JPH01245140A - X-ray fluoroscopic inspection instrument - Google Patents

X-ray fluoroscopic inspection instrument

Info

Publication number
JPH01245140A
JPH01245140A JP63071798A JP7179888A JPH01245140A JP H01245140 A JPH01245140 A JP H01245140A JP 63071798 A JP63071798 A JP 63071798A JP 7179888 A JP7179888 A JP 7179888A JP H01245140 A JPH01245140 A JP H01245140A
Authority
JP
Japan
Prior art keywords
image
inspected
ray
inspection
image signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63071798A
Other languages
Japanese (ja)
Other versions
JP2593172B2 (en
Inventor
Shinji Umadono
進路 馬殿
Toshimasa Tomota
友田 利正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63071798A priority Critical patent/JP2593172B2/en
Publication of JPH01245140A publication Critical patent/JPH01245140A/en
Application granted granted Critical
Publication of JP2593172B2 publication Critical patent/JP2593172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To obtain an image having a high grade picture quality by providing an image processor for executing a moving integration of an image in conformity with the movement of an object to be inspected, and outputting an integral image signal, and a display device for displaying an integral image processing signal which is sent out of the image processor. CONSTITUTION:A radiant ray 4 which is generated by an X-ray source 1 is radiated to an object to be inspected 2, a part thereof is scattered and absorbed, but a part is brought to transmission as it is and goes to X rays 5. This X rays 5 are detected by a two-dimensional X-ray detector 3 and go to an image signal 10. This signal 10 is sent to an image processor 6 and brought to image integration. In such a case, the object to be inspected 2 is placed on an object-to- be-inspected carrying device 9A and brought to rotational run like a circular arc, therefore, the processor 6 applies the signal 10 to moving integration in conformity with this rotational run, and executes an image synthesis. This synthesized image signal 7 is sent to a display device 8 and displayed. In such a way, an image high in grade picture quality is obtained.

Description

【発明の詳細な説明】 〔座業上の利用分野〕 この発明は、被検査物KX線を照射し、その結果侍られ
るX線透視像から被検査物の内部を検査するX線透視検
査装置に関するものである。
[Detailed Description of the Invention] [Field of Sedentary Work] The present invention provides an X-ray fluoroscopic inspection device that irradiates the inspected object with KX-rays and inspects the inside of the inspected object from the resulting X-ray fluoroscopic image. It is related to.

〔従来の技術〕[Conventional technology]

第4図は従来のXgj透視検査装置の構成を示す概略図
で、(2)はX線源、(2)は内部検査される被検査物
、(3)はX線源(1)から発生された放射線(4)が
被検査物(2) K照射され、透過した透過X線(5)
を2次元的に検出する2次元X線検出器、(6)はこの
2次元X線検出器(3)からの画像信号を処理する画像
処理器、(8)ハこの画像処理器(6)から送出された
画像信号(7)を表示する表示装置、(9)は被検査物
(2)を載置し、X線源(L)と2次元X線検出器(3
)に対して直交する方向に配置されて直線走行する被検
査物搬送装置である。
Figure 4 is a schematic diagram showing the configuration of a conventional XGJ fluoroscopic inspection device, in which (2) is an X-ray source, (2) is an object to be internally inspected, and (3) is an X-ray source generated from (1). The exposed radiation (4) is the object to be inspected (2).The transmitted X-ray (5)
(6) is an image processor that processes the image signal from this two-dimensional X-ray detector (3); (8) is this image processor (6). The display device (9) displays the image signal (7) sent from the
) is a device to be inspected that travels in a straight line and is arranged in a direction perpendicular to

次に、この従来装置の動作を、第5図および第6図につ
いて説明する。
Next, the operation of this conventional device will be explained with reference to FIGS. 5 and 6.

先ず、被検査物(2)が放射線軌跡(照射視野)よりも
小さい場合について説明する。この場合は、X線源(1
)によって発生された放射線(4)&工被検登物(2)
に照射され、ここで一部は散乱、吸収されるが、一部は
そのまま透過されて透過X線(5)になる。この透過X
線(5)は2次元X線検出器(3)で検出されて透過X
#j画像信号(10)になる。このとき、被検査物(2
)が密度の犬ぎな金属とすると、放射線(4)であるX
線はこの被検査物(2) ICよく吸収される。その結
果、透過X1(5)の強度は小さくなり、これを受けた
2次元XR検出器(3)の出力である透過X線画像信号
(lO)には量子雑音がかなシ大きな割合で含まれるよ
うになる。この童子雑音は、次段の画像処理器(6)で
積分され、低減される。従って、画像信号(7)を表示
装置(8)に表示することKよシ、被検査物(2)のわ
ずかな板厚変化などを輝度の濃淡レベルの差として表わ
すことができる。
First, a case where the inspected object (2) is smaller than the radiation trajectory (irradiation field of view) will be described. In this case, the X-ray source (1
) Radiation generated by (4) & construction objects to be inspected (2)
Some of it is scattered and absorbed, but some of it is transmitted as it is and becomes transmitted X-rays (5). This transparent X
The ray (5) is detected by the two-dimensional X-ray detector (3) and transmitted
It becomes #j image signal (10). At this time, the object to be inspected (2
) is a metal with a high density, then X, which is radiation (4)
The line is well absorbed by this test object (2) IC. As a result, the intensity of the transmitted X1 (5) decreases, and the transmitted X-ray image signal (lO), which is the output of the two-dimensional XR detector (3) that receives this, contains a large proportion of quantum noise. It becomes like this. This baby noise is integrated and reduced by the next-stage image processor (6). Therefore, in addition to displaying the image signal (7) on the display device (8), slight changes in the thickness of the object to be inspected (2) can be expressed as a difference in the brightness level.

次に、被検査物(2)が放射線軌跡(照射視野)よりも
大きい場合について説明する。この場合は、被検査物(
2)を放射線軌跡内にもたらすために被検査物(2)を
被検査物搬送装置(9)上に載置してこれを直線走行さ
せる。その結果、2次元X線検出器(3)で検出した透
過X線画像信号(1υ)の各フレームに対して、その画
質改善のために次のような2つの方法が通常採られる。
Next, a case where the inspected object (2) is larger than the radiation trajectory (irradiation field) will be described. In this case, the object to be inspected (
In order to bring 2) into the radiation trajectory, the object to be inspected (2) is placed on the object to be inspected transport device (9) and is moved in a straight line. As a result, the following two methods are usually employed to improve the image quality of each frame of the transmitted X-ray image signal (1υ) detected by the two-dimensional X-ray detector (3).

■)被検査物搬送装置(9)によシ被検査物(2)をス
テップ毎に移動させる。そして、得られた透過X線画像
信号(lO)に対して画像処理器(6)がその画質改善
のため一定時間画像積分を行う。この間は、被検査物搬
送装置(9)は停止させておく。
(2) The object to be inspected (2) is moved step by step by the object to be inspected transport device (9). Then, the image processor (6) performs image integration for a certain period of time on the obtained transmission X-ray image signal (lO) in order to improve the image quality. During this time, the inspection object transport device (9) is stopped.

(以上の詳細は、昭箱157年度春季大会講演概要、第
31巻、第2号、第11J4〜105ページに掲載され
た中西章人他著の論文r uog鋼管のX線透視装置に
ついて」に述べられている。)同様に、2)被検査物搬
送装置(9)によシ、被検査物(2)をわずかな送シ幅
で移動させ、画像処理器(6)により画像移動積分を行
う。(以上の詳細は、例えば特開昭60−123.75
4号公報に開示されている。)しかしながら、これらの
2つの方法は次のような問題点がある。
(The above details can be found in the paper "About X-ray fluoroscopy equipment for RUOG steel pipes" written by Akito Nakanishi and others published in the 157th Spring Conference Lecture Summary of Showa Box, Vol. 31, No. 2, No. 11J4-105). ) Similarly, 2) the object to be inspected (2) is moved by a small feed width by the object to be inspected transport device (9), and the image movement integral is calculated by the image processor (6). conduct. (The above details can be found, for example, in Japanese Unexamined Patent Publication No. 60-123.75.
It is disclosed in Publication No. 4. ) However, these two methods have the following problems.

即ち、前者の場合は、画像積分を行つX111i!透視
時間以外に画像相当分の距離を搬送させる時間を加えな
ければならず、従って検査時間のスループットが低下す
るか、量子雑音の多い画像になるという問題点がある。
That is, in the former case, X111i! performs image integration. In addition to the fluoroscopy time, it is necessary to add time for transporting the image over a distance, resulting in a problem that the throughput of the inspection time is reduced or the image contains a lot of quantum noise.

後者の場合は、被検査物(2)を一定速度で走行させな
からXi透視検査を行うので、スループットを低下せず
に量子雑音を減らせる効果はあるが、画像移動積分を行
う画像処理器(6)から出力される合成画像に歪が発生
するという問題点がある。
In the latter case, the Xi fluoroscopic inspection is performed without moving the object to be inspected (2) at a constant speed, which has the effect of reducing quantum noise without reducing throughput, but an image processor that performs image movement integration There is a problem that distortion occurs in the composite image output from (6).

以下、この合成画像歪について説明する。This composite image distortion will be explained below.

第5図において、被検査物(2)は、X線源(1)から
放出されたX線束(21)、(22)、 (23)中を
横断しながら直線走行する。ここで、模擬欠陥信号とし
て文字r4Jを被検査物(2)の各検査層面(24)。
In FIG. 5, the object to be inspected (2) travels in a straight line while crossing the X-ray fluxes (21), (22), and (23) emitted from the X-ray source (1). Here, the characters r4J are used as simulated defect signals on each inspection layer surface (24) of the object to be inspected (2).

(25)、(2B)に設ける。そして、被検査物(2)
を移動させながらX線透視像を監測する。第6図(a)
にこのX線透視像を例示する。画像(27)、(28)
、(29)はそれぞれ時刻(T1)、(T2)、(T3
)  におけるものである( T、 <T2<T3)。
(25) and (2B). And the object to be inspected (2)
Monitor the X-ray fluoroscopic image while moving the Figure 6(a)
An example of this X-ray fluoroscopic image is shown below. Image (27), (28)
, (29) are times (T1), (T2), and (T3), respectively.
) (T, <T2<T3).

また、これらの画像(27)。Also, these images (27).

(28)、(29)を画像処理器(6)で処理した画面
合成像(30)、 (31)、 (32)を第6図(b
)に例示する。この図かられかるように、計測画面を移
動積分した結果、検査層面(25)に対する画面合成像
(3L)は無歪であるが、検査層面(24)、 (26
)に対する画面合成像(30)、(32) hs合成ず
れが生じている。但し、それぞれの検査層面(24) 
、 (25’) 、 (26)からの像拡大比は実際に
は異なるが、図では同じ大きさで表わしである。このよ
うな合成ずれは次の理由により惹起される。即ち、先ず
、被検査点が同−検査層面にあっても、放射線軌跡(2
1)〜(23)のそれぞれ(投影各線)が異なると、こ
れらの軌跡上での投影拡大比mが異なって来る。例えば
、検査層m(25)に対するそれぞれの放射線軌跡(2
L)〜(23)K対する投影拡大比”25,211m2
s、221m2s、23とすると、 L21A+L2、B        L2□い+L22
8”°・” ’   L21A       L2□え
25.22 = L23A+ L23B m25.23: 23A が得られる。ここに、L   、L   、L23Aは
そ21A      22A れそれ放射組軌跡(21)〜(23)上でのX線源(1
)から検査層面(25)までの距離、またLL21B1
   22BI L+工同様に放射線軌跡(21)〜(23)上での検3
B 香層面(25)から2次元XIm検出器(3)までの距
離を表わす。このように投影拡大比が放射線軌跡(21
)〜(23)毎に異なるので、被検査物搬送装置(9)
に載置された被検査物(2)が一定速度で直?走行した
としても、同一検査層内でも、各検査層間でも、2次元
X線検出器面上に投影される投影速度が異なることにな
シ合成ずれが生じる。
Figure 6(b) shows the screen composite images (30), (31), and (32) obtained by processing (28) and (29) with the image processor (6).
) as an example. As can be seen from this figure, as a result of moving and integrating the measurement screen, the screen composite image (3L) for the inspection layer surface (25) is undistorted, but the inspection layer surface (24), (26
), screen composite images (30) and (32) hs composition shift has occurred. However, each inspection layer surface (24)
, (25'), and (26) are actually different, but are shown with the same size in the figure. Such a synthesis deviation is caused by the following reason. That is, first, even if the inspection point is on the same inspection layer surface, the radiation trajectory (2
If each of (1) to (23) (each projection line) is different, the projection magnification ratio m on these trajectories will be different. For example, each radiation trajectory (2
L) ~ (23) Projection magnification ratio for K"25,211m2
s, 221m2s, 23, L21A+L2, B L2□+L22
8"°・"' L21A L2□e25.22 = L23A+ L23B m25.23: 23A is obtained. Here, L, L, L23A are the X-ray sources (1) on the radiation set trajectories (21) to (23).
) to the inspection layer surface (25), and LL21B1
Detection 3 on the radiation trajectory (21) to (23) as well as 22BI L+
B represents the distance from the aroma layer surface (25) to the two-dimensional XIm detector (3). In this way, the projection magnification ratio is the radiation locus (21
) to (23), so the inspection object transport device (9)
The object to be inspected (2) placed on is moving straight at a constant speed? Even if it travels, the projection speed on the two-dimensional X-ray detector surface differs even within the same inspection layer or between inspection layers, resulting in a composite shift.

この合成歪を防止する方法として例えば”東芝レビュー
”第40巻、第12号(昭和60年)、第1028〜1
030ページの掲載された藤井正司他著の論文「X線を
用いた最近の非破壊検査システム」に開示されたものが
ある。この方法では、直線走行する非検査物に対してラ
インセンサを用いて透過X線を検出することによシ合成
歪を防いでいるが、残念ながらこの方法はX線エネルギ
ーが低いときは有効であるが、高くなると量子雑音が増
加するという問題点がある。この他、被検査物が円笥配
管形状のとき移動画像積分で画像処理することによシ合
成歪を発生しな(・ようにする方法力、エックスレイ・
イメージング・コーポレーション(X−RAY IMA
GING C0RPORATION )の“リアルタイ
ム(real time ) (1982年9月21〜
22日)に[実時間放射線計測の利点(TI POTB
NTIALOF REAL−TIME RADIOGR
APHY) Jとして報告されている。この方法は原理
的には有効であるが、実際には薄い被検査物(5〜40
朋)に適用されるものである。
As a method for preventing this synthetic distortion, for example, "Toshiba Review" Vol. 40, No. 12 (1985), No. 1028-1
There is something disclosed in the paper ``Recent non-destructive inspection systems using X-rays'' written by Masashi Fujii and others published on page 030. In this method, synthetic distortion is prevented by using a line sensor to detect transmitted X-rays from a non-inspection object traveling in a straight line, but unfortunately this method is not effective when the X-ray energy is low. However, there is a problem in that quantum noise increases as the value increases. In addition, when the object to be inspected has a circular pipe shape, image processing is performed using moving image integration to avoid generation of synthetic distortion.
Imaging Corporation (X-RAY IMA
GING CORPORATION)'s “Real Time” (September 21, 1982~
22nd) [Advantages of real-time radiation measurement (TI POTB)]
NTIALOF REAL-TIME RADIOGR
APHY) J. Although this method is effective in principle, in practice it is difficult to test thin test objects (5 to 40
(Tomo).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明したように従来技術では、被検査物が照射視野
よシ大きくかつ直線走行させられる場合は、透過X線画
像信号から雑音成分を除去するために積分処理を必要と
し、2つの方法がある。そのうちのステップ毎に被検査
物を移動させる方法は、検査時間のスループットが低下
するか、量子雑音が犬ぎくなると云う問題点がある。ま
たもう1つの、被検査物を一定速度で走行させる方法は
、合成画像に歪が生じると云う問題点がある。更に、こ
の合成画像歪を除去するためラインセンサを用いる方法
があるが、これは高エネルギーで量子雑音が犬ぎくなる
と云う問題点がある。また、被検食物が円筒形状をなす
とき移動画像積分を有効に行う方法もあるが、実際的で
はないと云う問題点がある。
As explained above, in the conventional technology, when the object to be inspected is larger than the irradiation field of view and is moved in a straight line, integration processing is required to remove noise components from the transmitted X-ray image signal, and there are two methods. . Among these methods, the method of moving the object to be inspected for each step has problems in that the throughput of the inspection time decreases or the quantum noise becomes excessive. Another problem with the method of moving the object to be inspected at a constant speed is that distortion occurs in the composite image. Furthermore, there is a method of using a line sensor to remove this composite image distortion, but this method has the problem that quantum noise becomes harsh due to high energy. There is also a method of effectively performing moving image integration when the test food has a cylindrical shape, but there is a problem that it is not practical.

この発明は、従来技術のこのような諸問題点を解決する
ためになされたもので、X線透過長の長い(50〜5o
umm)被検査物を走行させ、これに高エネルギーX 
線(0,5MeV 〜2 (l MeV )を照射して
検査する場合に、検査スループットを低下させず、童子
雑音の少な(・、良質の画像を与えることができるXi
透視検査装置を提供する事を目的としている。
This invention was made in order to solve the problems of the prior art, and has a long X-ray transmission length (50 to 5 o
umm) Run the object to be inspected and apply high energy
When inspecting by irradiating with radiation (0.5 MeV to 2 (l MeV)), Xi
The purpose is to provide a fluoroscopic inspection device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかるX線透視検査装置は、内部検査される
べき被検査物にX線を照射するXMA源と、このX線源
を中心として、前記)IJ源からのXi東中で前記被検
査物を載置したま一円弧状に回転走行させる被検査物搬
送装置と、複数列のX線検出素子を有し、前記被検査物
を透過したX線を検出して単純透視画像を出力する2次
元X線検出器と、前記被検査物の検査中に前記2次元X
線検出号から時々刻々送出される単純透視画像信号が入
力され、前記被検査物の移動に合わせて画像の移動積分
を行ない、積分画像信号を出力する画像処理器と、この
画像処理器から送出された積分画像信号を表示する表示
装置とを設けたものである。
The X-ray fluoroscopic inspection apparatus according to the present invention includes an XMA source that irradiates an object to be inspected with X-rays, and an X-ray beam extending from the above-mentioned IJ source to the object to be inspected. It has an inspection object transport device that rotates and travels in an arc shape on which an object is placed, and multiple rows of X-ray detection elements, and detects the X-rays that have passed through the inspection object and outputs a simple fluoroscopic image. a two-dimensional X-ray detector; and a two-dimensional X-ray detector;
An image processor receives a simple fluoroscopic image signal sent from the line detection signal every moment, integrates the movement of the image in accordance with the movement of the object to be inspected, and outputs an integral image signal, and the image processor outputs the integrated image signal. A display device for displaying the integrated image signal obtained is provided.

〔作用〕[Effect]

この発明においては、被検査物の移動軌跡は円弧状をな
すようにしたので、被検査物内のあるX−投影線上の相
互位置は、いずれの投影線上にあっても一定の関係を維
持できる。従って、投影拡大比が一定になり、その結果
投影像の移動速度が同じになる。これによシ画面合成歪
を除去でき、従って被検査物のどの部位に欠陥があって
も、これを忠実に捉えることができる。
In this invention, since the movement locus of the object to be inspected has an arc shape, the mutual positions on a certain X-projection line within the object to be inspected can maintain a constant relationship no matter which projection line they are on. . Therefore, the projection magnification ratio becomes constant, and as a result, the moving speed of the projected images becomes the same. This makes it possible to remove screen synthesis distortion, and therefore, no matter where a defect is located on the object to be inspected, it can be accurately captured.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の構成を示す概略図であり
、符号(1)〜(8)および(1o)で表わさnたもの
は第4図に示した従来例におけるものと同じである。(
9人)はこの発明の特徴をなす部分で、被検査物(2)
を円弧状に回転移動させる被検査物搬送装置である。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, and the items denoted by symbols (1) to (8) and (1o) are the same as those in the conventional example shown in FIG. be. (
9 people) is a feature of this invention, and the object to be inspected (2)
This is an inspection object transport device that rotates and moves an object in an arc.

次に、第1図に示したX線透視検査装置の動作を、第2
図および第3図について説明する。
Next, the operation of the X-ray fluoroscopic inspection apparatus shown in FIG.
The figure and FIG. 3 will be explained.

第1図において、X線源(1)によって発生された放射
線(4)は被検査物(2)に照射され、一部は散乱、吸
収されるが、一部はそのまま透過されて透過X線(5)
になる。この透過X線(5)は2次元X線検出器(3)
で検出されて画像信号(1υ)になる。この画像信号(
10)は画像処理器(6)に送られ、画像積分される。
In Figure 1, radiation (4) generated by an X-ray source (1) is irradiated onto an object to be inspected (2), and part of it is scattered and absorbed, but part of it is transmitted as it is, causing transmitted X-rays. (5)
become. This transmitted X-ray (5) is detected by a two-dimensional X-ray detector (3)
is detected and becomes an image signal (1υ). This image signal (
10) is sent to an image processor (6) and subjected to image integration.

この場合、被検査物(2)は、被検査物搬送装置(9A
)に載置され、円弧状に回転走行されるので、画像処理
器(6)は、画像信号(10)をこの回転走行に合わせ
て移動積分し、画像合成する。この合成された画像信号
(7)は表示装置(8)に送られ、表示される。
In this case, the inspected object (2) is transferred to the inspected object transport device (9A
) and is rotated in an arc shape, so the image processor (6) integrates the image signal (10) as it moves in accordance with this rotation and synthesizes the image. This combined image signal (7) is sent to a display device (8) and displayed.

ここで、第2図は、この発明のX線透視検査装置により
合成歪のない画像信号が得られる様子を示した図である
。3つの検査表面(51)、 (52)、 (53)は
、X線源(1)を中心として円弧をなすように配列され
る。従来例と同様に投影拡大比mを考え、合成歪が如何
に除去されるかKついて説明すると次のようになる。今
、検査層面(52)上に投影したい対象物があるとし、
投影X線軌跡(54)、(55)。
Here, FIG. 2 is a diagram showing how an image signal free from synthetic distortion is obtained by the X-ray fluoroscopic inspection apparatus of the present invention. The three inspection surfaces (51), (52), (53) are arranged in an arc around the X-ray source (1). Considering the projection magnification ratio m as in the conventional example, how K to remove the composite distortion will be explained as follows. Now, suppose there is an object to be projected onto the inspection layer surface (52),
Projection X-ray trajectory (54), (55).

(56)上での投影拡大比m5□54+m5□55+m
5□、56を求めると、 L54A +L54B ”52.54 = 54A (但し、L54.は検査層面(52)から2次元X線検
出器(3)の表面までの距離、L54AはX線源(1)
υ・ら検出層面(52)までの距離を表わす。)(但し
、L  は検査層面(52)から2次元X線5B 検出器(3)の表面までの距離、L55AはX線源(1
)から検査層面(52)までの距離を表わす。)L56
A +L56B ”52.56 : 58A (但し、L56Bは検査層面(62)から2次元X線検
出器(3)の表面までの距離、L  はX線源(1)5
6ム から検査層面(52)までの距離を表わす。)となる。
(56) Projection magnification ratio m5□54+m5□55+m on (56)
5□, 56 is calculated as follows: L54A + L54B "52.54 = 54A (However, L54. is the distance from the inspection layer surface (52) to the surface of the two-dimensional X-ray detector (3), and L54A is the distance from the X-ray source (1 )
υ· represents the distance to the detection layer surface (52). ) (where, L is the distance from the inspection layer surface (52) to the surface of the two-dimensional X-ray 5B detector (3), and L55A is the distance from the X-ray source (1
) to the inspection layer surface (52). )L56
A + L56B "52.56: 58A (However, L56B is the distance from the inspection layer surface (62) to the surface of the two-dimensional X-ray detector (3), L is the distance from the X-ray source (1) 5
It represents the distance from 6mm to the inspection layer surface (52). ).

ここで、被検査物(2)は、X線源(1)を中心として
円弧をなして回転移動させられるので、投影X線軌跡(
54) 、 (55)、 (56)のいずれに対しても
、Lの値は一定になる。従って、投影拡大比mは、被検
査物(2)が回転走行されている間は一定になる。更に
、検査層面(51)、(52)、(53)の各々では、
検査対象の移動速度は異なるが、2次元X線検出器(3
)の表面に対する投影速度は同じになるので、投影像に
関する限シは、検査層面(51)。
Here, the object to be inspected (2) is rotated in an arc around the X-ray source (1), so the projected X-ray trajectory (
54), (55), and (56), the value of L is constant. Therefore, the projection magnification ratio m remains constant while the object to be inspected (2) is rotating and traveling. Furthermore, on each of the inspection layer surfaces (51), (52), and (53),
Although the moving speed of the inspection object is different, two-dimensional X-ray detectors (3
) are the same, so the projection image is limited to the inspection layer surface (51).

(52)、(5rjの相互の位置関係を一定に保持する
ことかできる。従って、画像処理器(6)による移動積
分後も、従来例で説明したような、即ち、第6図(b)
で示したような画像合成歪の発生を防止することができ
る。
(52), (5rj) can be maintained constant. Therefore, even after the movement integration by the image processor (6), as explained in the conventional example, that is, as shown in FIG. 6(b)
It is possible to prevent the occurrence of image synthesis distortion as shown in .

なお、上記実施例では2次元X線検出器(3)には特別
な制限が設けなかったが、第3図に示したように各絵素
に対応してX線検出素子(57)を2次元上離散的に配
置させてもよい。この場合、それぞれのX線検出素子(
57)は、各X線検出素子内で発生する散乱X線が隣接
するX線検出素子に干渉しないように(吸収など)、各
絵素間距離の整数倍をなして配置し、各X線検出素子の
間の間隙は夏金属(62)などを充填させである。
In the above embodiment, no special restrictions were placed on the two-dimensional X-ray detector (3), but as shown in FIG. They may be arranged dimensionally discretely. In this case, each X-ray detection element (
57), so that scattered X-rays generated within each X-ray detection element do not interfere with adjacent X-ray detection elements (absorption, etc.), each X-ray detection element is arranged at an integral multiple of the distance between each picture element, and each X-ray detection element is The gaps between the detection elements are filled with summer metal (62) or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したよ5K、この発明は内部検査されるべき被
検査物にX線を照射するX線源と、このX線源を中心と
して、前記X線源からのX線束中で前記被検査物を載置
したま〜円弧状に回転走行させる被検査物搬送装置と、
複数列のX線検出素子を有し、前記被検査物を透過した
X線を検出し−C単純透視画儂を出力する2次元Xa検
出器と、前記被検査物の検査中に前記2次元X線検出器
から時々刻々送出される単純透視画像信号が入力され、
前記被検査物の移動に合わせて画像の移動積・?を行な
い、積分画像信号を出力する画像処理器と、この画像処
理器から送出された積分画像信号?表示する表示装置と
を設けることによシ、画像歪の少ない、高品位画質の画
像が得られる効果を奏する。
As explained above, this invention comprises an an inspection object conveyance device that rotates and travels in an arc shape while placing the inspection object;
a two-dimensional Xa detector having a plurality of rows of X-ray detection elements, which detects the X-rays transmitted through the object to be inspected and outputs a -C simple perspective image; Simple fluoroscopic image signals sent from the X-ray detector every moment are input,
The movement product of the image according to the movement of the object to be inspected. and an image processor that outputs an integral image signal, and an integral image signal sent out from this image processor. By providing a display device for displaying images, it is possible to obtain high-quality images with little image distortion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す概略図、第2図は第
1図に示したX@透視検査装置における横置層面とその
投影状態を示す図、第3図はこの発明に用いられる2次
元X線検出器の他の例を示す平面図、第4図は従来のX
線透視検査装置を示す概略図、第5図は第4図の従来例
における検査層面とその投影状態を示す図、第6図は第
4図の従来例で得られる画像信号に合成歪が生じる状況
を示した図である。 図中、(1)はX線源、(2)は被検査物、(3)は2
次元X線検出器、(6)&′s、画像処理器、(8)は
表示装置、(9A)は被検出物搬送装置である。 なお、図中、同一符号は同−又は相当部分を示代理人 
 曾  我  道  照   ゛へ2図 搗3図 へ7 児4図 晃5図 鴫 T+ < T2 < T3 6図 (b)
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the horizontal layer plane and its projection state in the X@fluoroscopic inspection apparatus shown in FIG. 1, and FIG. FIG. 4 is a plan view showing another example of a two-dimensional X-ray detector.
A schematic diagram showing a line perspective inspection device, FIG. 5 is a diagram showing the inspection layer surface and its projection state in the conventional example of FIG. 4, and FIG. 6 shows that synthetic distortion occurs in the image signal obtained with the conventional example of FIG. 4. It is a diagram showing the situation. In the figure, (1) is the X-ray source, (2) is the object to be inspected, and (3) is the
A dimensional X-ray detector, (6) &'s, an image processor, (8) a display device, and (9A) a detection object conveying device. In addition, the same reference numerals in the figures indicate the same or equivalent parts.
曾 my way to Teru ゛ 2 fig.

Claims (1)

【特許請求の範囲】[Claims] 内部検査されるべき被検査物にX線を照射するX線源と
、このX線源を中心として、前記X線源からのX線束中
で前記被検査物を載置したまゝ円弧状に回転走行させる
被検査物搬送装置と、複数列のX線検出素子を有し、前
記被検査物を透過したX線を検出して単純透視画像を出
力する2次元X線検出器と、前記被検査物の検査中に前
記2次元X線検出器から時々刻々送出される単純透視画
像信号が入力され、前記被検査物の移動に合わせて画像
の移動積分を行ない、積分画像信号を出力する画像処理
器と、この画像処理器から送出された積分画像信号を表
示する表示装置とを備えたことを特徴とするX線透視検
査装置。
An X-ray source for irradiating X-rays onto an object to be internally inspected, and an X-ray source placed in an X-ray flux from the X-ray source in an arc shape with the X-ray source as the center. a two-dimensional X-ray detector having a plurality of rows of X-ray detection elements and outputting a simple fluoroscopic image by detecting X-rays transmitted through the inspection object; A simple fluoroscopic image signal sent from the two-dimensional X-ray detector every moment during the inspection of the object to be inspected is input, movement integration of the image is performed in accordance with the movement of the object to be inspected, and an integral image signal is output. An X-ray fluoroscopic inspection apparatus comprising a processor and a display device that displays an integral image signal sent from the image processor.
JP63071798A 1988-03-28 1988-03-28 X-ray fluoroscope Expired - Lifetime JP2593172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071798A JP2593172B2 (en) 1988-03-28 1988-03-28 X-ray fluoroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071798A JP2593172B2 (en) 1988-03-28 1988-03-28 X-ray fluoroscope

Publications (2)

Publication Number Publication Date
JPH01245140A true JPH01245140A (en) 1989-09-29
JP2593172B2 JP2593172B2 (en) 1997-03-26

Family

ID=13470940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071798A Expired - Lifetime JP2593172B2 (en) 1988-03-28 1988-03-28 X-ray fluoroscope

Country Status (1)

Country Link
JP (1) JP2593172B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721402A1 (en) * 1994-06-21 1995-12-22 Commissariat Energie Atomique Method for obtaining tangential radiography of an image of an object rotating around an axis.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647961A (en) * 1970-04-09 1972-03-07 Western Electric Co T.v. -aided flaw detection using rotating image techniques
US4710946A (en) * 1985-08-06 1987-12-01 Amoco Corporation Method and apparatus for X-ray video fluoroscopic analysis of rock samples

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647961A (en) * 1970-04-09 1972-03-07 Western Electric Co T.v. -aided flaw detection using rotating image techniques
US4710946A (en) * 1985-08-06 1987-12-01 Amoco Corporation Method and apparatus for X-ray video fluoroscopic analysis of rock samples

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721402A1 (en) * 1994-06-21 1995-12-22 Commissariat Energie Atomique Method for obtaining tangential radiography of an image of an object rotating around an axis.
EP0689048A1 (en) * 1994-06-21 1995-12-27 Commissariat A L'energie Atomique Method for the obtention of the image of an object rotating around an axis by means of tangential radiography

Also Published As

Publication number Publication date
JP2593172B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
Vontobel et al. Neutron tomography: Method and applications
US7499522B2 (en) Cargo security inspection system and method
US7529336B2 (en) System and method for laminography inspection
US7706502B2 (en) Cargo container inspection system and apparatus
JP6538811B2 (en) Inspection apparatus and method of inspecting a container
JP4834373B2 (en) X-ray inspection apparatus, X-ray inspection method, and X-ray inspection program
JPH0746080B2 (en) Internal defect inspection method
US4480332A (en) Apparatus for examination by scattered radiation
JP3435648B2 (en) X-ray inspection equipment
JPH01245140A (en) X-ray fluoroscopic inspection instrument
JPS63256844A (en) X-ray device
JP2018084556A (en) Radiation detection device, radiation image acquisition device, and radiation image acquisition method
JPS60161551A (en) Inspecting method of multilayer substrate
Mery Flaw simulation in castings inspection by radioscopy
JP4926645B2 (en) Radiation inspection apparatus, radiation inspection method, and radiation inspection program
JP4728092B2 (en) X-ray image output apparatus, X-ray image output method, and X-ray image output program
JP2000111501A (en) Fluoroscope
JP4356413B2 (en) X-ray CT system
JP4155866B2 (en) X-ray tomography system
JPH08146137A (en) Radioscopy using differential image processing
JPH04313052A (en) X-ray inspecting apparatus
Schena et al. Grade of fine composite mineral particles by dual-energy X-ray radiography
KR20090080254A (en) A flat board type digital image inspection apparatus
JPH0743321A (en) X-ray inspection device
JPS63168545A (en) Measurement of detect using x-ray ct apparatus