JP2585322B2 - Piezo actuator - Google Patents

Piezo actuator

Info

Publication number
JP2585322B2
JP2585322B2 JP62307579A JP30757987A JP2585322B2 JP 2585322 B2 JP2585322 B2 JP 2585322B2 JP 62307579 A JP62307579 A JP 62307579A JP 30757987 A JP30757987 A JP 30757987A JP 2585322 B2 JP2585322 B2 JP 2585322B2
Authority
JP
Japan
Prior art keywords
piezoelectric
thickness
actuator
support member
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62307579A
Other languages
Japanese (ja)
Other versions
JPS63260085A (en
Inventor
幸雄 千田
康生 小栗
哲彦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP62307579A priority Critical patent/JP2585322B2/en
Publication of JPS63260085A publication Critical patent/JPS63260085A/en
Application granted granted Critical
Publication of JP2585322B2 publication Critical patent/JP2585322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、大きな変位量と発生力を最小の印加電界
で得るための圧電アクチュエータに関するものである。
Description: TECHNICAL FIELD The present invention relates to a piezoelectric actuator for obtaining a large displacement and a generated force with a minimum applied electric field.

〔従来の技術〕[Conventional technology]

第1図,第2図はいずれもこの発明の適用対象である
従来の圧電アクチュエータの一例を示すものである。
FIGS. 1 and 2 both show an example of a conventional piezoelectric actuator to which the present invention is applied.

第1図はユニモルフ型圧電アクチュエータを示す斜視
図で、1は圧電素子全体を示し、2は板状の圧電体セラ
ミックス、3は電極、4は電源で、前記電極3を介して
圧電体セラミックス2に電界Eを印加する。Pは前記圧
電体セラミックス2の分極方向を示す。11は前記電極3
を介して圧電体セラミックス2の一側面に貼り合わせた
屈曲可能の金属板からなる支持部材である。矢印Dは電
界Eの印加によって圧電体セラミックス2が収縮する方
向、矢印Bは前記圧電体セラミックス2が伸長する方向
を示す。このように、圧電素子1として、1枚の厚さ10
0〜500μmの板状の圧電体セラミックス2の一側面に支
持部材11を貼り合わせて構成し、圧電体セラミックス2
の分極方向Pと同方向に電界Eを印加することにより、
厚さ方向と直角方向に収縮させる横効果を利用して矢印
C方向に屈曲させるものである。
FIG. 1 is a perspective view showing a unimorph type piezoelectric actuator, 1 is an entire piezoelectric element, 2 is a plate-shaped piezoelectric ceramic, 3 is an electrode, 4 is a power source, and a piezoelectric ceramic 2 is provided through the electrode 3. An electric field E is applied. P indicates the polarization direction of the piezoelectric ceramic 2. 11 is the electrode 3
Is a support member made of a bendable metal plate bonded to one side surface of the piezoelectric ceramics 2 via a. An arrow D indicates a direction in which the piezoelectric ceramic 2 contracts due to the application of the electric field E, and an arrow B indicates a direction in which the piezoelectric ceramic 2 expands. In this way, as the piezoelectric element 1, one sheet having a thickness of 10
A support member 11 is attached to one side of a plate-shaped piezoelectric ceramic 2 having a thickness of 0 to 500 μm.
By applying an electric field E in the same direction as the polarization direction P of
It is bent in the direction of arrow C by utilizing the lateral effect of contracting in the direction perpendicular to the thickness direction.

第2図はバイモルフ型の圧電アクチュエータを示す斜
視図である。この図において、第1図と同一符号は同一
部分を示し、2A,2Bは圧電体セラミックス、5は横効果
型の圧電素子、6は前記圧電素子5を固定する固定台で
ある。
FIG. 2 is a perspective view showing a bimorph type piezoelectric actuator. 1, the same reference numerals as those in FIG. 1 denote the same parts, 2A and 2B denote piezoelectric ceramics, 5 denotes a lateral effect type piezoelectric element, and 6 denotes a fixing base for fixing the piezoelectric element 5.

この例は、圧電素子5を、1枚当りの厚さ100〜500μ
mの板状の圧電体セラミックス2A,2Bを直接に接合し、
一方の圧電体セラミックス2Aには分極方向Pと逆方向
に、他方の圧電体セラミックス2Bには分極方向Pと同方
向に、それぞれ電界Eを印加して矢印C方向に屈曲させ
るものである。
In this example, the piezoelectric element 5 has a thickness of 100 to 500 μ per sheet.
m plate-shaped piezoelectric ceramics 2A and 2B are directly joined,
An electric field E is applied to one of the piezoelectric ceramics 2A in the direction opposite to the polarization direction P, and the other piezoelectric ceramics 2B is bent in the direction of the arrow C by applying an electric field E in the same direction as the polarization direction P.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、第1図に示すユニモルフ型の圧電アクチュ
エータは通常圧電ブザーなどの振動子として用いられ、
振動子としての設計手法はほぼ確立されている。しかし
ながらアクチュエータなどの共振を利用しない場合、あ
るいは低周波駆動を行うなどの場合、大きな変位量,発
生力を同時に得るために圧電体および屈曲部材の厚さな
どを最適に設計する方法は開示されていない。一方、第
3図に示すような2層構造(中間板なし)のバイモルフ
型の圧電アクチュエータについては、通常、同じ材料で
同じ寸法(厚さ)の圧電体セラミックス2A,2Bを2枚貼
り合わせることが一般的であるが、この場合にも大きな
変位量と発生力を得るものはいまだ開示されていなかっ
た。
Incidentally, the unimorph type piezoelectric actuator shown in FIG. 1 is usually used as a vibrator such as a piezoelectric buzzer,
The design method as a vibrator has been almost established. However, when resonance of an actuator or the like is not used, or when low-frequency driving is performed, a method of optimally designing the thickness of the piezoelectric body and the bending member and the like in order to simultaneously obtain a large displacement and a generated force is disclosed. Absent. On the other hand, for a bimorph type piezoelectric actuator having a two-layer structure (without an intermediate plate) as shown in FIG. 3, two piezoelectric ceramics 2A and 2B of the same material and the same dimensions (thickness) are usually bonded together. However, there has not yet been disclosed any device which can obtain a large displacement and generated force in this case.

この発明の目的は、かかる問題点を解決するために、
屈曲型の圧電アクチュエータにおいて大きな変位量と発
生力を同時に得て、さらに、そのために必要な印加電界
強度を最小にすることが可能な圧電アクチュエータを提
供することにある。
An object of the present invention is to solve such a problem.
It is an object of the present invention to provide a piezoelectric actuator capable of simultaneously obtaining a large displacement and a generated force in a bending type piezoelectric actuator and further minimizing an applied electric field intensity required for the displacement.

〔問題点を解決するための手段〕[Means for solving the problem]

この発明にかかる圧電アクチュエータは、電界の印加
の有無に応じ伸縮する板状の圧電体セラミックスにその
伸縮変形を拘束するために、非圧電性の屈曲可能な板状
の支持部材あるいは前記圧電体セラミックスと伸縮方向
が異なる板状の圧電体セラミックスからなる支持部材を
それぞれ直接貼り合わせてなる圧電アクチュエータにお
いて、互いに貼り合わせる前記圧電体セラミックスと支
持部材のそれぞれのヤング率をY2,Y1、厚さをt2,t1、前
記両ヤング率の比をpとすると圧電体セラミックスの厚
さt2の範囲が下記関係式(I)を満足し、かつ支持部材
の厚さt1が下記関係式(II)を満足するものである。
The piezoelectric actuator according to the present invention includes a non-piezoelectric bendable plate-shaped support member or the piezoelectric ceramics for restraining the expansion and contraction of the plate-shaped piezoelectric ceramics depending on whether an electric field is applied or not. In a piezoelectric actuator in which support members made of a plate-shaped piezoelectric ceramic having different expansion and contraction directions are directly bonded to each other, the respective Young's moduli of the piezoelectric ceramic and the support member bonded to each other are set to Y 2 , Y 1 , and the thickness. Where t 2 and t 1 , and the ratio of the two Young's moduli is p, the range of the thickness t 2 of the piezoelectric ceramic satisfies the following relational expression (I), and the thickness t 1 of the support member is the following relational expression. It satisfies (II).

0.8×A≦t2≦1.2×A ……(I) F:アクチュエータとして必要な発生力(N) δ:アクチュエータとして必要な変位量(m) l:アクチュエータの長さ(m) b:アクチュエータの幅(m) Y2:圧電体のヤング率(N/m) A:圧電体の最適厚さ(m) t1:支持部材の厚さ(m) t2:圧電体の厚さ(m) 〔作用〕 この発明においては、印加電界が低くて必要な変位量
と発生力とを得ることができる。
0.8 × A ≦ t 2 ≦ 1.2 × A (I) F: Force generated as an actuator (N) δ: Displacement (m) required as an actuator l: Length of actuator (m) b: Width of actuator (m) Y 2 : Young's modulus of piezoelectric body (N / m) A: Optimum thickness of piezoelectric body (m) t 1 : thickness of support member (m) t 2 : thickness of piezoelectric body (m) [Action] In the present invention, the applied electric field is low and required. The displacement amount and the generated force can be obtained.

〔実施例〕〔Example〕

この発明は、圧電体セラミックスと、これを貼り合わ
せた非圧電性の屈曲可能な板状の支持部材または板状の
圧電体セラミックスの支持部材とからなるユニモルフ型
あるいはバイモルフ型の圧電アクチュエータにおいて、
使用する材料および要求特性である変位量,発生力が決
定されたとき、必要な印加電界強度を最小にするような
最適な厚さの組み合わせを見出したものである。すなわ
ち、貼り合わせる2枚の部材、つまり圧電体セラミック
スと支持部材のそれぞれのヤング率をY2,Y1とし、それ
ぞれの厚さをt2,t1とすると、ヤング率の比pと厚さの
比qはそれぞれ p=Y2/Y1 q=t2/t1 となり、両者の関係が のとき、印加電界強度が最小でよいことが判明した。こ
のとき、t2は、 により最適点が決定される。
The present invention provides a unimorph-type or bimorph-type piezoelectric actuator comprising a piezoelectric ceramic and a non-piezoelectric bendable plate-shaped support member or a plate-shaped piezoelectric ceramics support member bonded thereto.
When the material to be used and the required characteristics, ie, the displacement and the generated force, are determined, an optimum combination of thicknesses that minimizes the required applied electric field strength has been found. That is, assuming that the respective Young's moduli of the two members to be bonded, that is, the piezoelectric ceramic and the support member are Y 2 and Y 1 and their thicknesses are t 2 and t 1 , respectively, the Young's modulus ratio p and the thickness each ratio q is p = Y 2 / Y 1 q = t 2 / t 1 next, the relationship between the two In this case, it was found that the applied electric field intensity was minimal. At this time, t 2 is Determines the optimal point.

ただし、F:アクチュエータとして必要な発生力, δ:アクチュエータとして必要な変位量, l:アクチュエータの長さ, b:アクチュエータの幅 である。また電極あるいは接着層の影響は通常圧電体セ
ラミックスあるいは支持部材の厚さに比べて非常に薄い
ので無視できる。
Here, F: generated force required for the actuator, δ: displacement required for the actuator, l: length of the actuator, b: width of the actuator. In addition, the influence of the electrode or the adhesive layer is usually very small as compared with the thickness of the piezoelectric ceramic or the supporting member, and can be ignored.

したがって、これ以上の電界を印加することが可能で
あれば、より大きな発生力,変位量が得られることにな
る。
Therefore, if it is possible to apply a larger electric field, a larger generated force and larger displacement can be obtained.

上記のt1,t2の条件は最適値であるが、一般には圧電
体セラミックスの厚みt2が下記第(I)式を、また、支
持部材の厚みt1が下記第(II)式を満足すればよい。
The above conditions of t 1 and t 2 are optimal values, but in general, the thickness t 2 of the piezoelectric ceramic is given by the following formula (I), and the thickness t 1 of the support member is given by the following formula (II). You only have to be satisfied.

0.8×A≦t2≦1.2×A ……(I) この発明は、第1図,第2図に示す従来のユニモルフ
型,バイモルフ型の圧電アクチュエータに適用できるほ
か、先に提案した、第3図の圧電アクチュエータにも適
用できる。
0.8 × A ≦ t 2 ≦ 1.2 × A (I) The present invention can be applied not only to the conventional unimorph type and bimorph type piezoelectric actuators shown in FIGS. 1 and 2, but also to the previously proposed piezoelectric actuator of FIG.

すなわち、第3図は特願昭61−228426号の圧電アクチ
ュエータの原理説明図で、縦効果型積層圧電素子(以下
単に圧電素子という)7と支持部材11とを組み合わせた
ものである。すなわち、前記圧電素子1の長手方向の一
側面に金属板からなる支持部材11をエポキシ樹脂等の絶
縁性の接着剤により圧電素子7と貼り合わせて接着し、
絶縁層12を形成する。
That is, FIG. 3 is a view for explaining the principle of a piezoelectric actuator disclosed in Japanese Patent Application No. 61-228426, in which a longitudinal effect type laminated piezoelectric element (hereinafter simply referred to as a piezoelectric element) 7 and a support member 11 are combined. That is, a support member 11 made of a metal plate is attached to one side in the longitudinal direction of the piezoelectric element 1 with the piezoelectric element 7 with an insulating adhesive such as an epoxy resin, and is bonded.
An insulating layer 12 is formed.

なお、圧電素子7の製造に際しては、例えば圧電体セ
ラミックス2としてチタン酸ジルコン酸鉛(PZT)の原
料粉末と有機バインダ,可塑材,溶剤等とともに混練
し、スラリーを調製し、ドクターブレード等によってシ
ート成型を行い、乾燥後、所要の電極3をスクリーン印
刷によって形成し、その後、積層加熱圧着してモノリシ
ックな成形体を得る。
When manufacturing the piezoelectric element 7, for example, a raw material powder of lead zirconate titanate (PZT) as the piezoelectric ceramic 2 and an organic binder, a plasticizer, a solvent, and the like are kneaded, a slurry is prepared, and a sheet is formed by a doctor blade or the like. After molding and drying, a required electrode 3 is formed by screen printing, and then laminated and heated and pressed to obtain a monolithic molded body.

圧電体セラミックス2の厚みは、圧電素子7の長さに
対応するので、必要な素子長となるように積層数を決定
する。これを電極3方向と直角の方向にすなわち、圧電
素子7の厚さが数100μm程度となるように切断してか
ら焼成し、必要な厚さに研磨することによって長手方向
に積層されている圧電体セラミックス2を得る。
Since the thickness of the piezoelectric ceramics 2 corresponds to the length of the piezoelectric element 7, the number of layers is determined so that the required element length is obtained. This is cut in a direction perpendicular to the direction of the electrodes 3, that is, cut so that the thickness of the piezoelectric element 7 becomes about several hundred μm, baked, and polished to a required thickness to thereby form a piezoelectric element laminated in the longitudinal direction. A body ceramic 2 is obtained.

また、成形体を切断せずにそのまま焼成し、その後、
切断,研磨しても同様に得られる。これに連絡電極を焼
き付け、リード線を付けて分極処理を行う。
Also, firing the molded body without cutting it, then
The same can be obtained by cutting and polishing. Then, a connecting electrode is baked, a lead wire is attached, and a polarization process is performed.

次いで、ユニモルフ型の圧電アクチュエータにするの
であれば、例えば厚さ90μmのFe−Ni合金の金属板から
なる指示部材11に、絶縁材と接着剤を兼ねたエポキシ樹
脂を塗布して絶縁層12を形成し、圧電素子7を貼り合わ
せる。
Next, if a unimorph type piezoelectric actuator is to be used, for example, an epoxy resin serving as an insulating material and an adhesive is applied to a pointing member 11 made of a metal plate of a Fe-Ni alloy having a thickness of 90 μm to form an insulating layer 12. Then, the piezoelectric element 7 is bonded.

バイモルフ型の圧電アクチュエータの場合であれば、
横効果型積層あるいは単相の圧電素子を焼成して所定の
形状に加工し、分極処理を実施した後、第3図のユニモ
ルフ型と同様に絶縁層12を形成して圧電素子7を貼り合
わせる。
In the case of a bimorph type piezoelectric actuator,
After sintering the lateral effect type laminated or single-phase piezoelectric element, processing it into a predetermined shape, and performing polarization processing, the insulating layer 12 is formed and the piezoelectric element 7 is bonded as in the unimorph type shown in FIG. .

また、図示されていないが電界Eの印加方向,分極方
向P,収縮方向D,伸長方向Bは第1図の圧電素子1と同じ
である。
Although not shown, the direction in which the electric field E is applied, the polarization direction P, the contraction direction D, and the extension direction B are the same as those of the piezoelectric element 1 in FIG.

このような構成にすると、ユニモルフ型の圧電アクチ
ュエータに適用した場合、従来のユニモルフ型の圧電素
子1に比べ、圧電歪が2〜3倍大きくなる(d332〜
3×d31)。したがって、変位量δおよび発生力Fとも
に同形状の横効果型のユニモルフ型に比べ2〜3倍大き
くなる。
With such a configuration, when applied to a unimorph-type piezoelectric actuator, the piezoelectric strain is 2-3 times larger than that of the conventional unimorph-type piezoelectric element 1 (d 33 2-3).
3 × d 31 ). Therefore, both the displacement amount δ and the generated force F are two to three times larger than those of the lateral effect type unimorph type having the same shape.

以下の実施例は、いずれも上記した縦効果型積層圧電
素子を用いたもので、支持部材としてはアルミナ,ジル
コニアあるいは伸縮方向が異なる横効果型積層圧電素子
を用いたものである。また素子幅は5mm,素子長は15mmで
ある。
The following examples all use the above-described vertical effect type laminated piezoelectric element, and use alumina, zirconia or a lateral effect type laminated piezoelectric element having different expansion and contraction directions as a support member. The element width is 5 mm and the element length is 15 mm.

(実施例1) 型式:ユニモルフ 支持部材:アルミナ 圧電体:PZT系セラミックス(d33=720×10-12m/v) p:0.1778〔(Y2=5.9×1010N/m2)/(Y1=3.3×1011N/
m2)〕 q:2.365(t2=200μm/t1=85μm) 印加電界強度:1.17kV/mm また、第4図に印加電界強度と変位量,第5図に変位
量と発生力の関係を表す実測値を示す。
(Example 1) Model: Unimorph Supporting member: Alumina Piezoelectric material: PZT-based ceramics (d 33 = 720 × 10 −12 m / v) p: 0.1778 [(Y 2 = 5.9 × 10 10 N / m 2 ) / ( Y 1 = 3.3 × 10 11 N /
m 2 )] q: 2.365 (t 2 = 200 μm / t 1 = 85 μm) Applied electric field strength: 1.17 kV / mm FIG. 4 shows the applied electric field strength and the amount of displacement, and FIG. 5 shows the measured values representing the relationship between the amount of displacement and the generated force.

(実施例2) 型式:ユニモルフ 支持部材:ジルコニア 圧電体:PZT系セラミックス(d33=720×10-12m/v) p:0.2810〔(Y2=5.9×1010N/m2)/(Y1=2.1×1011N/
m2)〕 q:1.887(t2=195μm/t1=104μm) 印加電界強度:1.25kV/mm 圧電定数 d33:720×10-12m/V (実施例3) 型式:バイモルフ 支持部材:横効果型圧電体:PZT系セラミックス(d31=2
60×10-12m/v) 圧電体:PZT系セラミックス(d33=720×10-12m/v) p:0.8806〔(Y2=5.9×1010N/m2)/(Y1=6.7×1010N/
m2)〕 q:1.066(t2=180μm/t1=170) 印加電界強度:1.10kV/mm (比較例)(実施例1と同じ材料の組み合わせてt1が関
係式第(II)式を満足しない場合) 型式:ユニモルフ 支持部材:アルミナ 圧電体:PZT系セラミックス p:0.1788(実施例1と同じ) q:1.0(t2=140μm/t1=140μm) 印加電界強度:1.70kV/mm 上記のようにこの発明の各実施例においては比較例に
くらべ小さな印加電界強度で、大きな変位量と発生力が
得られることがわかる。
(Example 2) Type: unimorph support member: zirconia piezoelectric: PZT ceramics (d 33 = 720 × 10 -12 m / v) p: 0.2810 [(Y 2 = 5.9 × 10 10 N / m 2) / ( Y 1 = 2.1 × 10 11 N /
m 2 )] q: 1.887 (t 2 = 195 μm / t 1 = 104 μm) Applied electric field strength: 1.25 kV / mm Piezoelectric constant d 33 : 720 × 10 -12 m / V (Example 3) Model: Bimorph Support member: Lateral effect type piezoelectric material: PZT ceramics (d 31 = 2
60 × 10 −12 m / v) Piezoelectric material: PZT-based ceramics (d 33 = 720 × 10 −12 m / v) p: 0.8806 [(Y 2 = 5.9 × 10 10 N / m 2 ) / (Y 1 = 6.7 × 10 10 N /
m 2 )] q: 1.066 (t 2 = 180 μm / t 1 = 170) Applied electric field strength: 1.10 kV / mm (Comparative Example) (if t 1 in combination of the same materials as in Example 1 does not satisfy the relational expression the formula (II)) Model: unimorph support: alumina piezoelectric: PZT ceramic p: 0.1788 (Example 1 Same) q: 1.0 (t 2 = 140 μm / t 1 = 140 μm) Applied electric field strength: 1.70 kV / mm As described above, in each of the embodiments of the present invention, it can be seen that a large displacement and a large generated force can be obtained with a smaller applied electric field intensity than the comparative example.

この他、変位量が大きくなるため、先端部が水平にな
らなくなるが、これによって不都合が生じる場合は、第
6図に示すように、支持部材11に対し圧電素子7を2つ
並べ、互いに変位方向を逆向きにすることによって、変
位後は点線で示すようになり先端部を水平に保つことが
できる。
In addition, since the amount of displacement is large, the tip portion is not horizontal, but if this causes a problem, as shown in FIG. 6, two piezoelectric elements 7 are arranged on the support member 11 and displaced from each other. By reversing the direction, as shown by the dotted line after the displacement, the tip can be kept horizontal.

〔発明の効果〕〔The invention's effect〕

以上説明したようにこの発明は、電界の印加の有無に
応じ伸縮する板状の圧電体セラミックスにその伸縮変形
を拘束するために、非圧電性の屈曲可能な板状の支持部
材あるいは前記圧電体セラミックスと伸縮方向が異なる
板状の圧電体セラミックスからなる支持部材をそれぞれ
直接貼り合わせてなる圧電アクチュエータにおいて、互
いに貼り合わせる圧電体セラミックスと支持部材のそれ
ぞれのヤング率をY2,Y1、厚さをt2,t1、両ヤング率の比
をpとすると、前記圧電体セラミックスの厚さt2の範囲
が下記関係式(I)を満足し、かつ前記支持部材の厚さ
t1が下記関係式(II)を満足するようにしたので、使用
材料および変位量,発生力が決まれば、必要な印加電界
を最小にする厚さの組み合わせを決定でき、ひいては発
生力,変位量を従来よりも増大させることができる利点
を有する。
As described above, the present invention provides a non-piezoelectric bendable plate-shaped support member or the piezoelectric body for restraining the expansion and contraction of the plate-shaped piezoelectric ceramic in accordance with the presence or absence of an electric field. In a piezoelectric actuator in which a ceramic and a support member made of a plate-shaped piezoelectric ceramic having a different expansion and contraction direction are directly bonded to each other, the Young's modulus of the piezoelectric ceramic and the support member to be bonded to each other are Y 2 , Y 1 , and the thickness. Where t 2 and t 1 , and the ratio of the two Young's moduli is p, the range of the thickness t 2 of the piezoelectric ceramic satisfies the following relational expression (I), and the thickness of the support member is
Since t 1 satisfies the following relational expression (II), if the material to be used, the amount of displacement, and the generated force are determined, the combination of thicknesses that minimizes the required applied electric field can be determined, and thus the generated force, displacement It has the advantage that the amount can be increased over the prior art.

0.8×A≦t2≦1.2×A ……(I) 0.8 × A ≦ t 2 ≦ 1.2 × A (I)

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図,第3図はこの発明の適用対象の一例を
それぞれ示す圧電アクチュエータで、第1図はユニモル
フ型,第2図はバイモルフ型,第3図は先に提案した縦
効果型積層圧電素子を用いたユニモルフ型を示す説明
図、第4図,第5図は実施例1で示したユニモルフ印加
電界強度と変位量および発生力の関係を表す実測値を示
す図、第6図は先端部を水平にするために、2つのユニ
モルフを並べた構造を示す説明図である。 図中、1,5,7は圧電素子、2,2A,2Bは圧電体セラミック
ス、3は電極、4は電源、6は固定台、11は支持部材、
12は絶縁層である。
FIGS. 1, 2, and 3 are piezoelectric actuators each showing an example of an object to which the present invention is applied. FIG. 1 is a unimorph type, FIG. 2 is a bimorph type, and FIG. 3 is a longitudinal effect proposed earlier. FIGS. 4 and 5 are diagrams showing measured values representing the relationship between the applied electric field intensity, the amount of displacement and the generated force shown in the first embodiment, and FIGS. The figure is an explanatory view showing a structure in which two unimorphs are arranged in order to level the tip. In the figure, 1, 5 and 7 are piezoelectric elements, 2, 2A and 2B are piezoelectric ceramics, 3 is an electrode, 4 is a power supply, 6 is a fixed base, 11 is a support member,
12 is an insulating layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電界の印加の有無に応じ伸縮する板状の圧
電体セラミックスにその伸縮変形を拘束するために、非
圧電性の屈曲可能な板状の支持部材あるいは前記圧電体
セラミックスと伸縮方向が異なる板状の圧電体セラミッ
クスからなる支持部材をそれぞれ直接貼り合わせてなる
圧電アクチュエータにおいて、互いに貼り合わせる前記
圧電体セラミックスと支持部材とのそれぞれのヤング率
をY2,Y1、厚さをt2,t1、前記両ヤング率の比をpとする
と前記圧電体セラミックスの厚さt2の範囲が下記関係式
(I)を満足し、かつ前記支持部材の厚さt1が下記関係
式(II)を満足することを特徴とする圧電アクチュエー
タ。 0.8×A≦t2≦1.2×A ……(I) F:アクチュエータとして必要な発生力(N) δ:アクチュエータとして必要な変位量(m) l:アクチュエータの長さ(m) b:アクチュエータの幅(m) Y2:圧電体のヤング率(N/m) A:圧電体の最適厚さ(m) t1:支持部材の厚さ(m) t2:圧電体の厚さ(m)
1. A non-piezoelectric bendable plate-like support member or a direction in which the piezoelectric ceramic expands and contracts in order to restrain the expansion and contraction of the plate-like piezoelectric ceramic in accordance with the presence or absence of an electric field. In a piezoelectric actuator in which support members made of different plate-like piezoelectric ceramics are directly bonded to each other, the respective Young's moduli of the piezoelectric ceramics and the support member bonded to each other are Y 2 and Y 1 , and the thickness is t. 2 , t 1 , and the ratio of the two Young's moduli is p, the range of the thickness t 2 of the piezoelectric ceramic satisfies the following relational expression (I), and the thickness t 1 of the supporting member is the following relational expression. A piezoelectric actuator characterized by satisfying (II). 0.8 × A ≦ t 2 ≦ 1.2 × A (I) F: Force generated as an actuator (N) δ: Displacement (m) required as an actuator l: Length of actuator (m) b: Width of actuator (m) Y 2 : Young's modulus of piezoelectric body (N / m) a: optimum thickness of the piezoelectric (m) t 1: thickness of the support member (m) t 2: piezoelectric thickness (m)
JP62307579A 1986-12-27 1987-12-07 Piezo actuator Expired - Fee Related JP2585322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307579A JP2585322B2 (en) 1986-12-27 1987-12-07 Piezo actuator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61-309189 1986-12-27
JP30918986 1986-12-27
JP62307579A JP2585322B2 (en) 1986-12-27 1987-12-07 Piezo actuator

Publications (2)

Publication Number Publication Date
JPS63260085A JPS63260085A (en) 1988-10-27
JP2585322B2 true JP2585322B2 (en) 1997-02-26

Family

ID=26565169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307579A Expired - Fee Related JP2585322B2 (en) 1986-12-27 1987-12-07 Piezo actuator

Country Status (1)

Country Link
JP (1) JP2585322B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218517A (en) * 1992-02-06 1993-08-27 Murata Mfg Co Ltd Piezoelectric bimolph type actuator
JP2003101093A (en) * 2001-09-25 2003-04-04 Taiheiyo Cement Corp Piezoelectric actuator
JP4580826B2 (en) * 2005-06-17 2010-11-17 株式会社東芝 Micromechanical devices, microswitches, variable capacitance capacitors, high-frequency circuits, and optical switches
JP5648149B2 (en) * 2010-07-16 2015-01-07 長井 裕 Ultrasonic microscope

Also Published As

Publication number Publication date
JPS63260085A (en) 1988-10-27

Similar Documents

Publication Publication Date Title
US5034649A (en) Piezoelectric actuator
JP3120260B2 (en) Piezoelectric / electrostrictive film type element
JP2842448B2 (en) Piezoelectric / electrostrictive film type actuator
CN1123939C (en) Piezoelectric/electrostrictive film element with diaphragm having at least one stress releasing end section
JP2665106B2 (en) Piezoelectric / electrostrictive film element
US7321180B2 (en) Piezoelectric/electrostrictive device
US20040091608A1 (en) Piezoelectric/electrostrictive device and method of manufacturing same
JPH07108102B2 (en) Method for manufacturing piezoelectric / electrostrictive film type actuator
EP1089349B1 (en) Piezoelectric/electrostrictive device and method of manufacturing same
JP2693291B2 (en) Piezoelectric / electrostrictive actuator
JP4038400B2 (en) Ceramic laminate, method for producing ceramic laminate, piezoelectric / electrostrictive device, method for producing piezoelectric / electrostrictive device, and ceramic sintered body
US6566789B2 (en) Piezoelectric/electrostrictive device and method of manufacturing same
US6323582B1 (en) Piezoelectric/Electrostrictive device
US6476539B1 (en) Piezoelectric/electrostrictive device
JP2585322B2 (en) Piezo actuator
JP2001250996A (en) Piezoelectric/electrostriction device
US20060061240A1 (en) Piezoelectric/electrostrictive device
JP3370178B2 (en) Multilayer piezoelectric element and method of manufacturing the same
JP2571802B2 (en) Piezo actuator
JPH0658978B2 (en) Piezoelectric displacement element
JPS6372172A (en) Sheet-like electrostrictive laminated body
JP3466551B2 (en) Piezoelectric / electrostrictive device
JP2533861B2 (en) Piezoelectric actuator
JP2893765B2 (en) Method for manufacturing multimorph element
JPH0438152B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees