01245923A
JPH01245923A JP63069308A JP6930888A JPH01245923A JP H01245923 A JPH01245923 A JP H01245923A JP 63069308 A JP63069308 A JP 63069308A JP 6930888 A JP6930888 A JP 6930888A JP H01245923 A JPH01245923 A JP H01245923A
Authority
JP
Japan
Prior art keywords
forming
parts
superplastic
thickness
push
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63069308A
Other languages
Japanese (ja)
Inventor
Takayuki Tsuzuki
都筑 隆之
Akio Takahashi
明男 高橋
Masaharu Shimizu
正治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63069308A priority Critical patent/JPH01245923A/en
Publication of JPH01245923A publication Critical patent/JPH01245923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To make a forming parts light in weight and to improve its quality by distributing sheet thickness in advance by chemical milling, mechanical working, etc., before superplastic forming and then carrying out superplastic forming. CONSTITUTION:Push bar bases 3 with upper and lower push rods 2 are provided and a push spindle 4 is arranged to a forming stock 1 for the purpose of superplastic forming such as cores for a high heat conduction panel. Before superplastic forming, contact positions of the push rods 2 are pressed to reduce the sheet thickness locally by concentration of stress through the push spindle 4, the push rod bases 3, the push rods 2. Further, parts other than the contact parts to with the push rods are thinned by chemical milling and then the main forming is carried out. Since the excess thickness is reduced previously in the excess thickness parts of the formed part, the forming parts is reduced in weight. Since the maximum working degree is reduced and the region of strain becomes narrow, the quality of the forming parts is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軽量化が要求される航空宇宙機器用部品のう
ち例えば高熱伝導パネル(アビオニクスパネル)用超塑
性成形コア・涙滴型タンク用コーン・各種タンク用半球
・各種構造用コルゲート等の超塑性成形部品などのよう
に成形後の板厚分布が大きくなる部品の板厚制御方法に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to parts for aerospace equipment that require weight reduction, such as superplastic molded cores for high thermal conductivity panels (avionics panels) and teardrop-shaped tanks. This invention relates to a thickness control method for parts that have a large thickness distribution after molding, such as superplastic molded parts such as cones, hemispheres for various tanks, and corrugates for various structures.

〔従来の技術〕[Conventional technology]

従来の超塑性成形では基本的に均一板厚の素材を用い、
成形後の板厚分布は成形方式(凸型or凹型)、金型形
状、成形条件(温度、ひずみ速度)等を最適化すること
によって制御されているが、これは局所的な板厚減少を
少くする程度のものであり、根本的な板厚制御は行われ
ていないし、またそれは不可能であった。
Conventional superplastic forming basically uses a material with uniform thickness,
The plate thickness distribution after forming is controlled by optimizing the forming method (convex or concave), mold shape, forming conditions (temperature, strain rate), etc., but this does not result in local thickness reduction. Fundamental thickness control has not been carried out, and it has been impossible to do so.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで従来の超塑性成形における板厚制御は、上記の
ように、局所的な板厚減少を少くする程度のものであり
、成形後の板厚を均一にしたり、更に積極的に最適設計
板厚分布に制御することは不可能であった。
By the way, as mentioned above, conventional plate thickness control in superplastic forming is limited to minimizing local thickness reductions, and it is necessary to make the plate thickness uniform after forming, or to actively adjust the optimum design plate thickness. It was impossible to control the distribution.

従って、航空宇宙機器分野では部品の軽量化すなわち最
適板厚化が強く要求されているのに対し、超塑性成形部
品はその最少板厚部が設計板厚を満足するように素材板
厚が選択されなければならず、その他の部分に余肉が残
って充分な軽量化が達成できないという不具合がありた
Therefore, in the field of aerospace equipment, there is a strong demand to reduce the weight of parts, that is, to increase the optimum plate thickness, whereas for superplastic molded parts, the material plate thickness is selected so that the minimum plate thickness satisfies the design plate thickness. However, there was a problem in that excess material remained in other parts, making it impossible to achieve sufficient weight reduction.

本発明はこの不具合を解決しようとするものである。The present invention attempts to solve this problem.

