JPH01245571A - Piezoelectric actuator - Google Patents

Piezoelectric actuator

Info

Publication number
JPH01245571A
JPH01245571A JP63071929A JP7192988A JPH01245571A JP H01245571 A JPH01245571 A JP H01245571A JP 63071929 A JP63071929 A JP 63071929A JP 7192988 A JP7192988 A JP 7192988A JP H01245571 A JPH01245571 A JP H01245571A
Authority
JP
Japan
Prior art keywords
piezoelectric element
effect type
stress
generated
type laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63071929A
Other languages
Japanese (ja)
Other versions
JP2706083B2 (en
Inventor
Yukio Senda
千田 幸雄
Yasuo Oguri
康生 小栗
Tetsuhiko Nishimura
哲彦 西村
Takuhiro Osada
卓博 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP63071929A priority Critical patent/JP2706083B2/en
Publication of JPH01245571A publication Critical patent/JPH01245571A/en
Application granted granted Critical
Publication of JP2706083B2 publication Critical patent/JP2706083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a piezoelectric actuator capable of obtaining a large displacement and a large generating force using a longitudinal effect type laminated piezoelectric element by a method wherein a tensile stress or a compressive stress, which is generated in the surface part of the piezoelectric element, is reduced within a range of a specified value or lower. CONSTITUTION:If a piezoelectric actuator is designed in such a way that a stress, which is generated in the piezoelectric actuator at the time of flex displacement, in particular a tensile stress, which is generated in the surface part of a longitudinal effect type laminated piezoelectric element 1, is reduced or a compressive stress, which is generated in the surface part, is applied, a breakdown of the element can be prevented because the strength of this surface part is lowest. That is, the respective thicknesses of the element 1, intermediate supporting plates and a transverse effect type laminated piezoelectric element 7 are changed, a stress, which is generated in the interior of the element 1 of the weakest strength, is reduced so as to be within a range of a stress of a rapture strength or lower, that is, within a range of 0.5kg/cm<2> or less as a tensile stress or within a range of 5kg/cm<2> or less as a compressive force and moreover, with such the whole flexural rigidity as this flex type piezoelectric actuator can be obtained a prescribed amount of displacement and a prescribed generating force and a necessary applying field intensity, each plate thickness is decided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、バイモルフあるいはユニモルフなどの屈曲
型圧電アクチュエータ、特に縦効果型積層圧電素子を用
いた屈曲型の圧電アクチュエータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bending type piezoelectric actuator such as a bimorph or unimorph, and particularly to a bending type piezoelectric actuator using a longitudinal effect type laminated piezoelectric element.

〔従来の技術〕[Conventional technology]

第3図〜第5図はいずれも従来の圧電アクチュエータを
示すものである。
3 to 5 all show conventional piezoelectric actuators.

第3図は縦効果型積層圧電アクチュエータを示す斜視図
で、1は縦効果型積層圧電素子(以下特に必要な場合を
除き単に圧電素子という)全体を示し、2は板状の圧電
体セラミックス、3は電極、4は電源で、前記電極3を
介して各圧電体セラミックス2に電界Eを印加する。P
は前記各圧電体セラミックス2の分極方向を示す。矢印
Aは電界Eの印加によって圧電体セラミックス2が収縮
する方向、矢印Bは前記圧電体セラミックス2が伸長す
る方向を示す。
FIG. 3 is a perspective view showing a longitudinal effect type laminated piezoelectric actuator, in which 1 shows the entire longitudinal effect type laminated piezoelectric element (hereinafter simply referred to as a piezoelectric element unless otherwise required), 2 a plate-shaped piezoelectric ceramic, 3 is an electrode, and 4 is a power source, which applies an electric field E to each piezoelectric ceramic 2 through the electrode 3. P
indicates the polarization direction of each piezoelectric ceramic 2. Arrow A indicates the direction in which the piezoelectric ceramic 2 contracts due to the application of the electric field E, and arrow B indicates the direction in which the piezoelectric ceramic 2 expands.

このように、圧電素子1は1層当り50〜100μm程
度の厚みを有する圧電体セラミックス2を厚み方向に数
100層積層して、圧電体セラミックス2の分極方向P
と同方向に電界Eを印加することにより、全体を厚さ方
向に伸長させする縦効果を利用するものである。
In this way, the piezoelectric element 1 is made by laminating several hundred layers of piezoelectric ceramics 2 having a thickness of about 50 to 100 μm per layer in the thickness direction, and the polarization direction P of the piezoelectric ceramics 2 is
By applying an electric field E in the same direction as , the longitudinal effect is utilized to extend the entire body in the thickness direction.