〔課題を解決するための手段〕[Means to solve the problem]

このため本発明の超塑性成形部品の板厚分布制御方法は
、超塑性成形用素材に超塑性成形作業に先立ってケミカ
ル・ミーリング、機械加工等によってあらかじめ板厚分
布を付与し、その後該素材に超塑性成形加工を施すこと
により成形後の板厚分布を任意に制御することを特徴と
している。
Therefore, in the method for controlling thickness distribution of superplastic molded parts of the present invention, a thickness distribution is imparted to the material for superplastic molding in advance by chemical milling, machining, etc. prior to the superplastic molding operation, and then the material is It is characterized by the ability to arbitrarily control the plate thickness distribution after forming by applying superplastic forming.

〔作用〕[Effect]

超塑性成形部品は一般に板厚が薄く、形状が複雑である
ため、成形後に板厚を調整することは不可能である。そ
こで本発明では、成形用素材に予め板厚分布を付与して
おくことにより、成形後に所定の最適板厚分布を得る、
というものである。ここで成形用素材に付゛与すべき板
厚分布は超塑性成形用板厚解析プログラムにより計算さ
れ、素材の板厚加工はケミカル・ミーリング、機械加工
等によって行われる。超塑性成形用板厚解析プログラム
は、成形途中における刻々の板厚分布変化を応力分布、
ひずみ速度分布に基づいて計算してゆき、成形後の板厚
分布を求めるものであるが、更に成形後の板厚分布が設
計板厚分布になるような素材板厚分布を求めることもで
きるものである。
Superplastic molded parts generally have a thin plate thickness and a complicated shape, so it is impossible to adjust the plate thickness after molding. Therefore, in the present invention, by giving a thickness distribution to the molding material in advance, a predetermined optimum thickness distribution is obtained after molding.
That is what it is. Here, the plate thickness distribution to be given to the forming material is calculated by a plate thickness analysis program for superplastic forming, and the plate thickness processing of the material is performed by chemical milling, machining, etc. The plate thickness analysis program for superplastic forming calculates the stress distribution, the plate thickness distribution change every moment during forming,
This method calculates the thickness distribution after forming by calculating based on the strain rate distribution, but it can also calculate the material thickness distribution so that the thickness distribution after forming matches the design thickness distribution. It is.

〔実施例〕〔Example〕

以下図面により本発明の一実施例について説明すると、
第1図は高熱伝導パネル用超塑性成形コアの成形方法を
示す本発明の第1の実施例の説明図、第2図はこれに用
いる成形用素材と成形後の状態を示す説明図、第3図は
本発明の第2の実施例を示す涙滴タンク用コーンの成形
用素材と成形後の状態を示す説明図、第4図は本発明の
第3の実施例として燃料タンク用半球の成形用素材と成
形後の状態を示す説明図である。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory diagram of the first embodiment of the present invention showing a method for molding a superplastic molded core for a high thermal conductivity panel; FIG. 2 is an explanatory diagram showing the molding material used therein and the state after molding; Figure 3 is an explanatory diagram showing the molding material for a cone for a teardrop tank and the state after molding, showing a second embodiment of the present invention, and Figure 4 is an explanatory diagram showing a hemisphere for a fuel tank as a third embodiment of the present invention. It is an explanatory view showing a molding material and a state after molding.

先づ第1.第2図に示す本発明の第1の実施例について
説明すると1は成形用素材、2は押し棒、3は上下に対
向して配設された押し棒基台、4は抑圧軸である。
First thing first. The first embodiment of the present invention shown in FIG. 2 will be described. Reference numeral 1 denotes a molding material, 2 a push rod, 3 push rod bases arranged vertically opposite to each other, and 4 a suppression shaft.

高熱伝導パネル用コアの超塑性成形は第1図に示すよう
に、交互に配列した上下の押し棒2によって行われる。
As shown in FIG. 1, superplastic molding of the core for a high thermal conductivity panel is performed by upper and lower push rods 2 arranged alternately.

版の成形力は押圧軸4、基台3を介して押し棒2によっ
て与えられるため、押し棒2と接触する成形用素材lの
8部に応力集中が発生して局所的(:板厚が減少する。
Since the forming force of the plate is applied by the push rod 2 via the press shaft 4 and the base 3, stress concentration occurs in the 8 parts of the forming material l that come into contact with the push rod 2, causing local (: plate thickness Decrease.

このため本発明に於ては、第2図(aXbXC)に示す
ように、成形用の均一板厚素材1のうち前記上下よりの
押し棒2と接する部分t0以外の部分tの板厚をケミカ
ル・ミーリングにより薄く加工することによりその後行
なう超塑性成形後に於ける板厚分布を大幅に改善する点
を特徴としている。本実施例では押し棒2による成形に
対する厳密な板厚解析が難かしいこと及びケミカル・ミ
ーリングではテーパー板厚加工が難しいことにより、−
段の板厚加工(押し棒との接触部to= Q 、5 r
ffn 、その他の部分t=0.5rm′I)を行った
だけであるが、最少板厚部と最大板厚部の板厚比は従来
第2図(C)に示すようにTmax / Tm1n =
 2.3であったものが、Tmax/Tm1n = 1
.4に改善された。今後、多段ケミ・ミル法、ケミ・ミ
ル範囲、ケミ・ミル量を最適化することにより一層の均
一板厚化が達成し得る見通しである。
For this reason, in the present invention, as shown in FIG.・It is characterized by the fact that by milling to make it thinner, the thickness distribution after the subsequent superplastic forming is greatly improved. In this example, it is difficult to strictly analyze the plate thickness for forming with the push rod 2, and it is difficult to process the tapered plate thickness by chemical milling.
Step plate thickness processing (contact part with push rod to = Q, 5 r
ffn, other parts t = 0.5rm'I), but the thickness ratio between the minimum thickness part and the maximum thickness part is conventionally Tmax / Tm1n = as shown in Fig. 2 (C).
What used to be 2.3 is now Tmax/Tm1n = 1
.. Improved to 4. In the future, it is expected that even more uniform plate thickness will be achieved by optimizing the multi-stage Chemi-mill method, the Chemi-mill range, and the Chemi-mill amount.

次ぎに第3図C:示す本発明の第2実施例である涙滴型
タンク用コーンの最適板厚制御法について説明すると、
涙滴タンク用コーンは各部分の曲率が連続的に変化して
いるためタンクの内圧Pに対して必要な板厚は各部分で
連続的に変化する。MUSE8−A涙滴タンク用コーン
の最適設計板厚分布と均−板厚素材及び偏肉素材を用い
た場合の成形後の板厚分布を比較すると、第3図に示す
ように、従来通りに(a)に示す均一板厚素材を用いる
とエツジ部で設計板厚を満足させるためには中心部にか
なりの余肉が残ることになり充分な軽量化が達成できな
い。これに対して本発明のように予め機械加工により板
厚分布を与えた偏肉素材(b)を用いることによりどの
部分の板厚も設計板厚と一致する最軽量コーンを製作し
た。
Next, the optimum plate thickness control method for a teardrop type tank cone, which is the second embodiment of the present invention shown in FIG. 3C, will be explained.
Since the curvature of each part of the cone for a teardrop tank changes continuously, the plate thickness required for the internal pressure P of the tank changes continuously in each part. Comparing the optimum design plate thickness distribution of the cone for MUSE8-A teardrop tank with the plate thickness distribution after forming when using uniform thickness material and uneven thickness material, as shown in Figure 3, it is found that If the uniform thickness material shown in (a) is used, in order to satisfy the design thickness at the edges, a considerable amount of extra wall thickness will remain at the center, making it impossible to achieve sufficient weight reduction. On the other hand, as in the present invention, by using the uneven thickness material (b) which has been given a plate thickness distribution by machining in advance, the lightest cone in which the plate thickness at any part matches the design plate thickness was manufactured.

本実施例では更に必要に応じて溶接部や口金部の板厚を
局所的に厚くすることも可能であり、応用範囲は極めて
広い。
In this embodiment, it is also possible to locally thicken the plate thickness of the welded part or the mouth part if necessary, and the range of applications is extremely wide.

更に本発明の第3の実施例である燃料タンク薄肉半球の
均−板厚制御法について第4図により説明すると燃料タ
ンク用半球は上記の第2実施例で説明したシーンと異な
り各部分の曲率が一定であるため、最適設計板厚も各部
分で一定となる。上記第2実施例と同様に均一板厚素材
Ca)を用いた場合及び偏肉素材(b)を用いた場合の
成形後の板厚分布と最適設計板厚を比較して第4図(C
)に示す。
Furthermore, the third embodiment of the present invention, a method for controlling the uniform plate thickness of a thin-walled fuel tank hemisphere, will be explained with reference to FIG. Since is constant, the optimal design plate thickness is also constant for each part. Figure 4 (C
).

本実施例におけるタンクの軽量化効果は第4図(C)の
説明図から明らかなように極めて太きく、上記第2実施
例と同様に局所的な板厚変化も必要に応じて付与するこ
とができる。
The effect of reducing the weight of the tank in this example is extremely large, as is clear from the explanatory diagram in FIG. Can be done.

なお本発明の超塑性成形部品の板厚分布制御方法は、前
述説明のコーン、半球以外にも超塑性成形における代表
的な基本形状であるコルゲートの成形に対しても同様の
最適板厚制御が可能であり、あらゆる超塑性材料、成形
形状に対して幅広く応用可能である。
The thickness distribution control method for superplastic molded parts of the present invention is applicable not only to the cones and hemispheres described above, but also to corrugate molding, which is a typical basic shape in superplastic molding. It is widely applicable to all superplastic materials and molded shapes.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の超塑性成形部品の板厚分布制
御方法によれば次に示す効果が得られる。
As described above, according to the method for controlling thickness distribution of superplastic molded parts of the present invention, the following effects can be obtained.

(1)超塑性成形において、従来本質的に不可能であっ
た板厚制御を可能とした。
(1) In superplastic forming, it has become possible to control plate thickness, which was essentially impossible in the past.

(2)超塑性成形部品の板厚分布最適化により大幅な部
品の軽量化を計ることができた。
(2) By optimizing the thickness distribution of superplastic molded parts, we were able to significantly reduce the weight of the parts.

(3)最大加工度が低減され又ひすみ速度範囲が狭くな
ることによる成形品の品質向上(内部欠陥の減少)が期
待でき生産性が著しく向上した。
(3) By reducing the maximum workability and narrowing the strain rate range, it is expected that the quality of molded products will improve (reduction in internal defects), and productivity will be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の高熱伝導パネル用超塑性
成形コアの成形方法の説明図、第2図はこれに用いる成
形用素材と成形後の状態説明図、第3図は本発明の第2
実施例の涙滴タンク用コーンの最適板厚制御法の説明図
、第4図は本発明の第3実施例の燃料タンク用半球の均
一板厚制御方法の説明図を示す。 1・・・成形用素材、2−・・押し棒、3・・・押し棒
基台、4・・・抑圧軸。 第1図 莞3国 (a)               (し)(C) (コーンMfr面形状) 第4匿 ra)                  (し)(
C) (牟5東断面1ffi灸)
Fig. 1 is an explanatory diagram of a method for forming a superplastic molded core for a high thermal conductivity panel according to the first embodiment of the present invention, Fig. 2 is an explanatory diagram of the molding material used therein and its state after molding, and Fig. 3 is an explanatory diagram of the present invention. Second invention
FIG. 4 is an explanatory diagram of a method for controlling the optimum plate thickness of a cone for a teardrop tank according to an embodiment of the present invention. FIG. 4 is an explanatory diagram of a method for controlling a uniform plate thickness of a hemisphere for a fuel tank according to a third embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Molding material, 2...Push rod, 3...Push rod base, 4...Suppressing shaft. Fig. 1 Guan 3 countries (a) (shi) (C) (cone Mfr surface shape) 4th cone ra) (shi) (
C) (Mu5 east section 1ffi moxibustion)

Claims (1)

【特許請求の範囲】[Claims] (1)超塑性成形用素材に超塑性成形作業以前にケミカ
ル・ミーリング、機械加工等によりあらかじめ板厚分布
を付与しておくことにより、成形後の板厚分布を任意に
制御することを特徴とする超塑性成形部品の板厚分布制
御方法。
(1) The material for superplastic forming is given a thickness distribution in advance by chemical milling, machining, etc. before the superplastic forming process, and the thickness distribution after forming can be arbitrarily controlled. A method for controlling thickness distribution of superplastic molded parts.
JP63069308A 1988-03-25 1988-03-25 Controlling method for thickness distribution of superplastic forming parts Pending JPH01245923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069308A JPH01245923A (en) 1988-03-25 1988-03-25 Controlling method for thickness distribution of superplastic forming parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069308A JPH01245923A (en) 1988-03-25 1988-03-25 Controlling method for thickness distribution of superplastic forming parts

Publications (1)

Publication Number Publication Date
JPH01245923A true JPH01245923A (en) 1989-10-02

Family

ID=13398803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069308A Pending JPH01245923A (en) 1988-03-25 1988-03-25 Controlling method for thickness distribution of superplastic forming parts

Country Status (1)

Country Link
JP (1) JPH01245923A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691784A (en) * 2013-12-24 2014-04-02 南京航空航天大学 Method for manufacturing corrugated sandwich layer
CN103862233A (en) * 2014-02-12 2014-06-18 江苏呈飞精密合金股份有限公司 Preparation method of composite plate with corrugated sandwich layer structure
CN105088230A (en) * 2014-05-07 2015-11-25 哈尔滨飞机工业集团有限责任公司 Technological method for reducing stress deformation of helicopter chemically-milled sheet metal members

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356317A (en) * 1986-08-27 1988-03-10 Mitsubishi Heavy Ind Ltd Working method for thin hemisphere and the like by ultraplastic forming

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356317A (en) * 1986-08-27 1988-03-10 Mitsubishi Heavy Ind Ltd Working method for thin hemisphere and the like by ultraplastic forming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691784A (en) * 2013-12-24 2014-04-02 南京航空航天大学 Method for manufacturing corrugated sandwich layer
CN103862233A (en) * 2014-02-12 2014-06-18 江苏呈飞精密合金股份有限公司 Preparation method of composite plate with corrugated sandwich layer structure
CN105088230A (en) * 2014-05-07 2015-11-25 哈尔滨飞机工业集团有限责任公司 Technological method for reducing stress deformation of helicopter chemically-milled sheet metal members

Similar Documents

Publication Publication Date Title
US4882823A (en) Superplastic forming diffusion bonding process
DE68903647T2 (en) DEVICE AND METHOD FOR PRODUCING OBJECTS BY SUPERPLASTIC MOLDING.
CN110976727B (en) Forging method for improving structure uniformity of titanium alloy forging
CN108188659A (en) A kind of manufacturing process of steel billet
CN112139761B (en) Numerical control machining method for controlling machining deformation of large aluminum alloy wall plate part
CN107649529B (en) Bent member mistake is away from extrusion molding apparatus and method
RU2220020C1 (en) Method of manufacture of forgings, predominantly out of metals and alloys of titanium subgroup and forging complex for performing the same
JPH01245923A (en) Controlling method for thickness distribution of superplastic forming parts
DE4341281C1 (en) Method for the production of parts by superplastic forming
US4516419A (en) Methods of enhancing superplastic formability of aluminum alloys by alleviating cavitation
CN109622846A (en) A kind of forging method improving mould steel volume recovery
CN111633101B (en) Repeated thinning, bending and strong deformation process for plates
JPS5942122A (en) Correcting method of warping of double-layer clad steel plate
CN113343534A (en) Method for improving quasi-beta forging deformation uniformity of titanium alloy high-strength forging
SU1165546A1 (en) Method of manufacturing laminated panels by diffusion welding
RU2387507C2 (en) Manufacturing method of large-sized items of variable cross-section from light alloys
JPH05185169A (en) Production of sandwich panel
CN110576161A (en) Deformation control method for crystallizer copper plate manufactured and remanufactured by laser
JPH04111901A (en) Manufacture of parts of tapered extruded shapes
JPS619974A (en) Method of mounting structural member through molding padding
JPS61123433A (en) Production of metal crucible
JPH03248725A (en) Die and embossing method using that die
JPH105906A (en) Production of bottomed container
JPH01218715A (en) Method for hot extruding pipe
JPH0832334B2 (en) Manufacturing method of modified cross-section strip