第4図は横効果型圧電アクチュエータを示す斜視図で、
ユニモルフ型と称するものである。この図において、第
3図と同一符号は同一部分を示し、5は横効果型圧電素
子(以下特に必要な場合を除き単に圧電素子という)、
6は圧電体セラミックス、11は前記電極3を介して圧
電体セラミックス6の一側面に貼り合せた屈曲可能の金
属板である。
Figure 4 is a perspective view showing a transverse effect type piezoelectric actuator.
It is called a unimorph type. In this figure, the same reference numerals as in FIG. 3 indicate the same parts, and 5 is a transverse effect type piezoelectric element (hereinafter simply referred to as piezoelectric element unless otherwise required);
6 is a piezoelectric ceramic, and 11 is a bendable metal plate bonded to one side of the piezoelectric ceramic 6 via the electrode 3.

このように、圧電素子5として、1枚の厚さ100〜5
00μmの板状の圧電体セラミックス6の一側面に金属
板11を貼り合せ構成し、圧電体セラミックス6の分極
方向Pと逆方向に電界Eを印加することにより長手方向
に伸長させる横効果を利用して矢印C方向に屈曲させる
タイプである。
In this way, the piezoelectric element 5 has a thickness of 100 to 5
A metal plate 11 is bonded to one side of a 00 μm plate-shaped piezoelectric ceramic 6, and by applying an electric field E in a direction opposite to the polarization direction P of the piezoelectric ceramic 6, a lateral effect is utilized to elongate it in the longitudinal direction. This type is bent in the direction of arrow C.

第5図は横効果型圧電アクチュエータを示す斜視図で、
バイモルフ型と称するものである。この図において、第
4図と同一符号は同一部分を示し、6A、6Bは圧電体
セラミックス、8は横効果型圧電素子(以下単に圧電素
子という)、9は前記圧電素子8を固定する固定台であ
る。
Figure 5 is a perspective view showing a transverse effect type piezoelectric actuator.
This is called a bimorph type. In this figure, the same reference numerals as in FIG. 4 indicate the same parts, 6A and 6B are piezoelectric ceramics, 8 is a transverse effect type piezoelectric element (hereinafter simply referred to as a piezoelectric element), and 9 is a fixing base for fixing the piezoelectric element 8. It is.

この例は、圧電素子8を、1枚当りの厚さ100〜50
0μmの板状の圧電体セラミックス6A、6Bを直接に
、あるいは電極取り出しを容易にするために金属性の中
間電極板を間にはさんで貼り合わせて形成し、一方の圧
電体セラミックス6Aには分極方向Pと逆方向に、他方
の圧電体セラミックス6Bには分極方向Pと同方向に、
それぞれ電界Eを印加して矢印C方向に屈曲させるタイ
プである。
In this example, each piezoelectric element 8 has a thickness of 100 to 50
0 μm plate-shaped piezoelectric ceramics 6A and 6B are formed either directly or by bonding them together with a metallic intermediate electrode plate in between to facilitate electrode removal. in the opposite direction to the polarization direction P, and in the same direction as the polarization direction P to the other piezoelectric ceramic 6B.
They are of a type in which an electric field E is applied to bend them in the direction of arrow C.

上記バイモルフ型の圧電アクチュエータは、変位が数1
00μmと比較的大きくとれることが大きな特徴である
が、増々増大する大変位化、大発生力化などの要求に対
応するには、横効果を利用するより縦効果を利用したほ
うが、新規な材料開発を行なわずに横効果を利用する場
合の2〜3倍の変位量が得られる利点がある。
The above bimorph type piezoelectric actuator has a displacement of several 1
The main feature is that it can be relatively large at 0.00 μm, but in order to meet the ever-increasing demands for large displacements and large generated forces, it is better to use the longitudinal effect than the transverse effect to develop new materials. There is an advantage that the amount of displacement can be obtained 2 to 3 times as much as when using the lateral effect without any development.

すなわち、第1図は先に提案した圧電アクチュエータ(
特願昭61−228426号参照)を示す斜視図で、第
3図〜第5図と同一符号は同一部分を示し、縦効果型積
層圧電素子1と横効果型積層圧電素子(以下単に圧電素
子という)7を組み合せたものである。なお、絶縁層1
2と圧電素子7との間に第4図に示す金属板11を介在
させてもよい。
In other words, Figure 1 shows the piezoelectric actuator (
(See Japanese Patent Application No. 61-228426). The same reference numerals as in FIGS. It is a combination of 7). Note that the insulating layer 1
A metal plate 11 shown in FIG. 4 may be interposed between the piezoelectric element 2 and the piezoelectric element 7.

第1図の圧電アクチュエータの製造に際しては、例えば
圧電体セラミックス2.6Bとしてチタン酸ジルコン酸
鉛(PZT)の原料粉末と有機バインダ、可塑剤、溶剤
等とともに混練し、スラリーを調整しドクターブレード
等によってシート成型を行い、乾燥後所要の電極3をス
クリーン印刷によって形成し、その後、積層加熱圧着し
てモノリシックな成形体を得る。
When manufacturing the piezoelectric actuator shown in Fig. 1, for example, raw material powder of lead zirconate titanate (PZT) as piezoelectric ceramic 2.6B is kneaded with an organic binder, a plasticizer, a solvent, etc., a slurry is prepared, and a doctor blade, etc. After drying, necessary electrodes 3 are formed by screen printing, and then laminated and heated and pressed to obtain a monolithic molded body.

圧電体セラミックス2の厚みは、圧電素子1の長さに対
応するので、必要な素子長となるように積層数を決定す
る。これを電極3方向と直角の方向に、すなわち圧電素
子1の長さが数100μm程度となるように切断してか
ら焼成し、必要な厚さに研磨することによって板の長手
方向に積層されている圧電体セラミックス2を得る。
Since the thickness of the piezoelectric ceramic 2 corresponds to the length of the piezoelectric element 1, the number of laminated layers is determined so as to obtain the required element length. This is cut in a direction perpendicular to the direction of the electrodes 3, that is, so that the length of the piezoelectric element 1 is about several 100 μm, and then fired and polished to the required thickness, so that the plates are laminated in the longitudinal direction. A piezoelectric ceramic 2 is obtained.

また、成形体を切断せずにそのまま焼成し、その後、切
断、研磨しても同様に得られる。これに連絡電極を焼き
付け、リード線を付けて分極処理を行う。
Alternatively, the same result can be obtained by firing the molded body as it is without cutting it, and then cutting and polishing it. A contact electrode is baked onto this, a lead wire is attached, and polarization is performed.

次いで、圧電体セラミックス6Bを焼成して所定の形状
に加工し、分極処理を実施した後、絶縁層12を成形し
て圧電素子1を貼り合せる。また、電極取り出しを容易
にするために、圧電体セラミックス6Bと絶縁層12と
の間に屈曲可能な金属板を中間電極として同時に貼り合
せてもよい。
Next, the piezoelectric ceramic 6B is fired and processed into a predetermined shape, and after polarization treatment is performed, the insulating layer 12 is formed and the piezoelectric element 1 is bonded. Further, in order to facilitate the electrode extraction, a bendable metal plate may be simultaneously bonded between the piezoelectric ceramic 6B and the insulating layer 12 as an intermediate electrode.

このように低電圧駆動化のために、素子の長手方向に積
層した縦効果型積層圧電素子1を金属板11あるいは金
属板11を介してもう1枚の圧電体セラミックス6Bと
ともに貼りあわせている。
In this manner, in order to drive at a low voltage, the longitudinal effect type laminated piezoelectric element 1 laminated in the longitudinal direction of the element is bonded together with the metal plate 11 or another piezoelectric ceramic 6B with the metal plate 11 interposed therebetween.

特に横効果を利用した横効果型積層圧電素子7とともに
用いると、分極方向と電界方向が一致するため脱分極が
発生せずに大きな電界を印加できるので、大変位させる
には好ましい構造となる。また、横効果型積層圧電素子
7も低電圧化のために上記のように積層体にすることが
さらに好ましい。
In particular, when used with the transverse effect type laminated piezoelectric element 7 that utilizes the transverse effect, since the polarization direction and the electric field direction match, a large electric field can be applied without depolarization, making it a preferable structure for large displacements. Further, it is more preferable that the transverse effect type multilayer piezoelectric element 7 is also formed into a multilayer structure as described above in order to lower the voltage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

屈曲型の圧電アクチュエータに縦効果型積層圧電素子1
を用いる場合、この縦効果型積層圧電素子1が伸長し、
その伸長方向と直角な位置にその伸長を拘束することに
より屈曲が生ずるが、この場合、繰り返し使用している
と縦効果型積層圧電素子1にクラックが入り、素子が破
壊されてしまうという問題点があった。
Longitudinal effect type laminated piezoelectric element 1 in bending type piezoelectric actuator
When using, this longitudinal effect type laminated piezoelectric element 1 expands,
Bending occurs by restraining its expansion at a position perpendicular to its direction of expansion, but in this case, the problem is that repeated use will cause cracks in the longitudinal effect type laminated piezoelectric element 1, resulting in destruction of the element. was there.

この原因は、縦効果型積層圧電素子1は、内部電極が圧
電体セラミックス2の内部にちょうどノツチが入った状
態になり、積層方向に引張応力が働いた場合、その強度
が非常に低くなるためである。実際に曲げ強度を測定す
ると、圧電体セラミックス2単身では、約10〜15 
K g / m m ’であるが縦効果型積層圧電素子
1を第2図に示すように、曲げ強度測定装置13により
曲げ強度を測定すると、約4〜6Kg/mm2となり半
分以下に低下する。また、縦効果型積層圧電素子1を用
いた屈曲型圧電アクチュエータの内部に発生する応力を
計算すると、縦効果型積層圧電素子1の表面部に約2 
K g / m m 2という大きな引張応力が発生し
ていることがわかった。通常、引張強度は曲げ強度の1
/2〜1/3であるので、表面部に発生した約2 K 
g / m m 2の引張応力によって素子が破壊され
ることがわかった。
The reason for this is that in the longitudinal effect type laminated piezoelectric element 1, the internal electrode is in a state where the notch is just inside the piezoelectric ceramic 2, and when tensile stress is applied in the lamination direction, its strength becomes extremely low. It is. When the bending strength is actually measured, the piezoelectric ceramic 2 alone has a bending strength of approximately 10 to 15
However, when the bending strength of the longitudinal effect type laminated piezoelectric element 1 is measured by the bending strength measuring device 13 as shown in FIG. 2, it is approximately 4 to 6 Kg/mm2, which is less than half. In addition, when calculating the stress generated inside the bending piezoelectric actuator using the longitudinal effect type multilayer piezoelectric element 1, it is found that the stress generated inside the bending type piezoelectric actuator using the longitudinal effect type multilayer piezoelectric element 1 is approximately 2.
It was found that a large tensile stress of K g/mm2 was generated. Usually, tensile strength is 1 part of bending strength.
/2 to 1/3, so approximately 2 K generated on the surface
It was found that a tensile stress of g/mm2 destroys the device.

この発明は、上記の問題点を解決するためになされたも
ので、縦効果型積層圧電素子を用いて大ぎな変位と、大
きな発生力を得ることのできる圧電アクチュエータを提
供することを目的とする。
This invention was made to solve the above problems, and aims to provide a piezoelectric actuator that can obtain large displacement and large generated force using longitudinal effect type laminated piezoelectric elements. .

(課題を解決するための手段〕 この発明にかかる圧電アクチュエータは、板状の圧電体
セラミックスを厚み方向に積層して縦効果型積層圧電素
子を形成し、この縦効果型積層圧電素子の長手方向の一
側面にその伸長を拘束する手段を設けた圧電アクチュエ
ータにおいて、縦効果型積層圧電素子の表面部に発生す
る引張応力が0.5Kg/mm2以下、あるいは圧縮応
力が5K / m m 2以下の範囲となるようにした
ものである。
(Means for Solving the Problems) A piezoelectric actuator according to the present invention has plate-shaped piezoelectric ceramics laminated in the thickness direction to form a longitudinal effect type laminated piezoelectric element. In a piezoelectric actuator in which a means for restraining the extension is provided on one side of the piezoelectric actuator, the tensile stress generated on the surface of the longitudinal effect type laminated piezoelectric element is 0.5 Kg/mm2 or less, or the compressive stress is 5K/m2 or less. It is designed to be within the range.

〔作用〕[Effect]

この発明においては、縦効果型積層圧電素子の表面部に
発生する引張応力が0.5Kg/mm2以下、あるいは
圧縮応力が5 K / m m 2以下の範囲になるよ
うにしたので、圧電アクチュエータが破損することがな
い。
In this invention, the tensile stress generated on the surface of the longitudinal effect type laminated piezoelectric element is set to be within the range of 0.5 Kg/mm2 or less, or the compressive stress is set within the range of 5 K/mm2 or less, so that the piezoelectric actuator Will not be damaged.

〔実施例〕〔Example〕

屈曲変位時に圧電アクチュエータ内に発生する応力、特
に縦効果型積層圧電素子1の表面部に発生する引張り応
力を低減もしくは、圧縮応力がかかるように設計すれば
、この部分の強度が最も低いので素子の破壊は防止でき
る。すなわち、縦効果型積層圧電素子1.中間支持板お
よび横効果型積層圧電素子7のそれぞれの厚さを変え、
一番強度の弱い縦効果型積層圧電素子1の内部に発生す
る応力を、破壊強度以下の応力、すなわち引張応力とし
て0.5Kg/mm’以下あるいは圧縮応力として5 
K g / m m 2以下の範囲となるように、さら
にはこの屈曲型の圧電アクチュエータが所定の変位量と
発生力が得られるような全体の曲げ剛性と必要な印加電
界強度とともに各板厚を決めれば良い。
If the stress generated in the piezoelectric actuator during bending displacement, especially the tensile stress generated on the surface of the longitudinal effect type laminated piezoelectric element 1, is reduced or designed to apply compressive stress, the strength of this area is the lowest, so the element destruction can be prevented. That is, longitudinal effect type multilayer piezoelectric element 1. By changing the respective thicknesses of the intermediate support plate and the transverse effect type laminated piezoelectric element 7,
The stress generated inside the longitudinal effect type laminated piezoelectric element 1, which has the weakest strength, is the stress below the breaking strength, that is, the tensile stress is 0.5 Kg/mm' or less, or the compressive stress is 5 Kg/mm' or less.
In addition, the thickness of each plate should be adjusted so that the bending type piezoelectric actuator has the overall bending rigidity and the necessary applied electric field strength so that the bending type piezoelectric actuator can obtain the predetermined amount of displacement and generated force. All you have to do is decide.

横効果型積層圧電素子7も使用電圧の低下のために積層
体を用いることが好ましいが、縦効果型積層圧電素子1
とともに積層する各1層ずつの厚さは、使用電圧と必要
な電界強度から求めることができる。
Although it is preferable to use a laminate for the transverse effect type laminated piezoelectric element 7 in order to reduce the working voltage, the longitudinal effect type laminated piezoelectric element 1
The thickness of each layer laminated together can be determined from the voltage used and the required electric field strength.

以下の実施例では、数例の所定の変位量と発生力が得ら
れるように素子の具体的な各板厚、素子形状(長さ、幅
)を示したが、他の所定変位量。
In the following examples, specific plate thicknesses of the elements and element shapes (length, width) are shown so as to obtain several examples of predetermined displacement amounts and generated forces, but other predetermined displacement amounts are possible.

発生力および素子形状の場合でも、上記者えに基づいて
作製することができるので、この発明は以下に記載する
実施例のみに限定されない。
Since the generated force and the element shape can be manufactured based on the above-mentioned method, the present invention is not limited to the examples described below.

以下の実施例および比較例で使用した圧電体の圧電歪定
数は d 33” 720 X 10−” m/ Vd 3I
= 350 X 10−” m/ Vである。
The piezoelectric strain constant of the piezoelectric material used in the following examples and comparative examples is d 33" 720 X 10-" m/Vd 3I
= 350 x 10-” m/V.

(実施例1) 有効素子長さ30mm、幅15mmという形状のバイモ
ルフにおいて、所定変位量1発生力がそれぞれ600μ
m、IKgfが得られるように次のような各板厚にして
バイモルフを作成した。
(Example 1) In a bimorph with an effective element length of 30 mm and width of 15 mm, the force generated per predetermined displacement amount is 600 μm.
Bimorphs were prepared with the following plate thicknesses so as to obtain m and IKgf.

縦効果型積層圧電素子    400μm中間支持板(
ジルコニア族) 220μm20μm横効果型積子  
  600μmまた、印加する電圧は120■で必要な
印加電界強度は約1.2KV/mmであるので、積層体
の各層の厚さは100μmとした。すなわち、縦効果型
積層圧電素子1では約300層、横効果型積層圧電素子
7では6層の積層体である。
Longitudinal effect type laminated piezoelectric element 400μm intermediate support plate (
Zirconia family) 220μm20μm transverse effect type stacker
Further, since the applied voltage was 120 μm and the required applied electric field strength was about 1.2 KV/mm, the thickness of each layer of the laminate was 100 μm. That is, the longitudinal effect type laminated piezoelectric element 1 has approximately 300 layers, and the transverse effect type laminated piezoelectric element 7 has six layers.

120V印加時の、変位量と発生力を測定すると、それ
ぞれ630μmで9503fであった。
When the displacement amount and generated force were measured when 120V was applied, they were 630 μm and 9503f, respectively.

また、縦効果型積層圧電素子1の表面部に発生する応力
を測定するために、素子表面に歪ゲージを貼りつけて、
実際の歪量を測定して応力を求めたところ、0.1Kg
/mm2の引張り応力が働いていることが確認できた。
In addition, in order to measure the stress generated on the surface of the longitudinal effect type laminated piezoelectric element 1, a strain gauge was attached to the element surface.
When the stress was determined by measuring the actual amount of strain, it was found to be 0.1Kg.
It was confirmed that a tensile stress of /mm2 was acting.

ただし、歪ゲージを用いて得られた応力は(120V印
加して屈曲させた時の素子表面の歪量)−(縦効果型積
層圧電素子1単身で屈曲させないで120■印加した時
の歪i)の値に圧電体のヤング率を乗じた値とじて求め
た。また、繰り返し電圧を印加して無負荷で耐久性のテ
ストを行なったところ、105回以上のくり返し耐久性
が確認できた。
However, the stress obtained using a strain gauge is (amount of strain on the element surface when 120V is applied and bent) - (strain i when 120μ is applied to longitudinal effect type multilayer piezoelectric element 1 alone without bending) ) multiplied by the Young's modulus of the piezoelectric material. Furthermore, when a durability test was conducted under no load by repeatedly applying a voltage, durability over 105 cycles or more was confirmed.

(実施例2) 実施例1と同じ有効素子長さ30mm、幅15mmとい
うバイモルフにおいて、所定変位量600μm1発生力
IKgfとなるように、中間支持板を用いないで、2枚
の圧電素子の板厚を、次のようにして作製した。
(Example 2) In a bimorph with the same effective element length of 30 mm and width of 15 mm as in Example 1, the plate thickness of the two piezoelectric elements was changed without using an intermediate support plate so that a predetermined displacement amount of 600 μm1 generated force IKgf was obtained. was produced as follows.

縦効果型積層圧電素子    400μm00μm横効
果型積子    800μm積層体の各層の厚さおよび
印加電圧は、実施例1と同じである。120V印加時の
、変位量と発生力および縦効果型積層圧電素子1の表面
部に発生した応力はそれぞれ620μm、980gf。
Longitudinal effect type laminated piezoelectric element 400 μm 00 μm Lateral effect type stacker 800 μm The thickness and applied voltage of each layer of the laminate were the same as in Example 1. When 120 V was applied, the amount of displacement, the generated force, and the stress generated on the surface of the longitudinal effect type laminated piezoelectric element 1 were 620 μm and 980 gf, respectively.

0.05Kg/mm2の引張応力であった。実施例1と
同様なくり返し耐久性は、105回以上であった。
The tensile stress was 0.05 Kg/mm2. Similar to Example 1, the repetition durability was 105 times or more.

(比較例1) 実施例1.2と同じ変位量1発生力を得るために、各板
厚以外は全て同一寸法にしてバイモルフを作製した。圧
電体の厚さは、 縦効果型積層圧電素子    600μm00μm横効
果型積子    6008m実施例1,2と同じ変位量
と発生力を得るために、100Vの電圧を印加した。す
なわち、20V低い電圧の印加で所定の変位量と発生力
は得られた。
(Comparative Example 1) In order to obtain the same displacement amount 1 generation force as in Example 1.2, a bimorph was produced with all dimensions the same except for each plate thickness. The thickness of the piezoelectric body was as follows: Longitudinal effect type multilayer piezoelectric element: 600 μm Transverse effect type stacker: 6008 m In order to obtain the same amount of displacement and generated force as in Examples 1 and 2, a voltage of 100 V was applied. That is, the predetermined amount of displacement and generated force were obtained by applying a voltage 20V lower.

また、歪ゲージにより得られた応力は2.1K g /
 m m 2であった。実施例1と同様なくり返し耐久
テストを、100v繰り返し印加して行なったところ、
102回以下で素子は破壊した。
In addition, the stress obtained by the strain gauge was 2.1K g/
It was mm2. A repeated durability test was conducted in the same manner as in Example 1 by repeatedly applying 100V.
The device was destroyed after 102 cycles or less.

(実施例3) 有効素子長さ25mm、幅8.5mm。(Example 3) Effective element length 25mm, width 8.5mm.

所定最大変位量1 mm、発生力100gfが得られる
ように次のように各板厚にしてバイモルフを作製した。
Bimorphs were manufactured with various plate thicknesses as follows so as to obtain a predetermined maximum displacement of 1 mm and a generated force of 100 gf.

縦効果型積層圧電素子    165μm中間支持板(
アルミナ製)   75μm横効果型積層圧電素子  
  240μmまた、印加する電圧は140V、また、
必要な電界強度は1.15KV/mmなので積層体各層
の厚さは120μmとした。140V印加時、変位量1
発生力および縦効果型積層圧電素子1に発生する応力は
、それぞれ1.01mm、993fおよび0.05Kg
/mm2の圧縮応力であった。繰り返し140Vを印加
した繰り返し耐久テストでは、約106回の耐久性が確
認された。
Longitudinal effect type laminated piezoelectric element 165μm intermediate support plate (
Made of alumina) 75μm transverse effect type laminated piezoelectric element
240μm, and the applied voltage is 140V, and
Since the required electric field strength was 1.15 KV/mm, the thickness of each layer of the laminate was 120 μm. Displacement amount 1 when applying 140V
The generated force and the stress generated in the longitudinal effect type laminated piezoelectric element 1 are 1.01mm, 993f, and 0.05Kg, respectively.
The compressive stress was /mm2. In a repeated durability test in which 140V was repeatedly applied, durability was confirmed for about 106 times.

なお、この実施例のように圧縮応力が作用するか引張応
力が作用するかは、各圧電素子の電圧印加による伸びと
外力との関係によって決まる。
Note that whether compressive stress or tensile stress is applied as in this embodiment is determined by the relationship between the elongation of each piezoelectric element due to voltage application and external force.

(比較例2) 実施例3と同じ変位量7発生力を得るために各板厚以外
は全て同一寸法にしてバイモルフを作製した。ただし、
中間支持板はリン青銅板を用いた。
(Comparative Example 2) In order to obtain the same displacement amount 7 generated force as in Example 3, a bimorph was produced with the same dimensions except for each plate thickness. however,
A phosphor bronze plate was used as the intermediate support plate.

縦効果型積層圧電素子    230μm中間支持板(
リン青銅製)   20μm横効果型積層圧電素子  
  230μm印加する電圧は120Vであった。12
0■印加時の実測した変位量と発生力はそれぞれi、。
Longitudinal effect type laminated piezoelectric element 230μm intermediate support plate (
(made of phosphor bronze) 20μm transverse effect type laminated piezoelectric element
The voltage applied for 230 μm was 120V. 12
The measured displacement and generated force when applying 0■ are respectively i.

2mmおよび98gfであったが、縦効果型積層圧電素
子1表面に発生する応力は1.8Kg/mm2の引張応
力であった。くり返し120Vを印加して耐久テストを
行なったところ約250回で破壊した。
2 mm and 98 gf, but the stress generated on the surface of the longitudinal effect type laminated piezoelectric element 1 was a tensile stress of 1.8 Kg/mm2. When a durability test was conducted by repeatedly applying 120V, it broke after approximately 250 cycles.

(実施例4) 素子有効長さ15mm、幅5mm 所定最大変位量450μm1発生力45gfが得られる
ように、各板厚を次のようにしてユニモルフ型の圧電ア
クチュエータを作製した。
(Example 4) A unimorph type piezoelectric actuator was fabricated with each plate thickness as follows so as to obtain a predetermined maximum displacement of 450 μm and a generated force of 45 gf with an effective element length of 15 mm and a width of 5 mm.

縦効果型積層圧電素子    145μm支持板(アル
ミナ製)     135μm印加する電圧は125V
で、必要な印加電界強度は1.25KV/mmなので積
層体各−層の厚さは100μmである。125V印加時
の変位量と発生力および縦効果型積層圧電素子1の表面
部の応力はそれぞれ460μm44gfおよび0゜1K
g/mm2の圧縮応力であった。繰り返し125V印加
した繰り返し耐久テストでは、約105回以上の耐久性
が得られた。
Longitudinal effect type laminated piezoelectric element 145μm support plate (made of alumina) 135μm Applied voltage is 125V
Since the required applied electric field strength is 1.25 KV/mm, the thickness of each layer of the laminate is 100 μm. The amount of displacement and generated force when applying 125V, and the stress on the surface of the longitudinal effect type laminated piezoelectric element 1 are 460μm44gf and 0°1K, respectively.
The compressive stress was g/mm2. In a repeated durability test in which 125V was repeatedly applied, durability of approximately 105 times or more was obtained.

(比較例3) 実施例4と同じ変位量1発生力を得るために各板厚以外
はすべて同一寸法にしてユニモルフを作製した。
(Comparative Example 3) In order to obtain the same displacement amount 1 generation force as in Example 4, a unimorph was produced with all dimensions the same except for each plate thickness.

縦効果型積層圧電素子    200μm支持板(アル
ミナ製)     85μm印加電圧は、105vであ
った。105V印加時の変位量と発生力はそれぞれ46
5μm、43gfであった。また、縦効果型積層圧電素
子1の表面部の応力は、約1.8Kg/mm’の引張応
力であった。また、繰り返し1osv印加して繰り返し
耐久テストを行なったところ、約150回で素子゛は破
壊した。
Longitudinal effect type laminated piezoelectric element 200 μm support plate (made of alumina) 85 μm The applied voltage was 105 V. The amount of displacement and generated force when applying 105V are each 46
It was 5 μm and 43 gf. Further, the stress on the surface of the longitudinal effect type laminated piezoelectric element 1 was a tensile stress of about 1.8 Kg/mm'. Further, when a repeated durability test was conducted by repeatedly applying 1 osv, the device was destroyed after approximately 150 cycles.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、縦効果型積層圧電素子
の表面部に発生する引張応力が0. 5K g / m
 m ”以下、あるいは圧縮応力が5 K / mm2
以下の範囲となるようにしたので、大変位。
As explained above, the present invention has the advantage that the tensile stress generated on the surface of the longitudinal effect type laminated piezoelectric element is 0. 5K g/m
m” or less or the compressive stress is 5 K/mm2
It was set to the following range, so it was a big change.

大発生力を得るために縦効果型積層圧電素子を屈曲型の
圧電アクチュエータに使用する際に、縦効果型積層圧電
素子素面に発生する引張応力が低減し、大変位下でも、
素子が破壊されずに耐久性が大幅に向上する利点を有す
る。
When a longitudinal effect type laminated piezoelectric element is used in a bending type piezoelectric actuator to obtain a large generated force, the tensile stress generated on the element surface of the longitudinal effect type laminated piezoelectric element is reduced, and even under large displacement,
This has the advantage that the element is not destroyed and durability is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の適用対象である縦効果型積層圧電素
子と横効果型積層圧電素子を用いたバイモルフ型圧電ア
クチュエータの斜視図、第2図は縦効果型積層圧電素子
の曲げ強度の測定方法を示した図、第3図は従来の縦効
果型積層圧電アクチュエータを示す斜視図、第4図は同
じくユニモルフ型の横効果型圧電アクチュエータを示す
斜視図、第5図は同じくバイモルフ型の横効果型圧電ア
クチュエータを示す斜視図である。 図中、1は縦効果型積層圧電素子、2,6Bは圧電体セ
ラミックス、3は電極、4は電源、7は横効果型積層圧
電素子、9は固定台、13は曲げ強度測定装置である。 第1図 第2図 13曲げ強贋瀾定装置 第3図 第4図 第5図
Figure 1 is a perspective view of a bimorph piezoelectric actuator using a longitudinal effect type laminated piezoelectric element and a transverse effect type laminated piezoelectric element to which the present invention is applied, and Figure 2 is a measurement of the bending strength of the longitudinal effect type laminated piezoelectric element. Fig. 3 is a perspective view showing a conventional longitudinal effect type multilayer piezoelectric actuator, Fig. 4 is a perspective view showing a unimorph transverse effect piezoelectric actuator, and Fig. 5 is a perspective view showing a bimorph transverse effect piezoelectric actuator. FIG. 2 is a perspective view showing an effect type piezoelectric actuator. In the figure, 1 is a longitudinal effect type laminated piezoelectric element, 2 and 6B are piezoelectric ceramics, 3 is an electrode, 4 is a power supply, 7 is a transverse effect type laminated piezoelectric element, 9 is a fixing table, and 13 is a bending strength measuring device. . Fig. 1 Fig. 2 13 Bending forgery detection device Fig. 3 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims]  板状の圧電体セラミックスを厚み方向に積層して縦効
果型積層圧電素子を形成し、この縦効果型積層圧電素子
の長手方向の一側面にその伸長を拘束する手段を設けた
圧電アクチュエータにおいて、前記縦効果型積層圧電素
子の表面部に発生する引張応力が0.5Kg/mm^2
以下、あるいは圧縮応力が5Kg/mm^2以下の範囲
となる構成としたことを特徴とする圧電アクチュエータ
A piezoelectric actuator in which plate-shaped piezoelectric ceramics are laminated in the thickness direction to form a longitudinal effect type laminated piezoelectric element, and a means for restraining the expansion is provided on one longitudinal side of the longitudinal effect type laminated piezoelectric element, The tensile stress generated on the surface of the longitudinal effect type laminated piezoelectric element is 0.5 Kg/mm^2
A piezoelectric actuator characterized in that it has a configuration in which the compressive stress is in the range of 5 Kg/mm^2 or less.
JP63071929A 1988-03-28 1988-03-28 Piezo actuator Expired - Fee Related JP2706083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071929A JP2706083B2 (en) 1988-03-28 1988-03-28 Piezo actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071929A JP2706083B2 (en) 1988-03-28 1988-03-28 Piezo actuator

Publications (2)

Publication Number Publication Date
JPH01245571A true JPH01245571A (en) 1989-09-29
JP2706083B2 JP2706083B2 (en) 1998-01-28

Family

ID=13474702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071929A Expired - Fee Related JP2706083B2 (en) 1988-03-28 1988-03-28 Piezo actuator

Country Status (1)

Country Link
JP (1) JP2706083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638507C1 (en) * 1996-09-20 1998-01-15 Fraunhofer Ges Forschung High load resistant piezoelectric actuator with variable rigidity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298189A (en) * 1986-06-18 1987-12-25 Sumitomo Special Metals Co Ltd Piezoelectric actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298189A (en) * 1986-06-18 1987-12-25 Sumitomo Special Metals Co Ltd Piezoelectric actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638507C1 (en) * 1996-09-20 1998-01-15 Fraunhofer Ges Forschung High load resistant piezoelectric actuator with variable rigidity

Also Published As

Publication number Publication date
JP2706083B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
EP0479328B1 (en) Piezoelectric actuator
JP4667863B2 (en) Monolithic multilayer actuator made from piezoelectric ceramic or electrostrictive material
US5034649A (en) Piezoelectric actuator
JP2001210884A (en) Stacked type piezoelectric actuator
JP2007287910A (en) Laminated piezoelectric bimorph element
JP3370178B2 (en) Multilayer piezoelectric element and method of manufacturing the same
JP4373643B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JPH01245571A (en) Piezoelectric actuator
JPS60176282A (en) Laminating type piezoelectric porcelain and manufacture thereof
JP2585322B2 (en) Piezo actuator
JP2004274029A (en) Piezoelectric actuator
JP6047358B2 (en) Multiplexed element and manufacturing method thereof
JPH04167580A (en) Laminated piezoelectric actuator element
JP2533861B2 (en) Piezoelectric actuator
JP4673418B2 (en) Vibrating transfer device
JPH02237083A (en) Laminated piezoelectric element
JPH0774410A (en) Manufacture of electrostriction laminate
JP2571802B2 (en) Piezo actuator
JP4109433B2 (en) Manufacturing method of multilayer piezoelectric element
JPH0442947Y2 (en)
JP2946870B2 (en) Method and apparatus for evaluating piezoelectric material
JPH01261879A (en) Lamination type displacement element
JPH01282878A (en) Bend-type piezoelectric displacement element
JP6764759B2 (en) Piezoelectric actuator
JPH02267976A (en) Laminated ceramic element and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees